Water Resources Data Texas Water Year 2002 **Volume 2. Trinity River Basin** By S.C. Gandara Water-Data Report TX-01-2 Prepared in cooperation with the State of Texas and with other agencies # UNITED STATES DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary GEOLOGICAL SURVEY Charles G. Groat, Director For additional information write to: District Chief, Water Resources Division U.S. Geological Survey 8027 Exchange Dr. Austin, Texas 78754-4733 ### **PREFACE** This edition of the annual hydrologic data report of Texas is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by Federal, State, local agencies, and the private sector for developing and managing land and water resources in Texas which are contained in 6 volumes: | Volume 1. | Arkansas River Basin, Red River Basin, Sabine River Basin, Neches River Basin, and | |-----------|--| | | Intervening Coastal Basins | Volume 2. Trinity River Basin Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins Volume 4. Colorado River Basin, Lavaca River Basin and Intervening Coastal Basins Volume 5. Guadalupe River Basin, Nueces River Basin, Rio Grande Basin, and Intervening Coastal Basins Volume 6. Ground-Water Data This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had the primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, most of the data were collected, computed, and processed from Subdistrict and Field Offices. The following supervised the collection, processing, and tabulation of the data: > Mike E. Dorsey Addis M. Miller III Jimmy G. Pond Timothy H. Raines Debra A. Sneck-Fahrer John W. Unruh Ken VanZandt The following individuals contributed to the collection, processing and preparation of the data: ### **Houston Subdistrict Office** ### San Antonio Subdistrict Office | Cindy Billington | Mark C. Kasmarek | James M. Briers | Vidal A. Mendoza | |--------------------|---------------------|---------------------|---------------------| | Dexter W. Brown | Patrick O. Keefe | Amy R. Clark | Robert T. Meyer | | J. Pat Bruchmiller | Wesley D. Meehan | Eric B. Cooper | Michael B. Nyman | | Mike R. Burnich | Dale Melton | Shawn M. French | Cassi L. Otero | | Al Campodonico | Russell Neill | Allen L. Furlow | Diana E. Pedraza | | Trixie A. Delisle | Edna M. Paul | Jon R. Gilhousen | Jorge O. Pena | | Jeff W. East | Cervando S. Ramirez | Ken C. Grimm | Brian L. Petri | | Shawn M. French | Elizabeth A. Roach | C.A. Hartmann, Jr. | Richard N. Slattery | | Lee B. Goldstein | J. Gilbert Stuart | Chiquita S. Lopez | Douglas E. Thomas | | Jimmy E. Hopkins | | Stephanie L. Marr | Mark A. Warzecha | | Fort Worth Field | Office | Cecilio R. Martinez | John F. Wojcik | ### Fort Worth Field Office | Jack D. Benton | Anthony J. McGlone | Austin Field | <u>Office</u> | |------------------------|---------------------|-----------------------|--------------------| | Dana A. Blanchette | Jennifer L. Pickard | | | | Wendell L. Bradford | Darryl G. Pinion | Joseph T. Bentley | Randy A. Samuelson | | Martin J. Danz | Clyde T. Schoultz | Michael G. Canova | Jonathan W. Snatic | | Judith H. Donohue | Jeffrey T. Sandlin | Michael L. Greenslate | Milton W. Sunvison | | Wilfredo Garcia-Garcia | Roger K. Trader | Searcy M. Jacobs | K. Craig Weiss | | Bradley L. Mansfield | David V. Tudor | Venezia Muniz | | ### Wichita Falls Field Office ### San Angelo Field Office | Jackie D. Kelly | | | |---------------------|--|--| | Heather L. Null | Joe G. Beauchamp | Lawanna M. Kiser | | Michael T. Pettibon | Cary D. Carman | Richard L. Nichols | | Keith R. Snider | Hector H. Garza | James B. Schiller | | | Henry Jacques, Jr. | Tim E. Teagarden | | | Heather L. Null
Michael T. Pettibon | Jackie D. Kelly Heather L. Null Michael T. Pettibon Keith R. Snider Joe G. Beauchamp Cary D. Carman Hector H. Garza | This report was prepared in cooperation with the State of Texas and other agencies under the supervision of Jayne E. May, District Data Chief. # REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | | , | 0 , 1 | , (| ,, | | |--|--|---|--|--|--| | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE March 2003 | | 3. REPORT TYPE AND DATES COVERED AnnualOct. 1, 2001, to Sept. 30, 2002 | | | | 4. TITLE AND SUBTITLE | | | | NDING NUMBERS | | | Water Resources DataTexa
Trinity River Basin | as, Water Year 2002, Volum | e 2 | | | | | 6. AUTHOR(S) S.C. Gandara | | | | | | | 7. PERFORMING ORGANIZATION NAM | E(S) AND ADDRESS(ES) | | 8. PEF | RFORMING ORGANIZATION | | | U.S. Geological Survey, Wa
Texas District | ter Resources Division | | | PORT NUMBER
GS-WDR-TX-02-2 | | | 8027 Exchange Dr.
Austin, TX 78754-4733 | | | | | | | 9. SPONSORING / MONITORING AGEN U.S. Geological Survey, Wa | | | | PONSORING / MONITORING
BENCY REPORT NUMBER | | | Texas District
8027 Exchange Dr. | | | US | GS-WDR-TX-02-2 | | | Austin, TX 78754-4733 | | | | | | | 11. SUPPLEMENTARY NOTES Prepared in cooperation with | n Federal, State, and local ag | encies. | | | | | 12a. DISTRIBUTION / AVAILABILITY ST | | | 12b. [| DISTRIBUTION CODE | | | No restriction on distribution
This report may be purchase
National Technical Informat
Springfield, VA 22161 | ed from | | | | | | 13. ABSTRACT (Maximum 200 words) Water-resources data for the discharge, and water quality water levels and water quali stations; stage only at 2 gag stations; and data for 2 particulated are lists of discontinuity stations. Additional water and are published as miscellated operated by the U.S. Geolog few pertinent stations in the | of streams and canals; stage
ty of ground-water wells. V
ing stations; stage and conte
al-record stations comprised
the surface-water discharge of
the data were collected at various
aneous measurements. These
fical Survey and cooperating | e, contents, and water-colume 2 contains recordents at 23 lakes and respond of 1 flood-hydrograph or stage-only stations and us sites, not part of the stadar represent that part Federal, State, and local | quality of
ds for wervoirs;
and 1 cand disconsistema
of the N | of lakes and reservoirs; and vater discharge at 45 gaging water quality at 27 gaging rest-stage stations. Also inntinued surface-water-qualtic data-collection program, National Water Data System | | | 14. SUBJECT TERMS | | | | 15. NUMBER OF PAGES | | | *Texas, *hydrologic data, * lakes, reservoirs, chemical a | | | | 397 16. PRICE CODE | | | | | <u> </u> | | | | | 17. SECURITY CLASSIFICATION OF REPORT Unclassified | 18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified | 19. SECURITY CLASSIFICA
OF ABSTRACT
Unclassified | TION | 20. LIMITATION OF ABSTRACT | | ### CONTENTS | Preface - | | |-----------|---| | | aging stations, in downstream order, for which records are published | | | iscontinued surface-water discharge or stage-only stations | | List of d | iscontinued surface-water-quality stations | | | tion | | Coopera | tion | | | gic conditions | | , | Streamflow | | | Water quality | | pecial r | networks and programs | | | tion of the records | | | Station identification numbers | | | Downstream order numbering | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Station manuscript | | | Data table of daily mean values | | | Statistics of monthly mean data | |
 Summary statistics | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other records available | | | Records of surface-water quality | | | Classification of records | | | Arrangement of records | | | On-site measurements and sample collection | | | Water temperature | | | Sediment | | | Laboratory measurements | | | Data presentation | | | Remarks codes | | | Water Quality-Control Data | | | Blank samples | | | Reference samples | | | Replicate samples | | | Spike samples | | Access to | o USGS water data | | | no of terms | | | ons of techniques of water-resources investigations | | laoino-s | station records | |)ischaro | ge at crest-stage partial-record stations | | | e at crest stage partial record stations | | idex | | | | | | | | | | ILLUSTRATIONS | | | ELECTION | | | | | igure | 1. Area of Texas covered by volume 2 and location of selected streamflow stations in volume 2 | | igure | | | | 2. Monthly mean discharges at four long-term hydrologic index stations during 2002 water year | | | and median of the monthly mean discharges for 1961-90 water years | | | 3. Map showing location of gaging stations in the first section of the Trinity River Basin | | | 4. Map showing location of gaging stations in the second section of the Trinity River Basin | | | 5. Map showing location of gaging stations in the third section of the Trinity River Basin | | | | | | | | | m | | | TABLES | | | | | | | | Гable | 1. Streamflow at two selected stations | # GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME [Type of data collected: (d) discharge; (c) chemical; (b) biological; (t) water temperature; (s) sediment; (e) elevation, gage heights, or contents; (p) precipitation.] | | Station
number | Page | |---|-------------------|------| | WESTERN GULF OF MEXICO BASINS
TRINITY RIVER BASIN | | | | West Fork Trinity River near Jacksboro (d) | 08042800 | 34 | | Lost Creek: | 000.2000 | ٥. | | Lost Creek Reservoir near Jacksboro (e) | 08042820 | 36 | | Bridgeport Reservoir above Bridgeport (e) | 08043000 | 38 | | Big Sandy Creek: | | | | Lake Amon G. Carter near Bowie (e) | 08043700 | 42 | | Lyndon B. Johnson National Grasslands near Alvord (c) | 08043900 | 44 | | Big Sandy Creek near Chico (d) | 08043950 | 46 | | West Fork Trinity River near Boyd (d) | 08044500 | 47 | | Walnut Creek at Reno (d) | 08044800 | 50 | | Eagle Mountain Reservoir above Fort Worth (e) | 08045000 | 52 | | Lake Worth above Fort Worth (e) | 08045400 | 54 | | Farmers Branch at Westworth Village, Fort Worth (e) | 08045525 | 56 | | Lake Weatherford near Weatherford (e) | 08045800 | 58 | | Clear Fork Trinity River near Weatherford (d) | 08045850 | 60 | | Benbrook Lake near Benbrook (e) | 08046500 | 62 | | Clear Fork Trinity River near Benbrook (d) | 08047000 | 66 | | Mary's Creek at Benbrook (d) | 08047050 | 68 | | Clear Fork Trinity River at Fort Worth (d) | 08047500 | 70 | | West Fork Trinity River at Fort Worth (d) | 08048000 | 72 | | West Fork Trinity River at Beach Street, Fort Worth (d) (c) (t) | 08048543 | 74 | | Village Creek: | | | | Village Creek at Everman (d) (c) (t) | 08048970 | 84 | | Lake Arlington at Arlington (c) (t) | 08049200 | 88 | | West Fork Trinity River at Grand Prairie (d) (c) (t) (p) | 08049500 | 94 | | Mountain Creek near Venus (d) | 08049580 | 108 | | Walnut Creek near Mansfield (d) | 08049700 | 110 | | Joe Pool Lake near Duncanville (e) | 08049800 | 112 | | Mountain Creek Lake near Grand Prairie (e) | 08050050 | 114 | | Mountain Creek at Grand Prairie (d) | 08050100 | 116 | | Elm Fork Trinity River at Gainesville (d) | 08050400 | 118 | | Isle du Bois Creek: | | | | Jordan Creek: | | | | Timber Creek near Collinsville (d) | 08050800 | 120 | | Range Creek near Collinsville (d) | 08050840 | 122 | | Ray Roberts Lake near Pilot Point (e) | 08051100 | 124 | | Clear Creek near Sanger (d) (c) (t) | 08051500 | 126 | | Little Elm Creek near Aubrey (d) | 08052700 | 132 | | Lewisville Lake near Lewisville (e) | 08052800 | 134 | | Elm Fork Trinity River near Lewisville (d) | 08053000 | 136 | | Denton Creek near Justin (d) (c) (t) | 08053500 | 138 | | Elizabeth Creek at State Highway 114 near Roanoke (c) (t) | 08053800 | 142 | | Grapevine Lake near Grapevine (e) (c) (t) (b) (p) | 08054500 | 144 | | Denton Creek near Grapevine (c) (t) | 08055000 | 156 | | Elm Fork Trinity River near Carrollton (d) (p) | 08055500 | 158 | | Elm Fork Trinity River at Frasier Dam, Dallas (e) | 08056000 | 162 | | Trinity River at Dallas (d) (p) | 08057000 | 166 | | Trinity River at Cedar Crest Boulevard, Dallas (c) (t) | 08057055 | 170 | | White Rock Creek at Greenville Avenue, Dallas (d) (c) (t) | 08057200 | 178 | | Trinity River below Dallas (c) (t) | 08057410 | 190 | | Prairie Creek at U.S. Highway 175, Dallas (d) | 08057445 | 194 | | Trinity River near Wilmer (d) (c) (t) | 08057448 | 196 | | East Fork Trinity River at McKinney (d) | 08058900 | 206 | | Sister Grove Creek near Blue Ridge (d) | 08059400 | 208 | | Lavon Lake near Lavon (e) | 08060500 | 210 | | Rowlett Creek near Sachse (d) | 08061540 | 212 | # GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | | Station | _ | |--|----------|------| | | number | Page | | WESTERN GULF OF MEXICO BASINSContinued | | | | TRINITY RIVER BASINContinued | | | | Trinity River:Continued | | | | Lake Ray Hubbard near Forney (e) | 08061550 | 214 | | East Fork Trinity River near Forney (d) | | 216 | | East Fork Trinity River near Crandall (d) (p) | 08062000 | 218 | | Trinity River near Rosser (d) (c) (t) (p) | 08062500 | 222 | | Trinity River at Trinidad (d) | 08062700 | 236 | | Cedar Creek: | | | | Muddy Cedar Creek: | | | | New Terrell City Lake near Terrell (e) | | 238 | | Cedar Creek Reservoir near Trinidad (e) | | 240 | | Richland Creek near Irene (c) (t) | | 242 | | Navarro Mills Lake near Dawson (e) (c) (t) (b) | | 244 | | Richland Creek near Dawson (d) (c) (t) | 08063100 | 254 | | Chambers Creek: | | | | Waxahachie Creek: | | | | Lake Waxahachie near Waxahachie (e) | | 258 | | Waxahachie Creek near Waxahachie (c) (t) | 08063685 | 260 | | Bardwell Lake near Ennis (e) (c) (t) (b) | | 262 | | Waxahachie Creek near Bardwell (d) (c) (t) | | 270 | | Chambers Creek near Rice (d) (c) (t) | 08064100 | 274 | | Post Oak Creek: | | | | Halbert Lake near Corsicana (e) | | 288 | | Richland-Chambers Reservoir near Kerens (e) | | 290 | | Tehuacana Creek near Streetman (d) (c) (t) | | 296 | | Trinity River near Oakwood (d) | | 300 | | Upper Keechi Creek near Oakwood (d) | 08065200 | 302 | | Big Elkhart Creek: | | | | Little Elkhart Creek: | | | | Houston County Lake near Crockett (e) | 08065330 | 304 | | Trinity River near Crockett (d) (c) (t) | 08065350 | 306 | | Bedias Creek near Madisonville (d) | 08065800 | 318 | | Kickapoo Creek near Onalaska (d) | 08066170 | 320 | | Livingston Reservoir near Goodrich (e) (c) (t) | | 322 | | Long King Creek at Livingston (d) | | 332 | | Trinity River near Goodrich (d) | 08066250 | 334 | | Menard Creek near Rye (d) | | 336 | | Trinity River at Romayor (d) | 08066500 | 338 | | Trinity River at Liberty (d) | 08067000 | 340 | | CWA Canal near Dayton (d) | 08067070 | 342 | | Lake Charlotte near Anahuac (e) (c) (t) | 08067118 | 344 | | Trinity River at Wallisville (e) (c) (t) | | 350 | The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Texas have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as partial-record stations. A pound sign (#) after a station indicates a tempoary discontinuance to redefine ratings. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the title page of this report. [Letters after station name designate the type of data collected: (d) discharge, (e) elevation (stage only).] | | | Drainaga | Period | |---|----------------------|--------------------|-----------------------| | Station name | Station | Drainage
area | of record | | Station name | number | (mi ²) | (water years) | | | | | | | Punta De Agua Creek near Channing (d) | 07227448 | 3,568 | 1968-73 | | East Cheyenne Creek Tributary near Channing (e) | 07227460 | 1.60 | 1965-74 | | Canadian River at Tascosa (d) | 07227470 | 18,536 | 1969-77 | | Tecovas Creek Tributary near Bushland (e) | 07227480 | 2.5 | 1966-74 | | Dixon Creek near Borger (d) | 07227920 | 134 | 1974-89 | | Palo Duro Creek near Canyon (e) | 07229700 | 982 | 1942-54 | | Palo Duro Creek near Spearman (d) | 07233500# | 1,076 | 1954-79,
1999-2001 | | White Woman Creek Tributary near Darrouzett (e) | 07234150 | 4.03 | 1966-74 | | Tierra Blanca Creek above Buffalo Lake near Umbarger (d) | 07295500 | 1,968 | 1939-54, | | | | | 1967-73 | | Buffalo Lake near Umbarger (e) | 07296000 | 2,075 | 1938-54 | | Tierra Blanca Creek below Buffalo Lake near Umbarger (d) | 07296100 | 2,075 | 1967-73 | | Prairie Dog Town Fork Red River near Canyon (d) | 07297500 | 3,369 | 1924-26, | | Middle Tele Description Tells (c) | 07207020 | 212 | 1938-49 | | Middle Tule Draw near Tulia (e) North Tule Draw at Reservoir near Tulia (d) | 07297920
07298000 | 313
189 | 1967-74
1939-40, | | North Tule Draw at Reservoir hear Tulia (u) | 07298000 | 109 | 1939-40, | | Rock Creek Tributary near Silverton (d) | 07298150 | 13.7 | 1941-73 | | Tule Creek near Silverton (d) | 07298200 | 1,150 | 1964-86 | | Prairie Dog Town Fork Red River near Brice (d) | 07298500 | 6,082 | 1939-44, | | Traine Dog Town Fork Red River near Drice
(d) | 07270300 | 0,002 | 1949-51, | | | | | 1960-63 | | Mulberry Creek near Brice (d) | 07299000 | 534 | 1949-51 | | Prairie Dog Town Fork Red River near Lakeview (d) | 07299200 | 6,792 | 1963-80 | | Little Red River near Turkey (d) | 07299300 | 139 | 1968-81 | | Prairie Dog Town Fork Red River near Estelline (d) | 07299500 | 7,293 | 1924-25, | | | | | 1938-47 | | Prairie Dog Town Fork Red River below Mountain Creek near Estelline (e) | 07299505 | 7,341 | 1974-77 | | Prairie Dog Town Fork Red River above Jonah Creek near Estelline (e) | 07299510 | 7,533 | 1974-77 | | Jonah Creek at Weir near Estelline (d) | 07299512 | 65.50 | 1974-82 | | Jonah Creek below Weir near Estelline (d) | 07299514 | 66.60 | 1974-76 | | Jonah Creek at mouth near Estelline (d) | 07299516 | 76 | 1974-76 | | Salt Creek near Estelline (d) | 07299530 | 142 | 1974-79 | | Buck Creek near Wellington (e) | 07299550 | 210 | 1951-64 | | Red River near Quanah (d) | 07299570 | 8,321 | 1960-82 | | North Groesbeck Creek Tributary near Kirkland (d) | 07299575 | 0.16 | 1966-74 | | Wanders Creek at Odell (e) | 07299750 | 199 | 1949-50,
1952-89 | | Salt Fork Red River near Clarendon (d) | 07299850 | 457 | 1960-64 | | Lelia Lake Creek near Hedley (e) | 07299900 | 86 | 1951-70 | | Salt Fork Red River near Hedley (e) | 07299930 | 744 | 1951, | | Suit Fork Real River near Fleatey (e) | 07277730 | , | 1956-62 | | Oklahoma Draw Tributary near Hedley (e) | 07299940 | 1.1 | 1965-74 | | Sweetwater Creek near Wheeler (e) | 07301400 | 164 | 1951-64 | | Doodlebug Creek near Wheeler (e) | 07301405 | 0.19 | 1967-73 | | Elm Creek near Shamrock (e) | 07303300 | N/A | 1947-89 | | Quitaque Creek near Quitaque (d) | 07307500 | 293 | 1945-59 | | North Pease River near Childress (d) | 07307600 | 1,434 | 1973-79 | | North Pease River near Kirkland (e) | 07307660 | N/A | 1973-79 | | Roaring Springs near Roaring Springs (e) | 07307700 | N/A | 1937, | | | | | 1943-95 | | Cottonwood Creek Tributary near Afton (e) | 07307720 | 0.68 | 1967-74 | Drainage Period Station name Station area of record number (mi²)(water years) Middle Pease River near Paducah (d) 07307750 1.086 1973-79 Middle Pease River near Paducah (d) 07307760 1,123 1980-82 1973-79 Middle Pease River near Kirkland (e) 07307780 1,250 Canal Creek near Crowell (e) 07307950 49.0 1968-70, 1978-79 Pease River near Crowell (d) 07308000 3.037 1924-47 Plum Creek near Vernon (e) 07308220 4.99 1967-74 China Creek near Electra (e) 07308400 37 1967-76 North Fork Wichita River near Crowell (d) 07311622 591 1971-76 Middle Fork Wichita River near Truscott (d) 07311648 161 1971-76 South Fork Wichita River near Guthrie (d) 07311780 239 1952-54, 1956-57 1971-76 South Fork Wichita River at Ross Ranch near Benjamin (d) 07311790 499 1971-79 Beaver Creek Tributary near Crowell (e) 07312140 3.43 1966-74 Wolf Creek near Iowa Park (e) 07312300 8.5 1966-74 North Fork Little Wichita River Tributary near Archer City (e) 0.10 1966-74 07314200 Little Wichita River near Henrietta (d) 07315000 1,037 1953-79 Little Wichita River near Ringgold (d) 07315400 1,350 1959-65 Farmers Creek near Saint Jo (e) 07315550 0.82 1966-74 Mineral Creek near Sadler (d) 1968-77 07316200 26 Sandy Creek near Sadler (e) 07316230 24 1968-74 Lake Texoma near Denison (e) 07331500 39,719 1942-93, 2000 Bois D'Arc Creek near Randolph (d) 07332600 72 1963-85 Cooper Creek near Bonham (e) 07332602 6.21 1966-74 Sanders Creek near Chicota (d) 07335400 175 1968-86 Little Pine Creek near Kanawha (d) 07336750 75.40 1969-80 Pecan Bayou near Clarksville (d) 07336800 100 1962-77 Red River near DeKalb (d) 07336820 47.348 1967-98 McKinney Bayou near Leary (e) 07336940 3.33 1966-73 Barkman Creek near Leary (e) 07336950 1958-64 31.5 Nelson Branch near Leonard (e) 07342450 0.22 1966-74 South Sulphur River near Commerce (d) 07342470 189 1980-91 1964-74 Cuthand Creek near Bogata (d) 07343300 69 Dial Branch near Bagwell (e) 07343350 1.00 1966-74 White Oak Creek near Mt. Vernon (e) 07343480 434 1966, 1969-75 White Oak Creek below Talco (d) 07343800 579 1938-50 Buck Creek near Cookville (e) 07343900 0.78 1966-74 Sulphur River near Darden (d) 07344000 2,774 1924-56 Sulphur River near Texarkana (d) 07344210 1980-85 3,443 Big Cypress Creek near Winnsboro (d) 07344482 27.2 1974-92 Dragoo Creek near Mt. Pleasant (e) 07344490 4.27 1967-74 Williamson Creek near Pittsburg (e) 07344600 7.11 1967-74 Boggy Creek near Daingerfield (d) 07345000 72 1943-77 Ellison Creek Reservoir near Lone Star (e) 07345500 37 1943-62. 1974-89 Cypress Creek Tributary near Jefferson (e) 07346010 0.51 1966-74 Taylor Branch near Smithland (e) 07346072 1966-74 0.73 Big Cypress Creek near Karnack (e) 07346085 2.174 1980-85 Frazier Creek near Linden (d) 07346140 48.0 1965-91 Sabine River near Emory (d) 08017500 888 1952-73 Burnett Branch near Canton (e) 08017700 0.33 1966-74 1968-73 Grand Saline Creek near Grand Saline (d) 08018200 91.4 Burke Creek near Yantis (d) 08018730 33.10 1979-89 Dry Creek near Quitman (e) 1968-75 08018950 63.6 Lake Winnsboro near Winnsboro (d) 08019300 27.1 1962-86 Big Sandy Creek near Hawkins (e) 08019430 196 1980-82 Prairie Creek near Gladewater (d) 08020200 48.90 1968-77 | Station name | Station | Drainage
area | Period of record | |---|----------|--------------------|------------------| | J. Marie C. | number | (mi ²) | (water years) | | Sabine River near Longview (d) | 08020500 | 2,947 | 1904-07, | | | | | 1924-33 | | Rabbit Creek at Kilgore (d) | 08020700 | 75.80 | 1964-77 | | Grace Creek Tributary at Longview (e) | 08020800 | 5.05 | 1967-74 | | Mill Creek near Henderson (d) | 08020960 | 20.30 | 1979-81 | | Mill Creek near Longview (d) | 08020980 | 47.90 | 1979-81 | | Tiawichi Creek near Longview (d) | 08020990 | 62.70 | 1978-81 | | Cherokee Bayou near Elderville (d) | 08021000 | 120 | 1940-49 | | Lake Cherokee near Longview (e) | 08021500 | 158 | 1951-83 | | Sabine River near Tatum (d) | 08022000 | 3,493 | 1939-78, | | (e) | 00022010 | 0.46 | 1979-82 | | Redmon Branch near Hallesville (e) | 08022010 | 0.46 | 1966-74 | | Eight Mile Creek near Tatum (e) | 08022050 | 106 | 1962-71 | | Martin Creek near Tatum (d) | 08022070 | 148 | 1974-96 | | Martin Creek near Beckville (e) | 08022080 | 192 | 1962-71 | | Murvaul Bayou near Gary (d) | 08022300 | 134 | 1958-83 | | Socagee Creek near Carthage (d) | 08022400 | 82.60 | 1962-73 | | Tenaha Creek near Shelbyville (d) | 08023200 | 97.80 | 1952-81 | | Dorsey Branch near Milam (e) | 08024290 | 0.70 | 1967-74 | | Patroon Bayou near Milam (e) | 08024300 | 130 | 1952-54, | | | 00004400 | - - | 1959-63 | | Sabine River near Milam (d) | 08024400 | 6,508 | 1924-25, | | | | | 1939-68 | | Palo Gaucho Bayou near Hemphill (d) | 08024500 | 123 | 1952-65 | | Housen Bayou near Yellowpine (e) | 08025250 | 92.1 | 1952-54, | | | | | 1957, | | | | | 1959-63 | | Sandy Creek near Yellowpine (e) | 08025300 | 135 | 1952-54, | | | | | 1957, | | | | | 1959-63 | | Mill Creek near Burkeville (d) | 08025307 | 17.6 | 1974-79 | | Little Cow Creek below McGraw Creek near Burkeville (e) | 08026500 | 112 | 1952-58 | | Moore Branch near Newton (e) | 08028505 | 3.77 | 1967-74 | | Nichols Creek near Buna (e) | 08029750 | 54.4 | 1959-64 | | Cypress Creek near Buna (d) | 08030000 | 69.20 | 1952-83 | | Adams Bayou Tributary near Deweyville (e) | 08030700 | 12.4 | 1966-74 | | Cow Bayou near Mauriceville (d) | 08031000 | 83.30 | 1952-86 | | Bethlehem Branch near Van (e) | 08031100 | 1.09 | 1966-74 | | Kickapoo Creek near Brownsboro (d) | 08031200 | 232 | 1962-89 | | Neches River near Reese (d) | 08031500 | 851 | 1924-27 | | Hurricane Creek Tributary near Palestine (e) | 08032100 | 0.39 | 1966-74 | | One Arm Creek near Maydelle (e) | 08032250 | 6.01 | 1967-74 | | Squirrel Creek near Elkhart (e) | 08032300 | 1.57 | 1967-74 | | Neches River near Alto (d) | 08032500 | 1,945 | 1944-79 | | Piney Creek Tributary near Pennington (e) | 08033250 | 1.17 | 1967-74 | | Piney Creek near Groveton
(d) | 08033300 | 79 | 1962-89 | | Shawnee Creek Tributary near Huntington (e) | 08033450 | 0.52 | 1966-74 | | Greenwood Creek Tributary near Colmesneil (e) | 08033480 | 0.15 | 1966-74 | | Bowles Creek near Selman City (e) | 08033600 | 14.5 | 1968-85 | | Striker Creek near Summerfield (d) | 08033700 | 146 | 1941-49 | | Striker Creek Reservoir near New Salem (e) | 08033800 | 148 | 1941-49 | | East Fork Angelina River near Cushing (d) | 08033900 | 158 | 1964-89 | | Mud Creek at Ponta (d) | 08035000 | 475 | 1924-27 | | Angelina River near Lufkin (d) | 08037000 | 1,600 | 1924-34, | | | | | 1939-79 | | Bayou Lanana at Nacogdoches (d) | 08037050 | 31.3 | 1965-86, | | | | | 1988-93 | | Gingham Branch near Mt. Enterprise (e) | 08037300 | 0.90 | 1967-74 | | Arenoso Creek near San Augustine (d) | 08037500 | 75.30 | 1938-40 | | Angelina River near Zavalla (d) | 08038500 | 2,892 | 1952-65 | | Ayish Bayou at San Augustine (d) | 08039000 | 15.80 | 1924-25 | | | | Drainage | Period | | |--|----------------------|--------------------|--------------------|--| | Station name | Station | area | of record | | | Simoniano | number | (mi ²) | (water years) | | | Angelina River at Horger (d) | 08039500 | 3,486 | 1928-51, | | | 8 | | ., | 1967-73 | | | Little Sandy Creek Tributary near Jasper (e) | 08039900 | 0.46 | 1967-74 | | | Drakes Branch near Spurger (e) | 08041400 | 5.03 | 1967-74 | | | West Fork Double Bayou near Anahuac (e) | 08042550 | 4.43 | 1967-74 | | | North Creek SWS No. 28-A near Jermyn (e) | 08042650 | 6.82 | 1972-80 | | | North Creek near Jacksboro (d) | 08042700 | 21.60 | 1956-80 | | | Beans Creek at Wizard Wells (e) | 08042900 | 29.60 | 1993-95 | | | West Fork Trinity River at Bridgeport (d) | 08043100 | 1,113 | 1984-89 | | | West Fork Trinity River at Bridgeport (d) Big Sandy Creek near Bridgeport (d) | 08043500
08044000 | 1,147
333 | 1908-30
1937-95 | | | Garrett Creek near Paradise (e) | 08044135 | 52.5 | 1992-95 | | | Salt Creek near Paradise (e) | 08044140 | 52.7 | 1992-95 | | | Walker Creek near Boyd (e) | 08044200 | 2.95 | 1965-74 | | | West Fork Trinity River at Lake Worth, Fort Worth (d) | 08045500 | 2,069 | 1924-34 | | | Clear Fork Trinity River near Aledo (d) | 08046000 | 251 | 1947-75 | | | Marine Creek at Fort Worth (d) | 08048500 | 16.80 | 1950-58 | | | Sycamore Creek at I.H. 35W, Fort Worth (d) | 08048520 | 17.70 | 1970-76 | | | Sycamore Creek Trib. above Seminary South, Fort Worth (d) | 08048530 | 0.97 | 1970-76 | | | Sycamore Creek Trib. at I.H. 35W, Fort Worth (d) | 08048540 | 1.35 | 1970-76 | | | Dry Branch at Fain Street at Fort Worth (d) | 08048600 | 2.15 | 1969-76 | | | Big Fossil Creek at Haltom City (d) | 08048800* | 52.8 | 1959-73 | | | Little Fossil Creek at I.H. 820, Fort Worth (e) | 08048820 | 5.64 | 1969-73 | | | Little Fossil Creek at Mesquite Street, Fort Worth (d) | 08048850 | 12.30 | 1969-76 | | | Deer Creek Tributary near Crowley (e) | 08048900 | 5.86 | 1967-74 | | | Village Creek at Kennedale (d) | 08048980 | 100 | 1986-89 | | | Village Creek near Handley (d) | 08049000 | 126 | 1925-30 | | | Big Bear Creek near Grapevine (d) Trice Branch at DEW Aimout near Euless (d) | 08049550 | 29.6 | 1967-79 | | | Trigg Branch at DFW Airport near Euless (d) Mountain Creek near Cedar Hill (d) | 08049565
08049600 | 1.73
119 | 1983-87
1961-84 | | | Mountain Creek above Duncanville (e) | 08049850 | 224 | 1986-87 | | | Mountain Creek near Duncanville (e) | 08049800 | 225 | 1971-90 | | | Mountain Creek near Grand Prairie (d) | 08050000 | 273 | 1925-33 | | | Elm Fork Trinity River SWS 6-O near Muenster (e) | 08050200 | 0.77 | 1957-73 | | | Elm Fork Trinity River near Muenster (d) | 08050300 | 46 | 1957-73 | | | Elm Fork Trinity River near Sanger (d) | 08050500 | 381 | 1949-85 | | | Isle Du Bois Creek near Pilot Point (d) | 08051000 | 266 | 1949-85 | | | Elm Fork Trinity River near Pilot Point (d) | 08051130 | 692 | 1985-92 | | | Elm Fork Trinity River above Aubrey (e) | 08051190 | 684 | 1981-89 | | | Elm Fork Trinity River near Denton (d) | 08052000 | 1,084 | 1924-27 | | | Lake Dallas near Lake Dallas (e) | 08052500 | 1,165 | 1929-57 | | | Little Elm Creek SWS #10 near Gunter (e) | 08052630 | 2.10 | 1966-72 | | | Little Elm Creek near Celina (d) | 08052650 | 46.70 | 1966-76 | | | Hickory Creek at Denton (d) | 08052780 | 129 | 1985-87 | | | Indian Creek at Hebron Parkway at Carrollton (d) | 08053010 | 15.0 | 1987-90 | | | Furneaux Creek at Josey Lane at Carrollton (d) | 08053030 | 4.10 | 1987-90 | | | Hutton Branch at Broadway at Carrollton (e) Jones Valley Creek Tributary near Forestburg (e) | 08053090
08053100 | 9.10
1.70 | 1987-90
1966-74 | | | Denton Creek near Roanoke (d) | 08054000 | 621 | 1924-28, | | | | 08034000 | 021 | 1939-55 | | | Gamble Branch near Argyle (e) | 08054200 | 0.50 | 1965-74 | | | Denton Creek near Grapevine (d) | 08055000 | 705 | 1948-91 | | | Joe's Creek at Royal Lane, Dallas (e) | 08055580 | 1.94 | 1973-78 | | | Joes Creek near Dallas (e) | 08055600 | 7.4 | 1964-79 | | | Bachman Branch at Dallas (d) | 08055700 | 10 | 1964-79 | | | Turtle Creek at Dallas (d) | 08056500 | 7.98 | 1952-80, | | | Coombs Creek at Sulvan Avenue Delles (a) | 00057020 | 175 | 1984-91
1965-78 | | | Coombs Creek at Sylvan Avenue, Dallas (e) Cedar Creek at Bonnie View Road, Dallas (e) | 08057020
08057050 | 4.75
9.42 | 1965-78
1965-78 | | | White Rock Creek at Keller Springs Road, Dallas (d) | 08057100 | 29.40 | 1961-79 | | | mine Rock Creek at Rener Springs Road, Danas (U) | 0003/100 | 47.4U | 1701-77 | | | Station name | Station
number | Drainage
area
(mi ²) | Period
of record
(water years) | |---|----------------------|--|--------------------------------------| | Spenky Prepal at McCallym Lana at Dallac (a) | 08057120 | 6.77 |
1962-78 | | Spanky Branch at McCallum Lane at Dallas (e) Rush Branch at Arapaho Road, Dallas (e) | 08057120 | 1.22 | 1973-78 | | Newton Creek at Interstate Highway 635, Dallas (e) | 08057135 | 5.91 | 1974-78 | | Cottonwood Creek at Forest Lane, Dallas (e) | 08057140 | 8.50 | 1962-78 | | Floyd Branch at Forrest Lane, Dallas (e) | 08057160 | 4.17 | 1962-78 | | White Rock Creek at White Rock Lake, Dallas (d) | 08057300 | 100 | 1963-79 | | Ash Creek at Highland Road, Dallas (e) | 08057320 | 6.92 | 1963-78 | | Forney Creek at Lawnview Avenue, Dallas (e) | 08057340 | 1.84 | 1963-72 | | White Rock Creek at Scyene Road, Dallas (d) | 08057400 | 122 | 1963-79 | | Trinity River below Dallas (d) | 08057410 | 6,278 | 1956-98 | | Elm Creek at Seco Boulevard, Dallas (e) | 08057415 | 1.25 | 1973-78 | | Fivemile Creek at Kiest Boulevard, Dallas (e) | 08057418 | 7.65 | 1974-78 | | Fivemile Creek at US Highway 77 West, Dallas (e) | 08057420 | 14.30 | 1965-78 | | Woody Branch at US Highway 77 West, Dallas (e)
Fivemile Creek at Lancaster Road, Dallas (e) | 08057425
08057430 | 10.30
37.90 | 1965-78
1965-78 | | White Branch at Interstate Highway 635, Dallas (e) | 08057440 | 2.53 | 1974-78 | | Tenmile Creek at State Highway 342 at Lancaster (d) | 08057440 | 52.80 | 1970-79 | | Honey Creek SWS #11 near McKinney (e) | 08057500 | 2.14 | 1952-73 | | Honey Creek SWS #12 near McKinney (e) | 08058000 | 1.26 | 1952-77 | | Honey Creek near McKinney (d) | 08058500 | 39 | 1951-73 | | East Fork Trinity River near McKinney (d) | 08059000 | 190 | 1949-75 | | Arls Branch near Westminster (e) | 08059200 | 0.52 | 1965-74 | | Sister Grove Creek near Princeton (d) | 08059500 | 113 | 1949-75 | | East Fork Trinity River above Pilot Grove near Lavon (d) | 08060000 | 324 | 1949-53 | | East Fork Trinity River near Lavon (d) | 08061000 | 773 | 1954-89 | | East Fork Trinity River near Rockwall (d) | 08061500 | 840 | 1924-54 | | Duck Creek at Buckingham Road, Garland (e) | 08061620 | 8.05 | 1969-76 | | Duck Creek near Garland (d) | 08061700 | 31.6 | 1958-93 | | South Mesquite Creek at State Highway 352, Mesquite (e) | 08061920 | 13.40 | 1969-76 | | South Mesquite Creek at Mercury Road near Mesquite (d) Cedar Creek Reservoir Spillway Outflow near Trinidad (d) | 08061950
08062650 | 23
1,007 | 1969-79
1966-82 | | Cedar Creek near Kemp (d) | 08062800 | 189 | 1963-87 | | Bachelor Creek near Terrell (e) | 08062850 | 13.0 | 1967-74 | | Kings Creek near Kaufman (d) | 08062900 | 233 | 1963-87 | | Lacey Fork near Mabank (d) | 08062980 | 118 | 1983-84 | | Cedar Creek near Mabank (d) | 08063000 | 733 | 1939-66 | | South Twin Creek near Eustace (d) | 08063003 | 27.40 | 1983-84 | | Red Oak Branch near Eustace (e) | 08063005 | 0.90 | 1966-74 | | Cedar Creek at Trinidad (d) | 08063020 | 1,011 | 1965-71 | | Briar Creek Tributary near Corsicana (e) | 08063180 | 0.72 | 1966-74 | | Pin Oak Creek near Hubbard (d) | 08063200 | 17.60 | 1956-72 | | Richland Creek near Richland (d) | 08063500 | 734 | 1939-88 | | Alvarado Branch near Alvarado (e) | 08063550 | 0.84 | 1966-74 | | Kings Branch near Reagor Springs (e)
Chambers Creek near Corsicana (d) | 08063620
08064500 | 0.62
963 | 1966-74
1939-84 | | Richland Creek near Fairfield (d) | 08064600 | 1,957 | 1972-83 | | Saline Branch Tributary near Bethel (e) | 08064630 | 0.22 | 1967-74 | | Catfish Creek near Tennessee Colony (d) | 08064800 | 207 | 1962-89 | | Mayes Branch near Latexo (e) | 08065320 | 4.26 | 1967-74 | | Trinity River near Midway (d) | 08065500 | 14,450 | 1939-71 | | Caney Creek near Madisonville (d) | 08065700 | 112 | 1963-77 | | Nelson Creek near Riverside (e) | 08065950 | 86.4 | 1949,
1965, | | Harmon Creek near Huntsville (e) | 08065975 | 89.2 | 1970-74
1973-81 | | West Carolina Creek near Oakhurst (e) | 08066050 | 89.2
15.2 | 1973-81
1949, | | west Caronna Citer near Oakhuist (e) | 00000030 | 13.4 | 1949,
1966-73 | | White Rock Creek near
Trinity (e) | 08066100 | 222 | 1974-85 | | White Rock Creek near Trinity (e) | 08066130 | 228 | 1966-74 | | Tantaboque Creek near Trinity (e) | 08066140 | 61.3 | 1966-73 | | Caney Creek near Groveton (e) | 08066145 | 41.4 | 1966-73 | | Station name Brushy Creek near Onalaska (d) Rocky Creek near Onalaska (e) Livingston Reservoir outflow weir near Goodrich (d) Long King Creek near Goodrich (d) Bluff Creek Tributary near Livingston (e) Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) Devers Conel near Liberty (d) | Station
number
 | area (mi²) | of record
(water years) | |---|----------------------------------|--------------|----------------------------| | Rocky Creek near Onalaska (e) Livingston Reservoir outflow weir near Goodrich (d) Long King Creek near Goodrich (d) Bluff Creek Tributary near Livingston (e) Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) | 08066150
08066180
08066191 | 29.1 | (water years) | | Rocky Creek near Onalaska (e) Livingston Reservoir outflow weir near Goodrich (d) Long King Creek near Goodrich (d) Bluff Creek Tributary near Livingston (e) Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) | 08066180
08066191 | | | | Livingston Reservoir outflow weir near Goodrich (d) Long King Creek near Goodrich (d) Bluff Creek Tributary near Livingston (e) Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) | 08066191 | 40.6 | 1966-70 | | Long King Creek near Goodrich (d) Bluff Creek Tributary near Livingston (e) Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) | | 40.0 | 1966-73 | | Bluff Creek Tributary near Livingston (e) Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) | 08066210 | 16,583 | 1969-94 | | Big Creek near Shepherd(e) Gaylor Creek near Moss Hill (e) | | 220 | 1972-81 | | Gaylor Creek near Moss Hill (e) | 08066280 | 0.62 | 1965-74 | | • | 08066400 | 38.80 | 1966-89 | | | 08066800 | 32.3 | 1966-73 | | Devers Canal near Liberty (d) | 08067080 | N/A | 1972-82 | | Goose Creek near McNair (e) | 08067520 | 6.7 | 1963-65, | | Welch Branch near Huntsville (e) | 08067550 | 2.35 | 1965-74 | | Lake Conroe near Montgomery (e) | 08067580 | 445 | 1973-76 | | Lake Conroe at Outflow Weir near Conroe (d) | 08067610 | 445 | 1974,
1977-89 | | Caney Creek near Dobbin (d) | 08067700 | 40.40 | 1963-65 | | Landrum Creek Tributary near Montgomery (e) | 08067750 | 0.13 | 1965-74 | | Lake Creek near Conroe (e) | 08067900 | 291 | 1969-89 | | West Fork San Jacinto River near Porter (e) | 08068100 | 970 | 1970-76 | | Mill Creek Tributary near Dobbin (e) | 08068300 | 4.07 | 1967-73 | | Swale No. 8 at Woodlands (e) | 08068438 | 0.55 | 1975-76, | | | | | 1980-88 | | Spring Creek at Spring (d) | 08068520 | 419 | 1975-95 | | Spring Creek near Humble (e) | 08068600 | 435 | 1971-76 | | Cypress Creek at Sharp Road near Hockley (d) | 08068700 | 80.7 | 1975-85 | | Cypress Creek near Cypress (e) Cypress Creek at Stuebner-Airline Road near Westfield (d) | 08068750*
08068900* | 138
248 | 1971-76
1982-87 | | Cypress Creek near Humble (e) | 08069200 | 319 | 1971-76 | | West Fork San Jacinto River near Humble (d) | 08069500 | 1,741 | 1929-54 | | Bear Creek near Cleveland (e) | 08069850 | 1.46 | 1967-73 | | Caney Creek near New Caney (e) | 08070600 | 178 | 1970-76 | | Peach Creek near New Caney (e) | 08071100 | 155 | 1970-76 | | Tarkington Bayou near Dayton (e) | 08071200 | 142 | 1964-76 | | Luce Bayou near Huffman (e) | 08071300 | 226 | 1971-76 | | San Jacinto River near Huffman (d) | 08071500 | 2,800 | 1937-53 | | Buffalo Bayou at Clodine (e) | 08072400 | 84.2 | 1974-85 | | Bettina Street Ditch at Houston (e) | 08073630 | 1.37 | 1979-85 | | Stony Brook Street Ditch at Houston (e) | 08073750 | 0.50 | 1967-72 | | Bering Ditch at Woodway Drive, Houston (e) | 08073800 | 2.77 | 1965-73 | | Cole Creek at Guhn Road at Houston (e) | 08074100 | 7.05 | 1964-72 | | Bingle Road Storm Sewer at Houston (e) Cole Creek at Deihl Road at Houston (d) | 08074145
08074150* | 0.21
7.50 | 1980-88
1964-86 | | Brickhouse Gully at Clarblak Street at Houston (e) | 08074200 | 2.56 | 1965-83 | | Brickhouse Gully at Costa Rica Street at Houston (d) | 08074250* | 11.4 | 1964-81 | | Lazybrook Street Storm Sewer, Houston (e) | 08074400 | 0.13 | 1978-88 | | Little White Oak Bayou at Houston (e) | 08074550 | 20.9 | 1971-79 | | Buffalo Bayou at Main St., Houston (d) | 08074600* | 469 | 1962-94 | | Buffalo Bayou at McKee Street, Houston (d) | 08074610 | 469 | 1992-2000 | | Buffalo Bayou at 69th Street, Houston (e) | 08074700 | 476 | 1961-86 | | Brays Bayou at Addicks-Clodine Rd., Houston (e) | 08074750 | 0.87 | 1974-77 | | Brays Bayou at Alief Road, Alief (e) | 08074760* | 12.9 | 1977-85 | | Keegans Bayou at Keegans Road near Houston (e) | 08074780* | 7.47 | 1964-71 | | Keegans Bayou at Roark Road near Houston (d) | 08074800* | 13.0 | 1964-85 | | Bintliff Ditch at Bissonnet Street, Houston (e) | 08074850 | 4.38 | 1968-82 | | Willow Waterhole Bayou at Landsdowne Street, Houston (e) | 08074900 | 3.81 | 1965-72 | | Hummingbird Street Ditch at Mullins Street, Houston (e) | 08074910 | 0.32 | 1979-84 | | Brays Bayou at Scott Street, Houston (e) | 08075100 | 106 | 1971-81 | | Sims Bayou at Carlsbad Street, Houston (e) | 08075300 | 3.81 | 1964-72 | | Sims Bayou at MLK Blvd., Houston (e) | 08075470 | 48.4 | 1978-89 | | Berry Bayou at Gilpin Street, Houston (e) Barry Bayou Tributary at Globa Street, Houston (e) | 08075550 | 2.87 | 1965-84 | | Berry Bayou Tributary at Globe Street, Houston (e) Berry Bayou at Forest Oaks Street, Houston (e) | 08075600
08075650* | 1.58
10.7 | 1965-72
1968-82 | | Station name | Station | Drainage
area | Period
of record | |--|----------------------|--------------------|---------------------| | | number | (mi ²) | (water years) | | Berry Bayou at Galveston Road, Houston (e) | 08075700 | 4.86 | 1965-72 | | Huntington Bayou Tributary at Cavalcade Street, Houston (e) | 08075750 | 1.20 | 1965-72 | | Huntington Bayou at Falls Street, Houston (e) | 08075760 | 2.75 | 1964-84 | | Halls Bayou at Deertrail Street at Houston (e) | 08076200 | 8.69 | 1965-84 | | Carpenters Bayou at Cloverleaf (e) | 08076900 | 25.8 | 1964, | | | | | 1971-93 | | Clear Creek near Pearland (d) | 08077000 | 38.8 | 1944-45, | | | | | 1946-60, | | | | | 1963-94 | | Clear Creek Tributary at Hall Road, Houston (e) | 08077100 | 1.31 | 1965-86 | | Clear Creek at Friendswood (d) | 08077540 | 99.6 | 1994-97 | | Cowart Creek near Friendswood (e) | 08077550 | 18 | 1965-74 | | Clear Creek near Friendswood (e) | 08077600 | 126 | 1966-94 | | Armand Bayou near Genoa (e) | 08077620 | 18.2 | 1968, | | | | | 1971-73 | | Highland Bayou at Hitchcock (e) | 08077700 | 15.6 | 1963-82 | | Highland Bayou Tributary near Texas City (e) | 08077750 | 1.97 | 1966-73 | | Highland Bayou near Texas City (e) | 08077780 | 20.8 | 1965-88 | | Flores Bayou near Danbury (e) | 08078700 | 23.3 | 1967-72 | | Oyster Creek near Angleton (d) | 08079000 | 171 | 1945-80 | | North Fork Double Mountain Fork Brazos River at Lubbock (d) | 08079500 | 5,300 | 1940-49, | | North Fork Double Mountain Fork Brazos River above | 08079530 | 29.3 | 1952-54, | | Buffalo Springs nr Lubbock (e) | | | 1957, | | | | | 1962, | | | | | 1967-76 | | Buffalo Springs Lake near Lubbock (e) | 08079550 | 236 | 1967-77 | | Barnum Springs Draw near Post (e) | 08079570 | 4.99 | 1965-73 | | North Fork Double Mountain Fork Brazos River near Post (d) | 08079575 | 438 | 1984-93 | | Rattlesnake Creek near Post (e) | 08079580 | 2.75 | 1966-74 | | Double Mountain Fork Brazos River near Rotan (d) | 08080000 | 8,536 | 1950-51 | | Guest-Flowers Draw near
Aspermont (e) | 08080510 | 3.02 | 1965-74 | | McDonald Creek near Post (d) | 08080540 | 103 | 1966-78 | | Running Water Draw at Plainview (d) | 08080700 | 1,291 | 1939-53, | | | 00000750 | 27.5 | 1957-78 | | Callahan Draw near Lockney (e) | 08080750 | 37.5 | 1966-77 | | White River near Crosbytown (e) | 08080800 | 529
520 | 1951-64 | | White River below falls near Crosbytown (e) | 08080900 | 529 | 1951-64 | | Salt Fork Brazos River at Farm Road 1081 near Clairemont (e) | 08080916 | 1,135 | 1968-77 | | Red Mud Creek near Spur (e) | 08080918 | 65.1 | 1967-74 | | Salt Fork Brazos River at State Highway 208 near Clairemont (e) | 08080940 | 1,357 | 1968-77 | | Duck Creek near Girard (d) Salt Fork Brazos River at U.S. Highway 380 near Jayton (e) | 08080950 | 431 | 1965-89 | | The state of s | 08080959 | 1,797 | 1968-77 | | Salt Fork Brazos River near Peacock (d) | 08081000 | 4,619 | 1950-51, | | Chart Custom Cusely at mouth many Javeton (a) | 00001050 | 10 1 | 1965-86 | | Short Croton Creek at mouth near Jayton (e)
Croton Creek below Short Croton Creek near Jayton (e) | 08081050
08081100 | 18.1
250 | 1959-82
1959-82 | | Croton Creek near Jayton (d) | 08081100 | 290 | 1959-82 | | Salt Croton Creek at Weir D near Aspermont (e) | 08081200 | 55.5 | 1957-76 | | Haystack Creek at Weir E near Aspermont (e) | 08081450 | 15.1 | 1957-77 | | Salt Croton Creek near Aspermont (d) | 08081500 | 64.30 | 1957-77 | | Stinking Creek near Aspermont (d) | 08081300 | 88.80 | 1966-83 | | North Croton Creek near Knox City (d) | 08082180 | 251 | 1965-86 | | North Elm Creek near Throckmorton (e) | 08082180 | 3.58 | 1965-77 | | Elm Creek near Profitt (e) | 08082900 | 275 | 1969-85 | | Brazos River near Graham (d) | 08082930 | 16,830 | 1916-20 | | Clear Fork Brazos River at Hawley (d) | 08083240 | 1,416 | 1968-89 | | Mulberry Creek near Hawley (d) | 08083245 | 205 | 1968-89 | | Elm Creek near Abilene (d) | 08083243 | 133 | 1964-79 | | Little Elm Creek near Abilene (d) | 08083300 | 39.10 | 1964-79 | | Elm Creek at Abilene (d) | 08083430 | 422 | 1980-83 | | Cedar Creek at Abilene (d) | 08083470 | 119 | 1971-84 | | Cough Crock at Authoric (u) | 00003470 | 119 | 17/1-04 | | Station name | Station | Drainage
area | Period
of record | |--|-----------------------|--------------------|----------------------| | Station name | number | (mi ²) | (water years) | | Paint Creek near Haskell (d) | 08085000 | 914 | 1950-51 | | Humphries Draw near Haskell (e) | 08085300 | 3.51 | 1965-77 | | Clear Fork Brazos River at Crystall Falls (d) | 08086000 | 4,323 | 1922-29 | | Hubbard Creek near Sedwick (d) | 08086015 | 128 | 1964-66 | | Hubbard Creek at Highway 380 near Moran (e) | 08086020 | 152 | 1963-76 | | Deep Creek near Putnam (e) | 08086030 | 33.8 | 1963-66 | | Brushy Creek near Putnam (e) | 08086040 | 27.6 | 1963-66 | | Mexia Creek near Putnam (e) Deep Creek at Moran (d) | 08086045
08086050 | 67.0
228 | 1963-66
1963-75 | | Hubbard Creek near Albany (d) | 08086100 | 454 | 1962-75 | | Salt Prong Hubbard Creek below Lake McCarty near Albany (e) | 08086110 | 45.5 | 1963-66 | | Salt Prong Hubbard Creek at U.S. 380 near Albany (d) | 08086120 | 61 | 1964-68 | | Cook Creek near Albany (e) | 08086130 | 11.3 | 1963-76 | | North Fork Hubbard Creek near Albany (d) | 08086150 | 39.3 | 1963-90 | | Salt Prong Hubbard Creek near Albany (d) | 08086200 | 115 | 1962-63 | | Snailum Creek near Albany (d) | 08086210 | 22.90 | 1964-66 | | Big Sandy Creek near Eolian (e) | 08086220 | 91.4 | 1963-76 | | Battle Creek near Putnam (e) | 08086230 | 32.0 | 1963-66 | | Battle Creek near Moran (d) | 08086235 | 108 | 1967-68 | | Battle Creek near Eolian (e) | 08086240 | 137 | 1963-66 | | Pecan Creek at FM 1853 near Eolian (e) | 08086250 | 6.95 | 1963-66 | | Pecan Creek near Eolian (d) | 08086260 | 26.40 | 1967-75 | | Big Sandy Creek near Breckenridge (e) | 08086300 | 288 | 1962-75 | | Hubbard Creek near Breckenridge (d) | 08086500 | 1,089 | 1955-86 | | Clear Fork Brazos River near Crystal Falls (e) | 08087000 | 5,658 | 1916-20, | | CI E I D D' EI' 'II (I) | 00007200 | 5.607 | 1928-51 | | Clear Fork Brazos River near Eliasville (d) | 08087300 | 5,697 | 1916-20, | | | | | 1924-25,
1928-51, | | | | | 1962-82 | | Salt Creek at Olney (d) | 08088100 | 11.80 | 1958-77 | | Salt Creek near Newcastle (d) | 08088200 | 120 | 1958-60 | | Briar Creek near Graham (d) | 08088300 | 24.20 | 1958-89 | | Brazos River at Farm Road 1287 near Graham (e) | 08088420 | 13,432 | 1970-77 | | Big Cedar Creek near Ivan (d) | 08088450 | 97 | 1965-89 | | Brazos River at Morris Sheppard Dam near Graford (d) | 08088600 | 14,030 | 1990-94 | | Elm Creek Tributary near Graford (e) | 08089100 | 1.10 | 1965-74 | | Palo Pinto Creek near Santo (d) | 08090500 | 573 | 1925, | | | | | 1951-76 | | Cidwell Branch near Granbury (e) | 08090850 | 3.37 | 1966-73 | | Morris Branch near Bluff Dale (e) | 08091200 | 0.06 | 1965-73 | | Panther Branch near Tolar (e) | 08091700 | 7.82 | 1966-74 | | Nolan River at Blum (d) | 08092000* | 282.0 | 1924-87 | | Brazos River near Whitney (d) | 08093000 | 17,648 | 1939-74 | | Bond Branch near Hillsboro (e) | 08093200 | 0.36 | 1965-74 | | Hackberry Creek at Hillsboro (d) | 08093250 | 57.9 | 1980-92 | | Hackberry Creek below Hillsboro (e) | 08093260 | 86.8 | 1980-92 | | Cobb Creek near Abbott (d)
Aquilla Creek near Aquilla (d) | 08093400
08093500# | 12.40
308 | 1967-79
1939-2001 | | Aquilla Creek at RR bridge near Aquilla (e) | 08093530 | 345 | 1976-85 | | Aquilla Creek at Farm Road 2114 near Aquilla (e) | 08093540 | 351 | 1976-85 | | Aquilla Creek at Farm Road and 1858 near Ross (e) | 08093560 | 392 | 1976-85 | | Aquilla Creek at Farm Road 933 near Ross (e) | 08093580 | 397 | 1976-85 | | North Bosque River at Stephenville (d) | 08093700 | 95.90 | 1958-79 | | Green Creek SWS #1 near Dublin (d) | 08094000 | 4.19 | 1955-77 | | Green Creek near Alexander (d) | 08094500 | 45.40 | 1958-73 | | South Bosque River near McGregor (e) | 08095220 | 15.9 | 1967-73 | | Willow Branch at McGregor (e) | 08095250 | 2.52 | 1966-73 | | Middle Bosque River near McGregor (d) | 08095300* | 182.0 | 1959-86 | | Hog Creek near Crawford (d) | 08095400* | 78.0 | 1959-86 | | South Bosque River near Speegleville (d) | 08095500 | 386 | 1924-30 | | | | | | | Station name | Station | Drainage
area | Period of record | |---|------------------------|------------------|--------------------| | | number | (mi^2) | (water years) | | Bosque River near Waco (d) | 08095600 | 1,656 | 1960-82 | | Box Branch at Robinson (e) | 08096550 | 0.34 | 1965-73 | | Cow Bayou SWS No. 4 (inflow) near Bruceville (e) | 08096800 | 5.04 | 1958-75 | | Cow Bayou at Mooreville (d) | 08097000 | 83.50 | 1958-75 | | Brazos River near Marlin (d) | 08097500 | 30,211 | 1939-51 | | Deer Creek at Chilton (d) | 08098000 | 84.50 | 1934-36 | | Little Pond Creek at Burlington (d) | 08098300 | 23 | 1963-82 | | Leon River near De Leon (d) | 08099100* | 479.0 | 1960-87 | | Sabana River near De Leon (d) | 08099300* | 264.0 | 1960-87 | | Sabana River Tributary near De Leon (e) | 08099350 | 0.48 | 1966-74 | | Leon River near Hasse (d) | 08099500 | 1,261 | 1939-91 | | Eidson Creek near Hamilton (e) | 08100100 | 2.91 | 1965-73 | | Bermuda Branch near Gatesville (e) | 08100400 | 0.50 | 1966-73 | | Hoffman Branch near Hamilton (e) | 08100800 | 5.56 | 1966-74 | | Cowhouse Creek near Killeen (d) | 08101500 | 667 | 1925, | | Notice Create at Dalton (d) | 09102600 | 112 | 1939-42 | | Nolan Creek at Belton (d) | 08102600 | 112 | 1974-82 | | School Branch near Lampasas (e) | 08102900 | 0.90 | 1966-73 | | Fleece Branch near Lampasas (e) | 08103450 | 1.08 | 1965-74 | | Lampasas River at Youngsport (d) | 08104000 | 1,240 | 1924-80
1963-89 | | Lampasas River near Belton (d) | 08104100* | 1,321
134 | 1985-89 | | Salado Creek above Salado (e)
Salado Creek below Salado Springs (d) | 08104290*
08104310* | 136 | 1985-88 | | N. Fork San Gabriel River upstream from State Highway 418 at Georgetown (e) | 08104310* | 271 | 1985-88 | | North Fork San Gabriel River at Georgetown (d) | 08104793 | 268 | 1964-68 | | South Fork San Gabriel River near Bertram (e) | 08104850 | 8.9 | 1967-74 | | San Gabriel River at Georgetown (d) | 08105000* | 405 | 1924-25, | | San Gabrier River at Georgetown (u) | 00103000 | 403 | 1934-73, | | | | | 1984-87 | | Berry Creek at State Hwy. 971 near Georgetown (d) | 08105200* | 117 | 1985-87 | | San Gabriel River near Weir (d) | 08105300* | 563 | 1977-90 | | San Gabriel River near Circleville (d) | 08105400 | 599 | 1924-34, | | | | | 1967-77 | | Avery Branch near Taylor (e) | 08105900 | 3.52 | 1966-73 | | Brushy Creek at Coupland (d) | 08106000 | 205.0 | 1924-26 | | Brushy Creek near Rockdale (d) | 08106300 | 505 | 1967-80 | | San Gabriel River near Rockdale (d) | 08106310 | 1,359 | 1975-92 | | Big Elm Creek near Temple (d) | 08107000 | 74.70 | 1934-36 | | Big Elm Creek near Buckholts (d) | 08107500 | 171 | 1934-36 | | North Elm Creek near Ben Arnold (d) | 08108000 | 32.20 | 1935-36 | | North Elm Creek near Cameron (d) | 08108200 | 44.80 | 1963-73 | | Little Branch near Bryan (e) | 08108800 | 0.14 | 1966-73 | | Brazos River near Bryan (d) | 08109000 | 39,515 | 1899-1903, | | | | | 1918-92 | | Brazos River near College Station (d) | 08109500 | 30,033 | 1899-1902, | | | | | 1918-25 | | Yegua Creek near Somerville (d) | 08110000 | 1,009 | 1924-92 | | Brazos River at Washington (e) | 08110200 | 41,192 | 1966-95 | | Plummers Creek at Mexia (e) | 08110350 | 4.42 | 1965-73 | | Navasota River near Groesbeck (d) | 08110400 | 311 | 1965-79 | | Navasota River near Bryan (d) | 08111000 | 1,454 | 1951-94, | | | | | 1994-97 | | Navasota River near College Station (d) | 08111010 | 1,809 | 1977-85 | | Burton Creek at Villa Maria Road, Bryan (d) | 08111025 | 1.33 | 1968-70 | | Hudson Creek near Bryan (d) |
08111050 | 1.94 | 1968-70 | | Winkleman Creek near Brenham (e) | 08111100 | 0.75 | 1965-73 | | Piney Creek near Bellville (e) | 08111600 | 30.7 | 1948, | | | | | 1955, | | | | | 1958, | | West Fork Mill Creek near Industry (e) | 00111750 | 15.0 | 1964-89 | | | 08111650 | 15.3 | 1964-89 | | Station name | Station | Drainage
area | Period of record | |---|------------------------|--------------------|---------------------| | | number | (mi ²) | (water years) | | Mill Creek near Bellville (d) | 08111700 | 376 | 1963-93 | | Brazos River near San Felipe (d) | 08112000 | 35,100 | 1939-57 | | Brazos River near Wallis (e) | 08112200 | 44,700 | 1974-75 | | Brazos River Authority Canal A near Fulshear (d) | 08112500 | N/A | 1932-54, | | Richmond Irrigation Co. Canal near Richmond (d) | 09112500 | N/A | 1958-73 | | Richmond Irrigation Co. Canar near Richmond (d) | 08113500 | IN/A | 1932-54,
1956-78 | | Brazos River near Juliff (d) | 08114500 | 45,084 | 1949-69 | | Seabourne Creek near Rosenberg (e) | 08114900 | 5.78 | 1968-74 | | Fairchild Creek near Needville (d) | 08115500 | 26.20 | 1947-55 | | Big Creek near Guy (d) | 08116000 | 116 | 1947-50 | | Dry Creek near Rosenberg (d) | 08116400 | 8.65 | 1959-79 | | Dry Creek near Richmond (d) | 08116500 | 12.20 | 1947-50, | | | | | 1957-58 | | San Bernard River near West Columbia (e) | 08117700 | 766 | 1949,
1971-77 | | Mound Creek Tributary at Guy (e) | 08117800 | 1.48 | 1971-77 | | Big Boggy Creek near Wadsworth (d) | 08117900 | 10.30 | 1970-77 | | Bull Creek near Ira (d) | 08118500 | 26.30 | 1948-54, | | | | | 1959-62 | | Colorado River below Bull Creek near Ira (e) | 08118600 | 3,524 | 1975-78 | | Bluff Creek near Ira (d) | 08119000 | 42.60 | 1948-65 | | Bluff Creek at mouth near Ira (e) | 08119100 | 44.1 | 1975-78 | | Colorado River near Ira (d) | 08119500 | 3,483 | 1948-52, | | Morgan Creek near Westbrook (d) | 08121500 | 273 | 1959-89
1954-63 | | Graze Creek near Westbrook (d) | 08121300 | 21.70 | 1954-59 | | Morgan Creek near Colorado City (d) | 08122500 | 313 | 1947-49 | | Champlin Creek near Colorado City (d) | 08123500 | 198 | 1948-59 | | Sulphur Springs Draw near Wellman (e) | 08123620 | 41.80 | 1966-74 | | Beals Creek above Big Spring (d) | 08123650 | 9,319 | 1959-79 | | Beals Creek at Big Spring (d) | 08123700 | 9,341 | 1957-59 | | Beals Creek near Coahoma (d) | 08123720 | 9,383 | 1983-88 | | Coahoma Draw Tributary near Big Spring (e) | 08123750 | 2.38 | 1966-74 | | Bull Creek Tributary near Forsan (e) Colorado River near Silver (d) | 08123760
08123900 | 0.4
14,997 | 1966-74
1957-70 | | Bitter Creek near Silver (e) | 08123920 | 4.3 | 1967-74 | | Salt Creek Tributary near Hylton (e) | 08125450 | 0.25 | 1966-74 | | Fish Creek Tributary near Hylton (e) | 08126300 | 0.25 | 1966-71 | | Colorado River at Ballinger (d) | 08126500 | 16,413 | 1907-79 | | Dry Creek near Christoval (e) | 08127100 | 0.79 | 1965-73 | | South Concho Irrigation Co. Canal at Christoval (d) | 08127500 | N/A | 1940-83 | | Middle Concho River near Tankersley (d) | 08128500 | 2,653 | 1930-61 | | Spring Creek above Tankersley (d) | 08129300* | 424.7 | 1961-95 | | Dove Creek Springs near Knickerbocker (d) Dove Creek at Knickerbocker (d) | 08129500*
08130500* | N/A
226 | 1944-58
1961-95 | | Spring Creek near Tankersley (d) | 08131000 | 699 | 1930-60 | | South Concho River above Pecan Creek near San Angelo (e) | 08131300 | 470 | 1963-84 | | Tom Green Co. WCID No. 1 Canal near San Angelo (d) | 08131600 | N/A | 1963-81 | | South Concho River at San Angelo (d) | 08132500 | 3,866 | 1932-53 | | Quarry Creek near Sterling City (e) | 08133300 | 3.25 | 1965-73 | | North Concho River at Sterling City (d) | 08133500* | 588.0 | 1939-87 | | Broome Creek near Broome (e) | 08133800 | 0.29 | 1965-73 | | Nolke Station Creek near San Angelo (e) | 08134300 | 0.59 | 1965-73 | | Gravel Pit Creek near San Angelo (e) | 08134400 | 0.19 | 1965-74 | | North Concho River at San Angelo (d) | 08135000 | 1,525 | 1916-31,
1947-90 | | Concho River near Veribest (e) | 08136150 | 5,610 | 1970-74, | | | 00120120 | -, | 1998-2000 | | | | | | | Cardian | G | Drainage | Period | |--|----------------------|----------------------------|----------------------------| | Station name | Station
number | area
(mi ²) | of record
(water years) | | | | | | | Frog Pond Creek near Eden (e) | 08136300 | 1.96 | 1967-73 | | Mukewater Creek SWS No. 10A near Trickham (e) | 08136900 | 15.3 | 1965-72 | | Mukewater Creek SWS No. 9 near Trickham (e) | 08137000 | 4.02 | 1961-72 | | Mukewater Creek at Trickham (d) Deep Creek SWS No. 3 near Placid (e) | 08137500 | 70
3.42 | 1951-73
1954-60 | | Deep Creek SwS No. 5 hear Flacid (e) Deep Creek near Mercury (d) | 08139000
08139500 | 43.90 | 1954-73 | | Deep Creek SWS No. 8 near Mercury (e) | 08139300 | 5.14 | 1952-71 | | Dry Prong Deep Creek near Mercury (d) | 08140500 | 8.31 | 1951-71 | | Lake Clyde near Clyde (e) | 08140600 | 36.9 | 1970-85 | | Pecan Bayou near Cross Cut (d) | 08140700 | 532 | 1968-79 | | Jim Ned Creek near Coleman (d) | 08140800 | 333 | 1965-80 | | McCall Branch near Coleman (e) | 08141100 | 2.17 | 1966-73 | | Hords Creek near Valera (d) | 08141500 | 54.20 | 1947-91 | | Hords Creek at Coleman (d) | 08142000 | 107 | 1941-70 | | Brown County WID No. 1 Canal near Brownwood (d) | 08142500 | N/A | 1950-83 | | Pecan Bayou at Brownwood (d) | 08143500 | 1,660 | 1917-18, | | | | | 1924-83 | | Brown Creek Tributary near Goldthwaite (e) | 08143700 | 2.48 | 1966-73 | | Noyes Canal at Menard (d) | 08144000 | N/A | 1924-83 | | Brady Creek near Eden (d) | 08144800 | 101 | 1962-85
1967-73 | | Brady Creek Tributary near Brady (e) Lake Buchanan near Burnet (e) | 08145100
08148000 | 4.05
31,910 | 1937-90 | | Llano River Tributary near London (e) | 08150200 | 0.58 | 1966-73 | | Stone Creek Tributary near Art (e) | 08150200 | 0.40 | 1966-73 | | Llano River near Castell (d) | 08151000 | 3,747 | 1924-39 | | Johnson Creek near Valley Spring (e) | 08151300 | 5.66 | 1967-73 | | Little Flatrock Creek near Marble Falls (e) | 08152700 | 3.20 | 1966-74 | | Spring Creek near Fredericksburg (e) | 08152800 | 15.20 | 1967-73 | | Pedernales River at Stonewall (d) | 08153000 | 647 | 1924-34 | | Cane Branch at Stonewall (e) | 08153100 | 1.37 | 1965-71 | | Pedernales River near Spicewood (d) | 08154000 | 1,294 | 1924-39 | | Lake Travis near Austin (d) | 08154500 | 38,755 | 1940-90 | | Colorado River below Mansfield Dam, Austin (d) | 08154510 | 38,755 | 1975-90 | | West Bull Creek at Loop 360 near Austin (e) | 08154750 | 6.77 | 1976-82 | | Bull Creek at FM 2222, Austin (e) | 08154760 | 30.4 | 1975-78 | | Bee Creek at West Lake Drive near Austin (e) Barton Creek near Camp Craft Road near Austin (d) | 08154950 | 3.28
109 | 1980-82
1982-89 | | Skunk Hollow Creek below Pond 1 at Austin (e) | 08155260
08155400 | 0.12 | 1982-89 | | West Bouldin Creek at Riverside Drive, Austin (e) | 08155550 | 3.12 | 1976-82 | | Shoal Creek at Steck Avenue, Austin (e) | 08156650 | 2.79 | 1975-82 | | Shoal Creek at Northwest Park at Austin (d) | 08156700 | 6.52 | 1975-84 | | Shoal Creek at White Rick Drive, Austin (e) | 08156750 | 12.30 | 1975-82 | | Waller Creek at 38th Street, Austin (d) | 08157000 | 2.31 | 1955-80 | | Waller Creek at 23rd Street, Austin (d) | 08157500 | 4.13 | 1955-80 | | East Bouldin Creek at South 1st Street, Austin (d) | 08157600 | 2.4 | 1997-2001 | | Blunn Creek near Little Stacey Park, Austin | 08157700 | 1.2 | 1997-2001 | | Boggy Creek at US Highway 183, Austin | 08158050 | 13.1 | 1977-86 | | Walnut Creek at Farm-Market 1325 near Austin (e) | 08158100 | 12.60 | 1994-2001
1975-88 | | Walnut Creek at Dessau Road, Austin (e) | 08158200 | 26.20 | 1975-88 | | Ferguson Branch at Springdale Road, Austin (e) | 08158300 | 1.63 | 1978-82 | | Little Walnut Creek at Georgian Drive, Austin (e) | 08158380 | 5.22 | 1975-88 | | Little Walnut Creek at IH 35, Austin (e) | 08158400 | 5.57 | 1975-82 | | Little Walnut Creek at Manor Road, Austin (e) | 08158500 | 12.1 | 1975-82 | | Walnut Creek at Southern Pacific Railroad bridge, Austin (e) | 08158640 | 53.5 | 1975-86 | | Onion Creek at Buda (e) | 08158800 | 166 | 1961-78, | | " " (d) | | | 1979-83, | | B C I E M I B 11/2/ M I C | 00150000 | 24.0 | 1992-95 | | Bear Creek at Farm-Market Road 1626 near Manchaca (e) | 08158820 | 24.0 | 1979-83 | | Little Bear Creek at Farm-Market Road 1626 near Manchaca (d) | 08158825 | 21.0 | 1979 | | Slaughter Creek at FM 2304 near Austin (e) | 08158860 | 23.1 | 1978-83 | Drainage Period Station name Station area of record number (mi²)(water years) ______ Boggy Creek (South) at Circle S Road, Austin (e) 08158880 3.58 1976-88 Fox Branch near Oak Hill (e) 08158900 1965-73 0.12 1978-93 Williamson Creek at Oak Hill (d) 08158920 6.30 Williamson Creek at Jimmy Clay Road, Austin (d) 08158970 27.60 1975-85 Onion Creek below Del Valle (e) 08159100 339 1962-75 Wilbarger Creek near Pflugerville (d) 08159150 4.6 1963-80 Big Sandy Creek near McDade (d) 08159165 38.70 1979-85 Big Sandy Creek near Elgin (d) 1979-85 08159170 63.80 Dogwood Creek near McDade (e) 08159180 0.53 1980-85 Dogwood Creek at Highway 95 near McDade (e) 08159185 5.03 1980-85 Reeds Creek near Bastrop (e) 08159450 5.22 1967-73 Dry Creek at Buescher Lake near Smithville (d) 08160000 1.48 1940-66 Colorado River at La Grange (d) 08160500 40,430 1939-55 Colorado River above Columbus (d) 08160700 41,403 1983-85 Dry Branch Tributary near Altair (e) 08161580 0.68 1966-73 Little Robin Slough near Matagorda (e) 08162530 3.4 1969 Cashs Creek near Blessing (e) 08162650 14.8 1969-77 East Carancahua Creek near Blessing (e) 1968, 08162700 81.2 1970-83 West Carancahua Creek near Laward (e) 08162800 57.1 1970-76 Navidad River near Speaks (d) 08164350 437 1982-89. 1995-2000 549 Navidad River at
Morales (d) 08164370 1995-2000 Navidad River near Ganado (d) 08164500 826 1939-80 Guadalupe River above Kerrville (e) 08166150 488 1976-79 Turtle Creek Tributary near Kerrville (e) 08166300 0.46 1966-74 Guadalupe River near Comfort (d) 08166500 762. 1918-32 Rebecca Creek near Spring Branch (d) 08167600 10.90 1960-79 Blieders Creek at New Braunfels (e) 08168600 16.0 1962-89 Panther Canyon at New Braunfels (e) 08168700 0.73 1962-89 08168720 Trough Creek near New Braunfels (e) 0.48 1966-74 W.P. Dry Comal Creek Tributary near New Braunfels (e) 0.32 1966-74 08168750 Dry Comal Creek at New Braunfels (e) 08168800 N/A 1962-74 Walnut Branch near Seguin (e) 08169750 5.46 1967-74 1965-74 East Pecan Branch near Gonzales (e) 08169850 0.24 San Marcos River at San Marcos (d) 08169950 1915-21 83.7 West Elm Creek near Niederwald (e) 08172100 0.44 1965-74 San Marcos River at Ottine (d) 08173500 1,249 1915-43 Guadalupe River below Cuero (d) 08176000 4,923 1903-07, 1916-19. 1921-36 Irish Creek near Cuero (e) 15.5 08176200 1967-74 Three Mile Creek near Cuero (e) 08176600 0.48 1966-74 Coleto Creek Reservoir inflow (Guadalupe diversion) near Schroeder (d) 08176990 357 1980-94 Coleto Creek near Schroeder (d) 08177000 1930-34 369 1953-79 Olmos Creek Tributary at FM 1535 at Savano Park (e) 08177600 0.33 1969-81 Olmos Reservoir at San Antonio (e) 08177800 32.4 1968-71, 1976-89. 1992-95 San Antonio River at Woodlawn Avenue, San Antonio (e) 1989-95 08177860 36.4 San Antonio River at Dolorosa, San Antonio (d) 08177920 N/A 1980-86 Alazan Creek at St. Cloud Street, San Antonio (e) 08178300 1969-79 3.26 San Pedro Creek at Furnish St., San Antonio (d) 08178500* 2.60 1916-29 1977-81 Harlandale Creek at W. Harding Street, San Antonio (e) 08178555 2.43 Panther Springs Creek at FM 2696 near San Antonio (e) 08178600 9.54 1969-77 1980-84 Lorence Creek at Thousand Oaks Blvd., San Antonio (e) 08178620 4.05 West Elm Creek at San Antonio (e) 08178640 2.45 1976-88 East Elm Creek at San Antonio (e) 08178645 2.33 1976-81 Salado Creek Tributary at Bitters Road, San Antonio (e) 0.26 08178690 1969-81 | Station name | Station | Drainage
area | Period
of record | |--|----------------------|--------------------|---------------------| | Station name | number | (mi ²) | (water years) | | Salado Creek at Rittman Road, San Antonio (e) | 08178720 | 137.1 | 1968-81 | | Salado Creek Tributary at Bee Street, San Antonio (e) | 08178736 | 0.45 | 1970-77 | | Salado Creek at E. Houston Street, San Antonio (e) | 08178740 | 181 | 1968-81 | | Salado Creek at U.S. Highway 87, San Antonio (e) | 08178760 | 186 | 1968-81 | | Salado Creek at Southcross Blvd., San Antonio (e) | 08178780 | 188 | 1968-81 | | Bandera Creek Tributary near Bandera (e) | 08178900 | 0.27 | 1966-74 | | Medina River near Pipe Creek (d) | 08179000 | 474 | 1923-35,
1953-82 | | Red Bluff Creek near Pipe Creek (d) | 08179100 | 56.30 | 1956-81 | | Medina River Tributary near Pipe Creek (e) | 08179200 | 0.30 | 1966-74 | | Medina River at La Coste (d) | 08180640 | 805 | 1987-2000 | | Medio Creek at Pearsall Road, San Antonio (e) | 08180750 | 47.9 | 1987-95 | | Leon Creek Tributary at FM 1604, San Antonio (e) | 08181000 | 5.57 | 1968-80 | | French Creek Tributary near Helotes (e) | 08181200 | 1.08 | 1966-74 | | Ranch Creek near Helotes (d) | 08181410 | 1.10 | 1978 | | Leon Creek Tributary at Kelly Air Force Base (d) Calaveras Creek SWS No. 6 (inflow) near Elmendorf (e) | 08181450
08182400 | 1.19
7.01 | 1969-79
1957-77 | | Calaveras Creek SWS No. 6 (Illinow) near Ellinendori (e) Calaveras Creek near Elmendorf (d) | 08182500 | 77.20 | 1954-71 | | San Antonio River at Calaveras (d) | 08182300 | 1,786 | 1918-25 | | Cibolo Creek near Boerne (d) | 08183900 | 68.4 | 1963-95 | | Cibolo Creek near Bulverde (d) | 08184000 | 198 | 1946-66 | | Cibolo Creek above Bracken (d) | 08184500 | 250 | 1946-51 | | Cibolo Creek at Sutherland Springs (d) | 08185500 | 665 | 1924-29 | | Ecleto Creek near Runge (d) | 08186500 | 239 | 1962-89 | | Escondido Creek SWS No. 1 (inflow) near Kenedy (e) | 08187000 | 3.29 | 1955-73 | | Escondido Creek at Kenedy (d) | 08187500 | 72.40 | 1954-73 | | Escondido Creek SWS No. 11 (inflow) near Kenedy (e) | 08187900 | 8.45 | 1959-77 | | Dry Escondido Creek near Kenedy (d) | 08188000 | 9.43 | 1954-59 | | Baugh Creek at Goliad (e) | 08188400 | 3.02 | 1966-74 | | Guadalupe-Blanco River Authority Calhoun Canal-Flume No. 2
near Long Mott (d) | 08188750 | N/A | 1972-86 | | Guadalupe River at State Highway 35 near Tivoli (e) | 08188810 | 10,280 | 1975-82 | | Olmos Creek Tributary near Skidmore (e) | 08189600 | 0.58 | 1966-73 | | Chiltipin Creek at Sinton (d) | 08189800 | 128 | 1970-91 | | Nueces River near Uvalde (d) | 08191500 | 1,930 | 1928-39 | | Nueces River near Cinonia (d) | 08192500 | 2,150 | 1915-25 | | Plant Creek near Tilden (e) | 08194550 | 0.36 | 1965-74 | | Nueces River at Simmons (d) | 08194600 | 8,561 | 1965-77 | | Frio River at Knippa (d) | 08195700 | N/A | 1953 | | Dry Frio River at Knippa (d) | 08196500 | 179 | 1953 | | East Elm Creek near Sabinal (e) | 08198900 | 10.6 | 1967-74 | | Frio River near Frio Town (d) | 08199700 | 1,460 | 1924-27 | | Hondo Creek near Hondo (d) | 08200500 | 132 | 1953-64 | | Bone Creek near Hondo (e) | 08200900
08202000 | 0.19
53.20 | 1965-74
1952-61 | | Seco Creek near Utopia (d) Seco Creek Reservoir inflow near Utopia (d) | 08202450 | 59.5 | 1991-98 | | Seco Creek near D'Hanis (d) | 08202430 | 87.40 | 1952-64 | | Parkers Creek Reservoir (d) | 08202800 | 10.0 | 1991-99 | | Leona River Tributary near Uvalde (e) | 08203500 | 1.21 | 1966-74 | | Leona River Spring Flow near Uvalde (d) | 08204000* | 1.21 | 1939-77 | | Leona River near Divot (d) | 08204500 | 565 | 1924-29 | | Frio River at Calliham (d) | 08207000 | 5,491 | 1925-26,
1932-81 | | Rutledge Hollow Creek near Poteet (e) | 08207200 | 9.33 | 1966-74 | | Rutledge Hollow at 7th Street, Poteet (d) | 08207220 | N/A | 1979-2000 | | Atascoas River at U.S. Highway 281, Pleasanton (d) | 08207300 | N/A | 1973-2000 | | Atascosa River near McCoy (d) | 08207500 | 530 | 1951-57
1966-73 | | Lucas Creek near Pleasanton (e) Ramirena Creek near George West (d) | 08207700
08210300 | 32.80
84.40 | 1966-73
1968-72 | | Lagarto Creek near George West (d) | 08210300 | 155 | 1972-89 | | Augusto Creek Hour Goorge (100) (4) | 00210400 | 100 | 1/14 0/ | | Station name | | Drainage | Period | |--|----------------------|--------------------|---------------------| | | Station | area | of record | | | number | (mi ²) | (water years) | | Rincon Bayou Channel near Calallen (d) | 08211503 | N/A | 1996-2000 | | Pintas Creek Tributary near Banquete (e) | 08211550 | 3.28 | 1966-74 | | Hamon Creek near Freer (e) | 08211600 | 0.73 | 1965-73 | | San Diego Creek at Alice (d) | 08211800 | 319 | 1964-89 | | Lake Alice at Alice (e) | 08211850 | 150 | 1965-86 | | San Fernando Creek near Alice (d) | 08212000 | 518 | 1962-63 | | North Las Animas Creek Tributary near Freer (e) | 08212320 | 0.07 | 1969-74 | | Rio Grande at Vinton Bridge near Anthony (d) | 08363840 | 28,680 | 1969-74 | | Northgate Reservoir at El Paso (e)
Range Reservoir at El Paso (e) | 08365540
08365545 | 6.89
11.89 | 1973-75
1973-75 | | Franklin Canal at El Paso (d) | 08365550 | N/A | 1973-73
1969-72 | | McKelligon Canyon at El Paso (d) | 08365600 | 2.30 | 1958-77 | | Government Ditch at El Paso (d) | 08365800 | 6.40 | 1958-77 | | Rio Grande at Jaurez, MX (d) | 08366000 | 29,350 | 1938-56 | | Riverside Canal near Socorro (d) | 08366400 | 37,830 | 1969-72 | | Rio Grande at Island Station near El Paso (d) | 08366500 | 29,743 | 1938-60 | | Rio Grande at Tornillo Branch near Fabens (d) | 08367000 | N/A | 1924-38 | | Tornillo Drain at mouth near Tornillo (d) | 08368000 | N/A | 1969-72 | | Tornillo Canal near Tornillo (d) | 08368300 | N/A | 1969-72 | | Hudspeth Feeder Canal near Tornillo (d) | 08368900 | N/A | 1969-72 | | Rio Grande at County Line Station near El Paso (d) | 08369500 | 30,610 | 1938-60 | | Camo Rice Arroyo Tributary near Fort Hancock (e) | 08370200 | 2.35 | 1966-74 | | Wild Horse Creek Tributary near Van Horn (e) | 08370800 | 0.74 | 1966-73 | | Cibolo Creek near Presidio (d) | 08373200 | 276 | 1971-77 | | Rio Grande above Presidio (lower Station) (d) | 08373500 | N/A | 1901-13, | | | 0000000 | 0.4.50.5 | 1924-54 | | Rio Grande at Langtry (d) | 08377500 | 84,795 | 1900-14,
1920, | | | | | 1924-60 | | Rio Grande Tributary near Langtry (e) | 08377600 | 0.32 | 1966-74 | | Delaware River Tributary near Orla (e) | 08407800 | 1.6 | 1966-74 | | Pecos River near Angeles (d) | 08409500 | 20,540 | 1914-37 | | Salt Screwbean Draw near Orla (d) | 08411500 | 464 | 1939-41, | | Pecos River near Mentone (d) | 08414000 | 21,650 | 1944-57
1922-26, | | recos River hear ivientone (u) | 08414000 | 21,030 | 1969-73 | | Reeves County WID No. 2 Canal near Mentone (d) | 08414500 | N/A | 1922-25, | | Recves county with No. 2 canal near Memone (a) | 00414300 | 14/21 | 1939-57, | | | | | 1964-90 | | Ward County WID No. 3 Canal near Barstow (d) | 08415000 | N/A | 1939-57, | | ` ` ' | | | 1964-90 | | Pecos River above Barstow (d) | 08416500 | 21,800 | 1916-21 | | Ward County Irrigation District No. 1 Canal near Barstow (d) | 08418000 | N/A | 1922-25, | | | | | 1939-57, | | | | | 1964-90 | | Pecos River at Pecos (d) | 08420500 | 22,100 | 1898-1907, | | | | | 1914-15, | | | | | 1922-26, | | | | | 1939-55 | | Madera Canyon near Toyahvale (d) | 08424500 | 53.80 | 1932-49 | | Phantom Lake Spring near Toyahvale (d) | 08425500* | N/A | 1932-34, | | | 00.4077004 | 37/4 | 1942-66 | | San Solomon Springs at Toyahvale (d) | 08427500* | N/A | 1932-34, | | West Condia Coning at Delmonhag (d) | 09.420000 | NT/A | 1941-65 | | West Sandia Spring at Balmorhea (d) | 08429000 | N/A | 1932-33 | |
East Sandia Spring at Balmorhea (d) Toyob Crook peer Beers (d) | 08430000 | N/A | 1932-33 | | Toyah Creek near Pecos (d) | 08431000 | 1,024 | 1940-41,
1944-45 | | Salt Draw near Pecos (d) | 08431500 | 1,882 | 1939-41, | | Dan Diaw heat 1 ceus (u) | 00431300 | 1,002 | 1939-41,
1944-45 | | Limpia Creek below Fort Davis (d) | 08431800 | 227 | 1944-43 | | Emple Creek below 1 of Davis (a) | 00431000 | 221 | 1/02-11 | | Station name | Station | Drainage
area | Period
of record | |---|------------|--------------------|----------------------| | | number
 | (mi ²) | (water years) | | Limpia Creek near Fort Davis (d) | 08432000 | 303 | 1925-32 | | Toyah Creek below Toyah Lake near Pecos (d) | 08434000 | 3,709 | 1939-51 | | Grandfalls-Big Valley Canal near Barstow (d) | 08435000 | N/A | 1922-26, | | | | | 1939-57, | | | | | 1964-76 | | Pecos River below Barstow (d) | 08435500 | 25,980 | 1939-41 | | Toronto Creek near Alpine (d) | 08435600 | 27.90 | 1971-76 | | Alpine Creek at Alpine (d) | 08435620 | 18.10 | 1971-76 | | Moss Creek near Alpine (d) | 08435660 | 11.30 | 1971-76 | | Sunny Glen Canyon near Alpine (d) | 08435700 | 29.70 | 1968-77 | | Coyanosa Draw near Fort Stockton (d) Pages Coyanty WID No. 2 (Ungar Piy) Corol near Crondfollo (d) | 08435800 | 1,182
N/A | 1964-77 | | Pecos County WID No. 2 (Upper Div.) Canal near Grandfalls (d) | 08436500 | IN/A | 1922-25,
1939-57, | | | | | 1939-37,
1964-90 | | Courtney Creek Tributary near Fort Stockton (e) | 08436800 | 0.44 | 1966-74 | | Pecos County WID No. 2 Canal near Imperial (d) | 08437500 | N/A | 1940-57, | | 10005 County WID 110. 2 Cuntai near imperiar (a) | 00437300 | 14/11 | 1964-90 | | Lake Leon Tributary near Fort Stockton (e) | 08437550 | 1.59 | 1966-74 | | Pecos County WID No. 3 Canal near Imperial (d) | 08437600 | N/A | 1940-57, | | 1000 county with 1000 cumumount important (u) | 30.57300 | 11/11 | 1964-90 | | Monument Draw Tributary at Pyote (e) | 08437650 | 178 | 1966-74 | | Ward County WID No. 2 Canal near Grand Falls (d) | 08437700 | N/A | 1939-57, | | ` | | | 1964-90 | | Pecos River near Grand Falls (d) | 08438100 | 27,810 | 1916-26 | | Pecos River below Grand Falls (d) | 08441500 | 27,820 | 1921-26, | | | | | 1939-56 | | Three Mile Mesa Creek near Fort Stockton (e) | 08444400 | 1.04 | 1966-74 | | Comanche Springs at Fort Stockton (d) | 08444500 | N/A | 1936-64 | | Pecos River near Sheffield (d) | 08447000 | 31,600 | 1922-25, | | | | | 1940-49 | | Howards Creek Tributary near Ozona (e) | 08447200 | 7.53 | 1967-73 | | Pecos River near Shumla (d) | 08447400 | 35,162 | 1955-60 | | Pecos River near Comstock (d) | 08447500 | 35,298 | 1900-54 | | Goodenough Springs near Comstock (e) | 08448500 | N/A | 1929-60 | | Sonora Field Creek at Sonora (e) | 08448800 | 2.60 | 1965-71 | | Devils River near Juno (d) | 08449000 | 2,730 | 1925-49, | | Devils River near Comstock (d) | 08449300 | 3,903 | 1964-73
1955-58 | | Rough Canyon Tributary near Del Rio (e) | 08449470 | 3,903
7.90 | 1967-73 | | Devils River near Del Rio (d) | 08449500 | 4,185 | 1900-14, | | Deviis River hear Der Rio (d) | 08449300 | 4,165 | 1924-57 | | Evans Creek Tributary near Del Rio (e) | 08449600 | 0.39 | 1966-73 | | Devils River near mouth, Del Rio (d) | 08450500 | 4,305 | 1954-60 | | Rio Grande near Del Rio (d) | 08452500 | 123,303 | 1900-15, | | ruo ofunde neur Ber ruo (u) | 00 132300 | 123,303 | 1920, | | | | | 1924-54 | | San Felipe Creek near Del Rio (e) | 08453000 | 46.0 | 1931-60 | | Zorro Creek near Del Rio (e) | 08453100 | 10.0 | 1966-74 | | East Perdido Creek near Brackettville (e) | 08454900 | 3.39 | 1965-74 | | Pinto Creek near Del Rio (d) | 08455000 | 249 | 1929-69, | | | | | 1971-72 | | Rio Grande at San Antonio Crossing (d) | 08458700 | 129,226 | 1952-60 | | Arroyo San Bartolo at Zapata (e) | 08459600 | 0.61 | 1966-74 | | Rio Grande near Zapata (d) | 08460500 | 163,344 | 1932-53 | | International Falcon Reservoir near Falcon Heights (d) | 08461200 | N/A | 1953-60 | | Rio Grande at Roma (d) | 08462500 | 166,464 | 1900-13, | | | | | 1923-54 | | Rio Grande near Rio Grande City (d) | 08465500 | 180,941 | 1932-54 | | Rio Grande Tributary near Rio Grande City (e) | 08466100 | 1.20 | 1966-74 | | Rio Grande Tributary near Sullivan City (e) | 08466200 | 0.40 | 1966-74 | | North Floodway South of McAllen (d) | 08468000 | N/A | 1928-60 | | Station name | Station
number | Drainage
area
(mi ²) | Period
of record
(water years) | |-------------------------------------|-------------------|--|--------------------------------------| | South Floodway South of McAllen (d) | 08470000 | N/A | 1929-60 | | Rio Grande at Hildalgo (d) | 08471500 | 176,100 | 1928-32, | | - | | | 1935, | | | | | 1939, | | | | | 1941-51 | | Rio Grande near Progreso Bridge (d) | 08473300 | 176,228 | 1953-60 | | Rio Grande near San Beniot (d) | 08473700 | 176,304 | 1953-60 | | Rio Grande at Matamoros, MX (d) | 08474500 | 182,211 | 1900-13, | | | | | 1923-54 | | Rio Grande near Brownsville (d) | 08475000 | 176,333 | 1935-50 | The following stations were discontinued as continuous-record surface-water-quality stations prior to the 2000 water year. Daily records of specific conductance, temperature, sediment, color, pH, dissolved oxygen, or chloride were collected and published for the record shown for each station. [SC, specific conductance; T, temperature; S, sediment; C, color; pH, pH; DO, dissolved oxygen; Cl, chloride.] | | | Drainage | | Period | |--|----------------------|--------------------|----------------|--------------------| | Stationname | Station | area | Type of | of record | | | number
 | (mi ²) | record | (water years) | | Canadian River at Tascosa | 07227470 | 19,200 | SC, T, Cl | 1948-53, | | | | 18,536 | SC, T, pH, Cl | 1969-77 | | Canadian River near Canadian | 07228000 | 22,866 | SC, T | 1974-81 | | Prairie Dog Town Fork Red River near Wayside | 07297910 | 4,221 | SC, T | 1969-81 | | Tule Creek near Silverton | 07298200 | 1,150 | SC, T, pH, Cl | 1968-69 | | Prairie Dog Town Fork Red River near Brice | 07298500 | 6,082 | SC, pH, Cl, S | 1949-51, | | | | | T | 1950-51 | | Mulberry Creek near Brice | 07299000 | 534 | SC, pH, Cl, S | 1949-51 | | Prairie Dog Town Fork Red River near Lakeview | 07299200 | 6,792 | SC, T | 1968-80, | | | | | S | 1979-80 | | Little Red River near Turkey | 07299300 | 139 | SC, T | 1968-81, | | | | | S | 1979-81 | | Jonah Creek at Weir near Estelline | 07299512 | 65.50 | SC | 1974-82 | | Jonah Creek below Weir near Estelline | 07299514 | 66.60 | SC | 1974-76 | | Salt Creek near Estelline | 07299530 | 142 | SC | 1974-79 | | Prairie Dog Town Fork Red River near Childress | 07299540 | 7,725 | SC, T | 1968-82, | | | | | | 1994-97 | | Salt Fork Red River near Hedley | 07299930 | 868 | SC, T, pH, Cl | 1956-61 | | Salt Fork Red River near Wellington | 07300000 | 1,222 | SC, T, pH, Cl | 1952-54, | | | 05005400 | | SC, T | 1968-91 | | North Pease River near Childress | 07307600 | 1,434 | SC, T | 1973-79 | | Middle Pease River near Paducah | 07307750 | 1,086 | SC | 1973-79, | | | | | T | 1973-79, | | N'III D. D'. D. L. I | 052055 60 | 1 120 | S | 1994-97 | | Middle Pease River near Paducah | 07307760 | 1,128 | SC | 1980-82, | | n n' Cl'il | 07207000 | 0.754 | T | 1980 | | Pease River near Childress | 07307800 | 2,754 | SC, T | 1968-82, | | D D' | 07200000 | 2.027 | 60 | 1994-97 | | Pease River near Crowell | 07308000 | 3,037 | SC | 1942-43 | | Pease River near Vernon | 07308200 | 3,488 | SC,T | 1999 | | Red River near Burkburnett
North Fork Wichita River near Paducah | 07308500
07311600 | 20,570
540 | SC, T
SC, T | 1968-81
1968-76 | | North Fork Wichita River near Crowell | 07311600 | 591 | SC, 1
SC | 1908-76 | | Middle Fork Wichita River near Truscott | 07311622 | 161 | SC
SC | 1971-76 | | Truscott Brine Lake near Truscott | 07311648 | 26.2 | SC, T | 1970-70 | | North Fork Wichita River near Truscott | 07311700 | 937 | SC, T | 1969-92 | | South Fork Wichita River near Guthrie | 07311700 | 239 | SC, 1 | 1909-92 | | South Wichita River hear Guthlie South Wichita River below Low-Flow Dam near Guthrie | 07311780 | 223 | SC, T | 1987-89 | | South Fork Wichita River at Ross Ranch near Guthrie | 07311783 | 499 | SC, 1
SC | 1971-79, | | South Fork Wielita River at Ross Ranen near Guillie | 0/311/70 | 477 | Cl | 1988-97, | | | | | S | 1978-79 | | Wichita River near Seymour | 07311900 | 1,874 | SC, T | 1968-79 | | Beaver Creek near Electra | 07312200 | 652 | SC,T | 1969-70 | | Beaver Creek near Electra | 07312200 | 032 | 50,1 | 1996-99 | | Little Wichita River near Archer City | 07314500 | 481 | SC | 1953-55, | | 2 | 0,314300 | .01 | T | 1953-54 | | Little Wichita River near Henrietta | 07314900 | 1,037 | SC, DO | 1999 | | Little Wichita River near Henrietta | 07315000 | 1,037 | SC, T, pH, Cl | 1953-56, | | | 5.515000 | -,~~, | S, T | 1959-66, | | East Fork Little Wichita River near Henrietta | 07315200 | 178 | T | 1954 | | | | | - | 4/01 | | | | Drainage | · | Period | |--|----------|--------------------|---------------|---------------| | Stationname | Station | area | Type of | of record | | | number | (mi ²) | record | (water years) | | Red River near Gainesville | 07316000 | 30,872 | SC, Cl | 1944-46, | | | | | SC, T, pH, Cl | 1953-63, | | | | | SC, T | 1967-89, | | Red River at Denison Dam near Denison | 07331600 | 39,720 | SC | 1944-89, | | | | | T | 1945-89 | | Little Pine Creek near Kanawha | 07336750 | 75.40 | T | 1980 | | Red River near De Kalb | 07336820 | 47,348 | SC, T | 1968-91 | | Middle Sulphur River near Commerce | 07342480 | 44.1 | Cl, pH | 1987-2001 | | South Sulphur River near Cooper | 07342500 | 527 | SC, T, pH,
Cl | 1959-66, | | | | | | 1968-72, | | | | | SC, T | 1973-89 | | Sulphur River near Talco | 07343200 | 1,365 | SC, T, pH, Cl | 1966-72, | | | | | SC, T | 1973-91 | | White Oak Creek near Talco | 07343500 | 494 | SC, T, pH, Cl | 1966-72, | | | | | SC, T | 1973-91 | | Sulphur River near Darden | 07344000 | 2,774 | SC, T, pH, Cl | 1947-50 | | Big Cypress Creek near Pittsburg | 07344500 | 366 | SC, T, pH, Cl | 1968-72, | | | | | SC, T | 1973-89 | | Little Cypress Creek near Jefferson | 07346070 | 675 | SC, T, pH, Cl | 1968-72, | | | | | SC, T | 1973-91 | | Sabine River near Emory | 08017500 | 888 | SC, T, pH, Cl | 1952-54 | | Grand Saline Creek near Grand Saline | 08018200 | 91.40 | SC, T, pH, Cl | 1968-73 | | Sabine River near Mineola | 08018500 | 1,357 | SC, T, pH, Cl | 1968-72, | | | | | SC, T | 1973-92 | | Lake Fork Creek near Quitman | 08019000 | 585 | SC, T, pH, Cl | 1968-72, | | | | | SC, T | 1973-89 | | Big Sandy Creek near Big Sandy | 08019500 | 231 | SC, T, S | 1985-86 | | Sabine River near Beckville | 08022040 | 3,589 | SC, T | 1952-98 | | Sabine River below Toledo Bend near Burkeville | 08026000 | 7,482 | SC, T | 1969-86, | | | | | С | 1969-75 | | Sabine River near Bon Wier | 08028500 | 8,229 | SC, T, C | 1969-84 | | Sabine River near Ruliff | 08030500 | 9,329 | SC | 1945, | | | | | _ | 1947-98 | | | | | T | 1947-98 | | | | | pH, DO | 1968-75, | | | | | C | 1970-76, | | | | | Cl | 1968 | | Cow Bayou near Mauriceville | 08031000 | 83.30 | SC, T, pH, Cl | 1952-54, | | | | | SC, T | 1954-56 | | Neches River near Neches | 08032000 | 1,145 | SC, T | 1974-91 | | Neches River near Alto | 08032500 | 1,945 | SC, T | 1950-69 | | Neches River near Diboll | 08033000 | 2,724 | SC, T | 1970-81 | | Neches River near Rockland | 08033500 | 3,636 | SC | 1941-42, | | | 00000000 | 4 500 | | 1946-47 | | Angelina River near Lufkin | 08037000 | 1,600 | SC, T, pH, Cl | 1955-78, | | | 0000000 | 702 | SC, T | 1955- | | Attoyac Bayou near Chireno | 08038000 | 503 | SC, T | 1984-99 | | Sam Rayburn Reservoir near Jasper | 08039300 | 3,449 | SC, T | 1964-84, | | A 1' D' 11 C D 1 D 7 | 00000100 | 2.440 | 9.C. T. | 1993-99 | | Angelina River below Sam Rayburn Dam near Jasper | 08039400 | 3,449 | SC, T | 1964-79 | | Angelina River at SH 63 near Ebenezer | 08039500 | 3,435 | SC, T | 1994-99 | | Village Creek near Kountze | 08041500 | 860 | SC, T | 1968-70 | | Pine Island Bayou near Sour Lake | 08041700 | 336 | SC, T, pH, Cl | 1968-72, | | D' C I C I D'I | 00044000 | 222 | SC, T | 1973-89 | | Big Sandy Creek near Bridgeport | 08044000 | 333 | SC, T, S | 1968-77, | | Lake Worth above Fort Worth | 08045400 | 2,064 | pH, Cl | 1040.53 | | Clear Fork Trinity River at Fort Worth | 08047500 | 518 | SC, pH, Cl | 1949-52, | | | | | T | 1948-62 | | | | | Period | | |--|-------------|--------------------|---------------|---------------| | Stationname | Station | Drainage
area | Type of | of record | | | number | (mi ²) | record | (water years) | | Village Creek at Everman | 08048970 | 84.5 | SC, pH, T, DO | 1990 | | Elm Fork Trinity River SWS # 6-0 near Muenster | 08050200 | 0.77 | S | 1957-66 | | Elm Fork Trinity River near Muenster | 08050300 | 46 | SC | 1967-68, | | • | | | T | 1957-58, | | | | | | 1966-68, | | | | | S | 1957-68 | | Clear Creek near Sanger | 08051500 | 295 | SC, T, S | 1968-77 | | Little Elm Creek near Celina | 08052650 | 46.70 | SC | 1967-75, | | | | | T, S | 1966-75 | | Little Elm Creek near Aubrey | 08052700 | 75.50 | SC | 1967-75, | | | | | T, S | 1967-75 | | Elm Fork Trinity River near Lewisville | 08053000 | 1,673 | SC | 1982-86, | | | | | T | 1976-86 | | White Rock Creek at Greenville Avenue, Dallas | 08057200 | 66.4 | SC, pH, T, DO | 1997-2000 | | Trinity River below Dallas | 08057410 | 6,278 | SC, T | 1968-2000, | | | | | S | 1972-75, | | | | | | 1998-2000 | | | | | Cl | 1970-81, | | | | | | 1998-99 | | Lavon Lake near Lavon | 08060500 | 770 | SC,T,CL | 1969-74, | | | | | | 1975,82, | | | | | | 1995-99 | | Duck Creek near Garland | 08061700 | 31.6 | SC, pH, T, DO | 1988-89 | | East Fork Trinity River above Seagoville | 08061970 | 1,183 | SC, T, pH, DO | 1987-93 | | East Fork Trinity River at Seagoville | 08061980 | 1,224 | SC, pH, T, DO | 1987-96 | | East Fork Trinity River near Crandall | 08062000 | 1,256 | SC, T | 1968-1981, | | | | | | 1987-2000 | | | | | pH, DO | 1977, | | | | | | 1986-2000 | | | | | Cl | 1964-81, | | | | | | 1986-2000 | | Trinity River at Trinidad | 08062700 | 8,538 | SC, T | 1967-81 | | | | | | 1986-2000 | | | | | pH, DO | 1967-81, | | | | | | 1986-2000 | | | | | Cl | 1966-94 | | | | | S | 1978-94 | | Cedar Creek near Mabank | 08063000 | 733 | SC, T, pH, Cl | 1956-57 | | Pin Oak Creek near Hubbard | 08063200 | 17.60 | SC | 1967-72, | | | | | T | 1957-60, | | | | | _ | 1965-72, | | | | | S | 1957-60, | | | | | | 1962-72 | | Richland Creek near Richland | 08063500 | 734 | SC, T, pH, Cl | 1968-69, | | | | | SC, T | 1983-89 | | Chambers Creek near Corsicana | 08064500 | 963 | SC, T, pH, Cl | 1961-70 | | Richland Creek near Fairfield | 08064600 | 1,957 | SC, T, pH, Cl | 1956-66, | | | | | aa m | 1972, | | | 000 4 7 000 | 12.000 | SC, T | 1973-83 | | Trinity River near Oakwood | 08065000 | 12,833 | SC, T, pH, Cl | 1948-54, | | D I' C 1 M I' 'II | 000 65000 | 201 | SC, T, S | 1977-81 | | Bedias Creek near Madisonville | 08065800 | 321 | SC, T | 1985-87, | | T. W. C. L. III. | 00044000 | 4.4 | S | 1986 | | Long King Creek at Livingston | 08066200 | 141 | SC, T, pH, Cl | 1963-72 | | Trinity River near Goodrich | 08066250 | 16,844 | SC, T | 1970-73 | | Trinity River near Moss Bluff | 08067100 | 17,738 | SC, pH, Cl | 1950-65 | | Old River near Cove | 08067200 | 19.0 | SC, pH, Cl | 1950-65, | | | | | T | 1965 | | Stationname | Station | Drainage
area | Type of | Period
of record | |--|----------------------|--------------------|--------------------|----------------------| | Station hame | number | (mi ²) | record | (water years) | | Trinity River at Anahuac | 08067300 | 17,912 | SC, pH, Cl | 1950-65 | | Cedar Bayou near Crosby | 08067500 | 69.4 | SC, pH, Cl | 1971-79 | | West Fork San Jacinto River near Conroe | 08068000 | 828 | SC, T | 1962-90, | | | | | DO | 1979-81 | | Panther Branch near Spring | 08068450 | 34.50 | S | 1975-76 | | West Fork San Jacinto River near Humble | 08069500 | 1,741 | SC, Cl | 1945-46 | | East Fork San Jacinto River near New Caney | 08070200 | 388 | SC,T | 1984-99 | | San Jacinto River near Huffman | 08071500 | 2,800 | SC | 1945-54, | | | | | T | 1949-54 | | Buffalo Bayou at West Belt Drive at Houston | 08073600 | 307 | SC, T | 1979-81 | | Buffalo Bayou at Houston | 08074000 | 358 | SC, pH, T, DO | 1986-2000 | | | | | Cl | 1969-81 | | Whiteoak Bayou at Main Street, Houston | 08074598 | 127 | SC, T, DO | 1992-97 | | Buffalo Bayou at Main Street, Houston | 08074600 | 469 | SC, T, DO | 1986-92 | | Buffalo Bayou at McKee Street, Houston | 08074610 | 469 | SC, T, DO | 1992-2000 | | | | | pН | 1998-2000 | | Sims Bayou at Houston | 08075500 | 63.0 | SC, T, DO | 1994-97 | | Chocolate Bayou near Alvin | 08078000 | 87.70 | SC, T | 1978-81 | | North Fork Double Mountain Fork Brazos River near Post | 08079575 | 438 | SC, T | 1984-93 | | Double Mountain Fork Brazos River near Rotan | 08080000 | 8,536 | SC, T | 1950-51 | | Double Mountain Fork Brazos River near Aspermont | 08080500 | 8,796 | SC, T, S | 1949-51 | | | | | SC, T | 1957-95 | | McDonald Creek near Post | 08080540 | 103 | SC, T | 1964-78 | | Salt Fork Brazos River near Peacock | 08081000 | 4,619 | SC, T | 1950-51, | | | | | | 1965-86 | | Croton Creek near Jayton | 08081200 | 290 | SC, T | 1961-80 | | Salt Croton Creek near Aspermont | 08081500 | 64.30 | SC | 1969-77, | | | | - 120 | T | 1972-73 | | Salt Fork Brazos River near Aspermont | 08082000 | 5,130 | SC, T, pH, Cl | 1949-51, | | | 00002100 | 00.00 | SC, T | 1957-82 | | Stinking Creek near Aspermont | 08082100 | 88.80 | T | 1950, | | North Costs Costs and Versa City | 00002100 | 251 | SC, T | 1966-69 | | North Croton Creek near Knox City | 08082180 | 251 | SC, T | 1966-86 | | Brazos River at Seymour
Medina River near Somerset | 08082500
08082800 | 15,538
967 | SC, T
SC, T, Cl | 1960-95
1998-2000 | | Clear Fork Brazos River at Hawley | 08082800 | 1,416 | SC, I, CI
SC, T | 1998-2000 | | Clear Fork Brazos River at Hawley | 00003240 | 1,410 | SC, 1 | 1982-84 | | Clear Fork Brazos River at Nugent | 08084000 | 2,199 | SC, T, pH, Cl | 1962-64 | | California Creek near Stamford | 08084800 | 478 | SC, T, pH, CI | 1948-33 | | Paint Creek near Haskell | 08085000 | 914 | SC, T | 1950-5 | | Clear Fork Brazos River at Fort Griffin | 08085500 | 3,988 | SC, T, S | 1950-51, | | Clear Folk Brazos River at Fort Griffin | 00003300 | 3,700 | SC, T | 1968-79, | | | | | 50, 1 | 1982-84 | | Hubbard Creek near Sedwick | 08086015 | 128 | SC, T | 1964-66 | | Deep Creek at Moran | 08086050 | 228 | SC, T | 1963-75 | | Hubbard Creek near Albany | 08086100 | 454 | SC, T | 1962-75 | | Salt Prong Hubbard Creek at U.S. Highway 380 near Albany | 08086120 | 61 | SC, T | 1964-68 | | North Fork Hubbard Creek near Albany | 08086150 | 39.30 | SC, T | 1964-90 | | Salt Prong Hubbard Creek near Albany | 08086200 | 115 | SC, T | 1962-63 | | Snailum Creek near Albany | 08086210 | 22.90 | SC, T | 1964-66 | | Battle Creek near Moran | 08086235 | 108 | SC, T | 1967-68 | | Pecan Creek near Eolian | 08086260 | 26.40 | SC, T | 1967-75 | | Big Sandy Creek near Breckenridge | 08086300 | 288 | SC, T | 1962-77 | | Hubbard Creek near Breckenridge | 08086500 | 1,089 | SC, T | 1955-75 | | Clear Fork Brazos River at Eliasville | 08087300 | 5,697 | SC, T | 1962-82 | | | 08088000 | 22,673 | SC, Cl | 1942-48, | | Brazos River near South Bend | 08088000 | , | | | | Brazos River near South Bend | 08088000 | , | SC, T | 1978-81 | | | Drainage | | | Period | |
--|----------|--------------------|---------------|---------------|--| | Stationname | Station | area | Type of | of record | | | | number | (mi ²) | record | (water years) | | | Salt Creek near Newcastle | 08088200 | 120 | SC, T | 1958-60 | | | Brazos River at Morris Sheppard Dam near Graford | 08088600 | 23,596 | SC | 1942-91, | | | ** | | | T | 1950-55, | | | | | | | 1966-91 | | | Brazos River near Dennis | 08090800 | 25,237 | SC, T | 1971-95 | | | Brazos River at Whitney Dam near Whitney | 08092600 | 27,189 | SC, T | 1947-97 | | | Aquilla Creek above Aquilla | 08093360 | 255 | SC, T | 1980-83 | | | Aquilla Creek near Aquilla | 08093500 | 308 | SC, T | 196066, | | | | | | | 1968-82 | | | Brazos River near Highbank | 08098290 | 30,436 | T | 1968-84 | | | Leon River near Eastland | 08098500 | 235 | SC, T | 1950-53 | | | Leon River near Hasse | 08099500 | 1,261 | SC, T | 1980-82, | | | | | | | 1990-97 | | | Leon River near Belton | 08102500 | 3,542 | T | 1957-72 | | | South Fork Rocky Creek near Briggs | 08103900 | 33.30 | S | 1963-65 | | | Lampasas River at Youngsport | 08104000 | 1,240 | SC, T | 1961-64 | | | Little River near Little River | 08104500 | 5,228 | SC, T | 1965-73, | | | | | | | 1980-82 | | | Little River near Cameron | 08106500 | 7,065 | SC, T | 1959-97 | | | San Gabriel River near Weir | 08105300 | 563 | T | 1977-82 | | | San Gabriel River at Laneport | 08105700 | 738 | T | 1977-82 | | | Brazos River at State Highway 21 near Bryan | 08108700 | 39,049 | SC, T | 1961-65 | | | Brazos River near Bryan | 08109000 | 39,515 | SC, T | 1966 | | | Brazos River near College Station | 08109500 | 39,599 | SC, T | 1961-84 | | | Yegua Creek near Somerville | 08110000 | 1,009 | SC, T | 1961-67 | | | Navasota River above Groesbeck | 08110325 | 239 | SC, T | 1968-89 | | | Navasota River near Groesbeck | 08110400 | 311 | SC, T | 1968-78 | | | Navasota River near Easterly | 08110500 | 968 | SC | 1942-43, | | | | 00444000 | | | 1947 | | | Navasota River near Bryan | 08111000 | 1,454 | SC, T | 1959-81, | | | D D' D' I | 00114000 | 45.005 | S | 1976-81 | | | Brazos River near Richmond | 08114000 | 45,007 | S | 1966-86, | | | | | | SC | 1942-95, | | | D D' D I | 00116650 | 45.200 | T | 1951-95 | | | Brazos River near Rosharon | 08116650 | 45,399 | SC, T | 1969-80 | | | Brazos River at Harris Reservoir near Angleton | 08116700 | 44,000 | SC | 1962-77, | | | Daniel Da | 00117200 | 44.000 | T | 1967-77 | | | Brazos River at Brazoria Reservoir near Brazoria | 08117200 | 44,000 | SC | 1962-77, | | | Con Downard Divorman Doling | 09117500 | 727 | T | 1967-77 | | | San Bernard River near Boling | 08117500 | 727 | SC, T | 1978-81 | | | Colorado River above Bull Creek near Knapp | 08118200 | N/A | SC, T, Cl | 1950-52 | | | Bull Creek near Ira | 08118200 | 26.30 | SC, T, pH, Cl | 1950-52 | | | Bluff Creek near Ira | 08119000 | 42.60 | SC, T, pH, Cl | 1950-31 | | | Colorado River near Ira | 08119000 | 3,483 | SC, T, pH, CI | 1950-52, | | | Colorado River near na | 00119300 | 3,463 | SC, 1 | 1950-32, | | | | | | | 1975-82, | | | | | | Cl | 1951-52 | | | Deep Creek near Dunn | 08120500 | 198 | SC, T | 1953-54 | | | Morgan Creek near Westbrook | 08120500 | 273 | T T | 1953-54 | | | Graze Creek near Westbrook | 08121300 | 21.70 | T | 1954-55 | | | Morgan Creek near Colorado City | 08122500 | 313 | T | 1934-33 | | | Lake Colorado City near Colorado City | 08123000 | 340 | T | 1954-55 | | | Beals Creek above Big Spring | 08123650 | 9,319 | SC, T | 1973-78 | | | Beals Creek near Big Spring | 08123700 | 9,319 | SC, T | 1956-57 | | | Beals Creek near Coahoma | 08123720 | 9,383 | SC, T | 1983-88 | | | Colorado River near Silver | 08123900 | 14,997 | SC, T | 1957-68 | | | Colorado River at Robert Lee | 08124000 | 15,307 | SC, T, pH, Cl | 1948-51, | | | | 35121000 | -2,00. | , -, p11, C1 | -> .0 51, | | | Station name | Station | Drainage
area | Type of | Period of record | | |--|----------|--------------------|---------------|-------------------|--| | Stationname | number | (mi ²) | record | (water years) | | | | | | S | 1949-51 | | | Oak Creek near Blackwell | 08126000 | 209 | SC, T | 1950 | | | Colorado River at Ballinger | 08126500 | 16,413 | SC, T | 1961-79, | | | Colorado Inversa Daninger | 00120000 | 10,110 | S | 1978-79 | | | Pecan Bayou at Brownwood | 08143500 | 1,660 | SC, T | 1948-49 | | | Pecan Bayou near Mullin | 08143600 | 2,073 | SC, T | 1968-91 | | | San Saba River near San Saba | 08145500 | N/A | SC, T | 1962-65 | | | San Saba River at San Saba | 08146000 | 3,046 | SC, 1 | 1962-69, | | | San Saba River at San Saba | 08140000 | 3,040 | T T | 1962-09, | | | Colorado River near San Saba | 08147000 | 37,217 | SC, T | 1947-92, | | | Colorado River near San Saba | 00147000 | 37,217 | S S | 1951-62 | | | Llano River at Llano | 08151500 | 4,197 | SC, T | 1979-81 | | | Lake Austin at Austin | 08154900 | 38,240 | SC, T | 1965-80 | | | | | | SC, T, | | | | Barton Creek below Barton Springs at Austin | 08155505 | 125 | SC, 1, | 1965,
1975-83, | | | | | | | | | | | | | | 1989-91, | | | W. H. G. 1 . 20 1 G | 00155500 | 4.12 | T | 1994-97 | | | Waller Creek at 23rd Street at Austin | 08157500 | 4.13 | T | 1955-60 | | | East Bouldin Creek at South 1st Street, Austin | 08157600 | 2.4 | Cl | 1997-2000 | | | Blunn Creek near Little Stacey Park, Austin | 08157700 | 1.2 | | 1997-2001 | | | Boggy Creek at US Highway 183, Austin | 08158050 | 13.1 | C | 1977-86 | | | | | | C, T | 1994-2001 | | | Colorado River at Austin | 08158000 | 39,009 | SC, T | 1948-91 | | | Colorado River above Columbus | 08160700 | 41,403 | SC, T | 1983-86 | | | Colorado River at Columbus | 08161000 | 41,640 | SC | 1967-73, | | | | | | T | 1957-59, | | | | | | | 1961-68 | | | | | | S | 1957-73 | | | Colorado River at Wharton | 08162000 | 42,003 | SC | 1945-92, | | | | | | T | 1946-48, | | | Lavaca River near Edna | 08164000 | 817 | SC, T | 1978-81 | | | Navidad River near Speaks | 08164350 | 437 | SC, T, pH, Cl | 1996-97 | | | Navidad River near Ganado | 08164500 | 826 | SC, T | 1960-80 | | | Guadalupe River near Spring Branch | 08167500 | 1,315 | SC | 1942-45 | | | Guadalupe River at Sattler | 08167800 | 1,436 | T | 1984-87 | | | Blanco River at Wimberley | 08171000 | 355 | T | 1977-78 | | | Plum Creek near Luling | 08173000 | 309 | SC, T | 1968-86 | | | Sandies Creek near Westhoff | 08175000 | 549 | S | 1966 | | | | | | Cl | 1962-99 | | | Guadalupe River at Victoria | 08176500 | 5,198 | SC | 1946-81, | | | • | | | T | 1951-81 | | | Coleto Creek Reservoir (Condenser No. 1) near Fannin | 08177360 | 414 | T | 1980-94 | | | Coleto Creek Reservoir (outflow) near Victoria | 08177410 | 494 | T | 1980-94 | | | Olmos Creek at Dresden Drive, San Antonio | 08177700 | 21.2 | SC, pH, T, DO | | | | | | | S | 1973 | | | San Antonio River at San Antonio | 08178000 | 41.8 | SC, T | 1991-92, | | | | | | ~ ~, - | 1996-97 | | | San Antonio River at Mitchell Street, San Antonio | 08178050 | 42.4 | SC, pH, T, DO | 1992-99 | | | San Antonio River at Loop 410 at San Antonio | 08178565 | 125 | SC, pH, T, DO | | | | Medina River near Macdona | 08180700 | 885 | SC, pH, T, DO | | | | Medina River at La Coste | 08180640 | 805 | SC, pH, T, DO | | | | Medio Creek at Pearsall Rd. at San Antonio | 08180750 | 47.9 | SC, pH, T, DO | | | | Ingram Road Outfall at Leon Creek Tributary at San Antonio | 08181410 | 0.02 | SC, pH, T, DO | | | | Leon Creek at Interstate Highway 35 at San Antonio | | 219 | | | | | · | 08181480 | | SC, pH, T, DO | | | | Medina River at San Antonio | 08181500 | 1,317 | SC, pH, T, DO | | | | Son Antonio Divon moon Fells City | 00102500 | 2 112 | Cl | 1965-2000 | | | San Antonio River near Falls City | 08183500 | 2,113 | SC, pH, T, DO | 1987-96 | | | | Drainage | | | | |--|----------|--------------------|---------------|---------------| |
Station name | Station | area | Type of | of record | | | number | (mi ²) | record | (water years) | | Cibolo Creek near Falls City | 08186000 | 827 | SC, T | 1969-91 | | Escondido Creek SWS #1 near Kenedy | 08187000 | 3.29 | S | 1955-65 | | Guadalupe River at Tivoli | 08188800 | 10,128 | SC, T | 1966-82 | | Mission River at Refugio | 08189500 | 690 | SC, T | 1961-81 | | Nueces River at Cotulla | 08194000 | 5,171 | SC | 1942 | | Frio River at Calliham | 08207000 | 5,491 | SC, T | 1968-81 | | Nueces River at Bluntzer | 08211000 | 16,772 | SC, T | 1948-91 | | Los Olmos Creek near Falfurrias | 08212400 | 480 | SC, T | 1975-81 | | Rio Grande at El Paso | 08364000 | 29,267 | SC, pH, T, DO | 1930-2000 | | Rio Grande at Fort Quitman | 08370500 | 31,944 | SC, T | 1975-78. | | Rio Grande at Foster Ranch near Langtry | 08377200 | 80,742 | SC, T | 1975-81 | | Pecos River below Red Bluff Dam near Orla | 08410100 | 20,720 | SC | 1937-69, | | | | | T | 1953-69 | | Salt Draw near Orla | 08411500 | 464 | SC, T | 1943-48 | | Pecos River near Mentone | 08414000 | 21,650 | SC | 1939 | | Pecos River at Pecos | 08420500 | 22,100 | SC | 1939-41 | | Toyah Creek near Pecos | 08431000 | 1,024 | SC | 1940, | | · | | | | 1944 | | Salt Draw near Pecos | 08431500 | 1,882 | SC | 1940, | | | | | | 1944 | | Toyah Creek below Toyah Lake near Pecos | 08434000 | 3,709 | SC | 1940-50, | | · | | | Cl | 1940 | | Pecos River below Grand Falls | 08441500 | 27,820 | SC | 1939-42, | | | | | | 1947-56 | | Pecos River near Girvin | 08446500 | 29,560 | SC | 1940-41, | | | | | | 1947, | | | | | | 1954-82 | | | | | T | 1954-59, | | | | | | 1964-82 | | Pecos River near Sheffield | 08447000 | 31,600 | SC | 1940-41, | | | | | | 1947 | | Pecos River near Langtry | 08447410 | 35,179 | SC, T | 1971-76, | | | | | | 1981-85 | | Devils River at Pafford Crossing near Comstock | 08449400 | 3,961 | SC, T | 1978-85 | | Rio Grande at Laredo | 08459000 | 132,578 | SC | 1975-86, | | | | | T | 1974-76 | | Rio Grande at Roma | 08462500 | 166,464 | SC | 1942-43 | | Rio Grande at Fort Ringgold, Rio Grande City | 08464700 | 174,362 | SC, pH, T | 1959-2000 | | Rio Grande near Los Ebanos | 08466300 | N/A | SC, pH, T | 1977-2000 | | Rio Grande at Mission Pumping Plant | 08468000 | 171,800 | SC | 1945-50 | | Rio Grande below Anzalduas Dam | 08469200 | 176,112 | SC, pH, T | 1967-72, | | | | • | ** * | 1959-2000 | | Rio Grande at Cameron Co. WID #2 near San Benito | 08473800 | N/A | SC | 1942-43 | | Rio Grande at Los Fresnos Pumping Plant near Brownsville | 08474130 | N/A | SC | 1945-46 | | Rio Grande near Brownsville | 08475000 | 176,333 | SC | 1943-44, | | | | • | SC, T | 1967-83 | | | | | S | 1966-83 | # WATER RESOURCES DATA—TEXAS, 2002 ### **VOLUME 2** ### TRINITY RIVER BASIN #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with Federal, State, and City agencies, obtains a large amount of data pertaining to the water resources of Texas each water year. Such data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in six volumes of this report series entitled "Water Resources Data - Texas." This report series includes records of stage, discharge, and water quality of streams and canals; stage, contents, and water quality of lakes and reservoirs, and water levels and water quality of ground water wells. Volume 2 contains records for water discharge at 45 gaging stations; stage only at 2 gaging stations; stage and contents at 23 lakes and reservoirs; and water quality at 27 gaging stations. Also included are data for 2 partial-record stations comprised of 1 flood-hydrograph and 1 crest-stage stations. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating Federal, State, and City agencies in Texas. This series of annual reports for Texas began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to its present format, with data on quantities and quality of surface water contained in each of three volumes, and expanding to five volumes beginning with the 1999 water year. Ground-water levels and water quality have been published in a separate volume beginning with the 1991 water year. Prior to introduction of this series and for several water years concurrent with it, water resources data for Texas were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface Water Supply of the United States, Parts 7 and 8." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Books and Open-File Reports, Federal Center, Bldg. 41, Box 25425 Denver, CO 80225. Publications similar to this report are published annually by the U.S. Geological Survey for all States. These official U.S. Geological Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water Data Report TX-02-2." For archiving and general distribution, the reports for the 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or may be purchased on microfiche from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161, (703) 605-6000. Additional information, including the current prices, for ordering specific reports may be obtained from the Texas District Chief at the address given on the back of the title page or by telephone (512) 927-3500. ### COOPERATION Federal agencies that assisted the U.S. Geological Survey in the collection of data in this report in the form of funds or services in water year 2002 are: - ☐ Corps of Engineers, U.S. Army. - ☐ International Boundary and Water Commission United States and Mexico, U.S. Section. - National Park Service - ☐ U.S. Bureau of Reclamation. Organizations that assisted in the collection of data in this report through joint funding agreements through the Texas Water Development Board or through direct joint funding agreements with the U.S. Geological Survey are: Texas Water Development Board (TWDB), G.E. Kretzschmar, Executive Administrator; the cities of Abilene, Arlington, Austin, Corpus Christi, Fort Worth, Gainesville, Garland, Georgetown, Graham, Houston, Lubbock, Nacogdoches, San Angelo, and Wichita Falls; Bexar, Medina, and Atascosa Counties Water Improvement District No. 1; Barton Springs/ Edwards Aquifer Conservation District; Brazos River Authority; Canadian Municipal Water Authority; Coastal Water Authority; Colorado River Municipal Water District; Dallas Public Works Department; Dallas Water Utilities; Edwards Underground Aquifer Authority; Fort Bend Subsidence District; Franklin County Water District; Galveston County; Greenbelt Municipal and Industrial Water Authority; Guadalupe-Blanco River Authority; Harris-Galveston Coastal Subsidence District; Harris County Office of Emergency Management; Harris County Flood Control District: Houston-Galveston Area Council; Lavaca-Navidad River Authority; Lower Colorado River Authority; Lower Neches Valley Authority; North Central Texas Municipal Water Authority; Northeast Texas Municipal Water District; North Texas Municipal Water District; Orange County; Pecos River Commission: Red Bluff Water Power Control District; Red River Authority of Texas; Sabine River Authority of Texas; Sabine River Compact Administration; San Antonio City Public Service Board; San Antonio River Authority; San Antonio Water System; San Jacinto River Authority; Somervell County Water District; Tarrant Regional Water District; Texas Soil & Water Conservation Board; Texas State Department of Highways & Public Transportations; Texas Natural Resources Conservation Commission; Titus County Fresh Water Supply District No. 1; Trinity River Authority; Upper Colorado River Authority; Upper Guadalupe River Authority; Upper Neches River Municipal Water Authority; West Central Texas Municipal Water District; and Wichita County Water Improvement District No. 2. ### HYDROLOGIC CONDITIONS Large variations in precipitation, runoff, and streamflow characterize the usual hydrologic conditions in Texas. In the eastern part of the State, streams typically are deep with wide alluvial flood plains, and streamflow is perennial. In the western part of the State, most streams flow through arroyos, and streamflow usually is ephemeral. Streamflow across the State averaged normal during water year 2002. Conservation storage in 77 selected reservoirs throughout the State, with a combined conservation capacity of 34,481,000 acre-feet, increased from 76 percent at the end of September 2001 to 77 percent at the end of September 2002. Records from these reservoirs indicate that storage increased in 34, decreased in 39, and remained the same in 4. The area for which water resources data are presented in volume 2
includes the Trinity River Basin and Intervening Costal Basins. The area described in volume 2 and the location of selected streamflow stations in the area are shown in figure 1. ### Streamflow In the area covered in volume 2, streamflow averaged normal during water year 2002. Streamflow for water year 2002 and for the period of record at two selected stations (fig. 1) for which data are included in volume 2 is presented in table 1. At the four long-term hydrologic index stations in the State, monthly mean streamflow during water year 2002 averaged normal. Monthly mean discharges for water year 2002 and the median of the long-term monthly means for water years 1961–90 for the four long-term hydrologic index stations in the State are shown in figure 2. Streamflow at the hydrologic index station Neches River near Rockland was normal during November, February, March and June through September, above normal during October, December, January, and April, and below normal during May. The station North Bosque River near Clifton had normal streamflow April through June and August, above normal streamflow during November **Figure 1.** Area of Texas covered by volume 2 (shaded) and location of selected streamflow stations in volume 2. **Figure 2.** Monthly mean discharges at four long-term hydrologic index stations during 2002 water year and median of the monthly mean discharges for 1961–90 water years. through March and July, and below normal streamflow in September. The station North Concho River near Carlsbad had normal streamflow for October, December through April, June, August, and September, above normal streamflow during November and July, and below normal streamflow in May. Streamflow for the station Guadalupe River near Spring Branch was normal during October, February through June and September, above normal for November through January, July, and August of water year 2002. Conservation storage in 14 selected reservoirs in this area of the State, with a total combined conservation capacity of 6,816,000 acre-feet, remained at 93 percent of capacity from the end of September 2001 to the end of September 2002. Records from these reservoirs indicate that storage increased in 7 and decreased in 7. ### **Water Quality** Dissolved-solids concentrations in most streams in the State are inversely related to streamflow discharges. During years when precipitation and runoff are less than normal, streamflow commonly is more mineralized than during years when precipitation and runoff are normal or greater than normal. However, for streams in which discharge is controlled by reservoirs, the dissolved-solids concentrations may remain relatively constant despite substantial fluctuations in precipitation and runoff. | | | Table 1. Stream | nflow at two sele | cted station | <u>1S</u> | | | |----------------------|---------------------------------|-----------------------|--|--------------|---|----------------------|----------------------| | Station no. and name | | 2002 | Discharge during 2002 water year (cubic feet per second) | | Discharge during period of record (cubic feet per second) | | | | | | Maximum instantaneous | Minimum
daily mean | Mean | Maximum instantaneous | Minimus
daily mea | | | Trinity Rive | r Basin | | | | | | | | 08057000 | Trinity River at Dallas, TX | 32,400 | 433 | 2,072 | 111,000 | 10 | 1,826
(1931-2002) | | 08066500 | Trinity River at
Romayor, TX | 40,500 | 1,160 | 8,193 | 122,000 | 104 | 7,867
(1924-2002) | # SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative of undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http:// water.usgs.gov/nasqan/. Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/. The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/. <u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. ### EXPLANATION OF THE RECORDS The surface-water records published in this report are for the 2002 water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain stage and streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface water. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. ## **Station Identification Numbers** Each data station in this
report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells. ## **Downstream Order Numbering** Since October 1, 1950, the order of listing hydrologic-station records in U.S. Geological Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 08057000, which appears just to the left of the station name, includes the 2-digit Part number "08" plus the 6-digit downstream-order number "057000." The Part number designates the major river basin; for example, Part "08" is the Western Gulf of Mexico basin. ## **Records of Stage and Water Discharge** Records of stage and streamflow may be complete or partial. Complete records of discharge are those obtained using a stage-recording device through which either instantaneous or daily mean discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated for any time, or period of time. They may be obtained using a stage-recording device, but need not be. Because daily-mean discharges and daily-mean reservoir contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Flood-hydrograph partial records," "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow channel gain and loss studies, may be considered as partial records, but they are presented separately in this report. Instantaneous peak discharges are presented for all but the low-flow partial-record stations. ## **Data Collection and Computation** The data obtained at a complete record gaging station on a stream or canal consist of records of stage (that is recorded every 5, 15, 30, or 60 minutes), measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relation between stage and discharge. These data, together with supplemental information such as weather records, are used to compute daily mean discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relation between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute lake storage. Records of stage are obtained with recorders at selected time intervals. Measurements of discharge are made with current meters and indirect procedures using methods adopted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, TWRI, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves then are constructed. From these curves, rating tables indicating the discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves can be extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Stage-discharge ratings at gaging stations are described in TWRI, Book 3, Chapter A10. Instantaneous discharges are computed by applying each individual recorded stage (gage height) to the stage-discharge table. The daily mean discharge is computed as the mean of the instantaneous discharges. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the rating tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations, that the daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations, the stage-discharge relation is affected by backwater from reservoirs, tributary streams, bays, or other sources. This necessitates the use of the slope method in which the slope (fall) in a reach of the stream is a factor in computing discharge. The slope is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may increase in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed. For some streamflow gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the stage sensor or recorder fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily mean discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily-mean contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### **Data Presentation** Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consists of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly-mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7- day low-flow minimums, and flow duration. ### Station Manuscript The manuscript provides, under various headings, descriptive
information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years which the revisions apply to. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to sea level, and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.-- Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents. ## Data table of daily mean values The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also may be expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. ### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the daily mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period, expressed as "FOR WATER YEARS _____, BY WATER YEAR (WY)," will list the first and last water years of the range selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. #### Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS _____," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. However, data for partial water years, if any, will only be used in the statistical calculations, if appropriate. For example, all of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINI-MUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the column heading. When this occurs, it should be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data is omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN.--The minimum daily
mean discharge for the year or for the designated period. ANNUAL SEVEN-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) MAXIMUM PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript. MAXIMUM PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. Occasionally the meximum stage for a year may occur at midnight at the beginning or end of year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence for the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area. Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. - 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. - 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. ## **Identifying Estimated Daily Discharge** Estimated daily discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description. ## **Accuracy of the Records** The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. ### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables, is on file in the Texas District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report. ### **Records of Surface-Water Quality** Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. ## **Classification of Records** Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values obtained by data logger. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. ## Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. ## **On-Site Measurements and Sample Collection** In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Records of surface-water quality at some National Water Quality Accounting (NAWQA) Sites include data collected by different government agencies as identified in the water-quality data tables under AGENCY COLLECTING SAMPLE (CODE NUMBER). Values for this code are given below: 1028 - U.S. Geological Survey 84823 - International Boundary & Water Commission Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap. A1-A9. All of these references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" which appears at the end of the introductory text. Detailed information on collecting, treating, and shipping samples may be obtained from the
Texas Office of the Central Region Office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (NASQAN) (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors which must be evaluated by the collector. Information on the method used to collect the sample at National Stream Quality Accounting Network sites is given in the water-quality data tables under SAMPLING METHOD. Values for this code are given below: 10 - Equal Width Increment (EWI) 20 - Equal Discharge Increment (EDI) 25 - Timed Sampling Interval 30 - Single Vertical 40 - Multiple Verticals 50 - Point Sample 60 - Weighted Bottle 70 - Grab Sample (DIP) 90 - Discharge Integrated, Centroid 120 - Velocity Integrated 8010 - Other Detailed information on sampling methods may be found in the following publications: OFR-90-127 "Guidelines for Collection and Analysis of Water-Quality Samples from Streams in Texas", OFR-94-455 "Field Guide for Collecting and Processing Stream-Water Samples for the National Water-Quality Assessment Program", and OFR-94-539 "U.S. Geological Survey protocol for the collection and processing of surfacewater samples for the subsequent determination of inorganic constituents in filtered water". Specific questions pertaining to water-quality sample collection may be directed to the District Water-Quality Specialist in Austin, Texas, or the Regional Water-Quality Specialist in Denver, Colorado. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. For chemical-quality stations equipped with water-quality monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly readings beginning at 0100 hours and ending at 2400 hours for the day of record. ## **Water Temperature** Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Texas District Office. ## Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge-weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### **Laboratory Measurements** Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. Historical and current (2001) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure. ## **Data Presentation** For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radio-chemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuousrecord station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. These periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWeb are currently made on an annual basis. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### Remarks Codes The following remark codes may appear with the waterquality data in this report: | Printed
Output | Remark Code | |-------------------|---| | e or E | Estimated value | | > | Actual value is known to be greater than the
value shown | | < | Actual value is known to be less than the value shown | | V | Analyte was detected in both the environmental sample and the associated blanks | | M | Presence of material verified but not quantified | | Printed
Output | Value-Qualifier Code | | d | Diluted sample: method hi range exceeded | | v | Analyte detected in laboratory blank | | q | Insufficient sample received | | i | Result may be affected by interference | | b | Value was extrapolated below | | n | Below the NVD | | r | Value verified by rerun, same method | | p | Value reported is preferred | | c | See laboratory coment | | e | See field comment | | k | Counts outside the acceptable range | | Printed | | | Output | Null Value-Qualifier Code | | e | Required equipment not functional or available | | i | Required sample type not received | | r | Sample ruined in preparation | | u | Unable to determine - matrix interference | **Dissolved Trace-Element Concentrations** *NOTE:--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contami- nation introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Change in National Trends Network Procedures *NOTE:--Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7495 (217-333-7873). ## **Water-Quality Control Data** Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. ## **Blank Samples** Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are: Source solution blank – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes. Ambient blank – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions. Field blank – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. Trip blank – a blank solution that is put in the same type of bottle used for an environmental sample, and kept with the set of sample bottles before and after sample collection. Equipment blank – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to field blank but normally done in the more controlled conditions of the office). Sampler blank – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. Pump blank – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample. Standpipe blank – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank. Filter blank – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. Splitter blank – a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. Preservation blank – a blank solution that is treated with the sample preservatives used for an environmental sample. Canister blank – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample. ## **Reference Samples** Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. ## **Replicate Samples** Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are: Concurrent sample – a type of replicate sample in which the samples are collected simultaneoulsy with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers. Sequential sample – a type of replicate sample in which the samples collected one after the other, typically over a short time. Split sample – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space. ## **Spike Samples** Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. Concurrent sample – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes. Split sample – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes. ## ACCESS TO USGS WATER DATA The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (www). These data may be accessed at http://tx.usgs.gov Some water-quality and ground-water data also are available through the www. In addition, data can be provided in various machine-readable formats on magnetic tape, 3-1/2 inch floppy disk or CD-ROM. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.) ## **DEFINITION OF TERMS** Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionar- ies. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover. Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). **Acre-foot** (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living
cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight") **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.) **Aroclor** is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine. Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") **Ash mass** is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass") **Aspect** is the direction toward which a slope faces with respect to the compass. **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. **Bankfull stage,** as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals. Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow") **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load. **Bedload discharge** (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be neces- sary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge") **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. **Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. **Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index. **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Bottom material** (See "Bed material") **Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock. Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159.... From cell volume, total algal biomass expressed as biovolume (μ m³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species. Cfs-day (See "Cubic foot per second-day") **Channel bars**, as used in this report, are the lowest prominent geomorphic features higher than the channel bed. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment. **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. **Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. **Control** designates a feature in the
channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. **Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete. Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") **Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. **Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") **Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle. Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60. **Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") **Dry mass** refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") **Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class") Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacium*, *Streptococcus avium*, and their variants. (See also "Bacteria") **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). **Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton") Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of
chlorine per gram of the dry weight of the streambed sediment. **Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") **Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") **Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading. Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. **Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. **Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution. **Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. **Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html **Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$HBI = sum \frac{(n)(a)}{N}$$, where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") **Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") **Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge") **Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events. Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.] **Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Latent heat flux (often used interchangeably with latent heatflux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. **Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation: $$I = I_o e^{-\lambda L}$$, where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. **Low tide** is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA web site*: http://www.co-ops.nos.noaa.gov/tideglos.html Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") **Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a
specific period. (See also "Discharge") **Mean high** or **low tide** is the average of all high or low tides, respectively, over a specific period. Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or eggnymph-adult. Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. Micrograms per gram (UG/G, μg/g) is a unit expressing the concentration of a chemical constituent as the mass (micro- grams) of the element per unit mass (gram) of material analyzed. **Micrograms per kilogram** (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. **Milligrams per liter** (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture. **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method. **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988") **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks. **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC). Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass") **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. **Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |----------------|------------------|---------------------| | Clay | >0.00024 - 0.004 | Sedimentation | | Silt | >0.004 - 0.062 | Sedimentation | | Sand | >0.062 - 2.0 | Sedimentation/sieve | | Gravel | >2.0 - 64.0 | Sieve | | Cobble | >64 - 256 | Manual measurement | | Boulder | >256 | Manual measurement | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the
true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. **Percent shading** is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade. **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water. Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton") **Picocurie** (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7×10^{10} radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. **Pool**, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas. Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") **Radioisotopes** are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. **Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow (7Q₁₀) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q10 occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. **Return period** (See "Recurrence interval") **Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation. **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river. Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence. **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") **Sea level,** as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial
sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation. Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter. **Seven-day, 10-year low flow** $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval") **Shelves**, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation. **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter. **Soil-water content** is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil. Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") **Stage-discharge relation** is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Substrate is the physical surface upon which an organism lives. **Substrate embeddedness class** is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment: 0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent</td> Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. **Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") **Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") **Suspended-sediment discharge** (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxa** (**Species**) **richness** is the number of species (taxa) present in a defined area or sampling unit. **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: *Hexagenia* Species: Hexagenia limbata **Thalweg** is the line formed by connecting points of minimum streambed elevation (deepest part of the channel). **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow
proportionally to the duration of the concentration. **Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria") **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. **Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume") Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. **Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load") **Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line. Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. **Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer") Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens. **Water table** is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure. Water-table aquifer is an unconfined aquifer within which the water table is found. **Water year** in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") **WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports. Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") ## PUBLICATIONS OF TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow
field of the section subject matter. This publication format permits flexibility when revision or printing is required. Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superinten- dent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required. # Book 1. Collection of Water Data by Direct Measurement Section D. Water Quality - 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS-TWRI book 1, chap. D1. 1975. 65 p. - 1–D2. Guidelines for collection and field analysis of groundwater samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p. #### **Book 2. Collection of Environmental Data** #### Section D. Surface Geophysical Methods - 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p. - 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p. ### Section E. Subsurface Geophysical Methods - 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS– TWRI book 2, chap. E1. 1971. 126 p. - 2–E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p. ## Section F. Drilling and Sampling Methods 2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p. ## **Book 3. Applications of Hydraulics** ## Section A. Surface-Water Techniques - 3–A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p. - 3–A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p. - 3–A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3–A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p. - 3–A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p. - 3–A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p. - 3–A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p. - 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p. - 3–Al0. *Discharge ratings at gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. Al0. 1984. 59 p. - 3–A11. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p. - 3–A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS– TWRI book 3, chap. A12. 1986. 34 p. - 3–A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p. - 3–A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p. - 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p. - 3–A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p. - 3–A17. Acoustic velocity meter systems, by Antonius Laenen: USGS–TWRI book 3, chap. A17. 1985. 38 p. - 3–A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p. - 3–A19. *Levels at streamflow gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. A19. 1990. 31 p. - 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p. - 3–A21 *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p. ## Section B. Ground-Water Techniques - 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p. - 3–B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p. - 3–B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p. - 3–B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p. - 3-B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow - problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 p. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI book 3, chap. B5. 1987. 15 p. - 3–B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p. - 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p. - 3–B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p. ## Section C. Sedimentation and Erosion Techniques - 3–C1. Fluvial sediment concepts, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p. - 3–C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p. - 3–C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p. ### **Book 4. Hydrologic Analysis and Interpretation** #### Section A. Statistical Analysis - 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p. - 4–A2. Frequency curves, by H.C. Riggs: USGS–TWRI book 4, chap. A2. 1968. 15 p. - 4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.) ## Section B. Surface Water - 4–B1. *Low-flow investigations*, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p. - 4–B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p. - 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p. ## Section D. Interrelated Phases of the Hydrologic Cycle 4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p. ### **Book 5. Laboratory Analysis** ## Section A. Water Analysis - 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI book 5, chap. A1. 1989. 545 p. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI book 5, chap. A2. 1971. 31 p. - 5–A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS– TWRI book 5, chap. A3. 1987. 80 p. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI book 5, chap. A4. 1989. 363 p. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI book 5, chap. A5. 1977. 95 p. - 5–A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p. ## Section C. Sediment Analysis 5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p. #### **Book 6. Modeling Techniques** #### Section A. Ground Water - 6–A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p. - 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p. - 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual,
by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p. - 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p. - 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p. - 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p. - 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density groundwater flow, by Weixing Guo and Christian D. Langevin: USGS-TWRI book 6, chap. A7. 2002. 77 p. ## **Book 7. Automated Data Processing and Computations** ## Section C. Computer Programs 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI book 7, chap. C1. 1976. 116 p. - 7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p. - 7–C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3, 1981, 110 p. #### **Book 8. Instrumentation** #### Section A. Instruments for Measurement of Water Level - 8–A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p. - 8–A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p. #### Section B. Instruments for Measurement of Discharge 8–B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p. ### **Book 9. Handbooks for Water-Resources Investigations** ## Section A. National Field Manual for the Collection of Water-Quality Data - 9–A1. National field manual for the collection of water-quality data: Preparations for water sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS– TWRI book 9, chap. A1. 1998. 47 p. - 9–A2. National field manual for the collection of water-quality data: Selection of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p. - 9–A3. National field manual for the collection of water-quality data: Cleaning of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p. - 9-A4. National field manual for the collection of water-quality data: Collection of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A4. 1999. 156 p. - 9–A5. National field manual for the collection of water-quality data: Processing of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p. - 9–A6. National field manual for the collection of water-quality data: Field measurements, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated. - 9–A7. National field manual for the collection of water-quality data: Biological indicators, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9–A8. National field manual for the collection of water-quality data: Bottom-material samples, by D.B. Radtke: USGS– TWRI book 9, chap. A8. 1998. 48 p. - 9–A9. National field manual for the collection of water-quality data: Safety in field activities, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p. ## **EXPLANATION** | 08042800 | • | Surface-water continuous station and number | |----------|------------|--| | 08048543 | Δ | Surface-water continuous/water-quality station and number | | 08045000 | • | Reservoir station and number | | 08054500 | 0 | Reservoir/water-quality station and number | | 08053800 | • | Water-quality station and number | | 08048800 | | Surface-water partial record/stage only station and number | | 08049500 | \Diamond | Precipitation/water-quality station and number | | 08055500 | ♦ | SW Continuous/precipitation station and number | | 08054500 | • | Reservoir/precipitation station and number | Figure 3.--Map showing location of gaging stations in the first section of the Trinity River Basin | 08042800 | West Fork Trinity River near Jacksboro, TX | 34 | |----------|---|-----| | 08042820 | Lost Creek Reservoir near Jacksboro, TX | 36 | | 08043000 | Bridgeport Reservoir above Bridgeport, TX | 38 | | 08043700 | Lake Amon G. Carter near Bowie, TX | 42 | | 08043900 | Lyndon B. Johnson National Grasslands near Alvord, TX | 44 | | 08043950 | Big Sandy Creek near Chico, TX | 46 | | 08044500 | West Fork Trinity River near Boyd, TX | 48 | | 08044800 | Walnut Creek at Reno, TX | 50 | | 08045000 | Eagle Mountain Reservoir above Fort Worth, TX | 52 | | 08045400 | Lake Worth above Fort Worth, TX | 54 | | 08045525 | Farmers Branch at Westworth Village, TX | 56 | | 08045800 | Lake Weatherford near Weatherford, TX | 58 | | 08045850 | Clear Fork Trinity River near Weatherford, TX | 60 | | 08046500 | Benbrook Lake near Benbrook, TX | 62 | | 08047000 | Clear Fork Trinity River near Benbrook, TX | 66 | | 08047050 | Mary's Creek at Benbrook, TX | 68 | | 08047500 | Clear Fork Trinity River at Fort Worth, TX | 70 | | 08048000 | West Fork Trinity River at Fort Worth, TX | 72 | | 08048543 | West Fork Trinity River at Beach Street, Fort Worth, TX | 74 | | 08048800 | Big Fossil Creek at Haltom City, TX | 363 | | 08048970 | Village Creek at Everman, TX | 84 | | 08049200 | Lake Arlington at Arlington, TX | 88 | | 08049500 | West Fork Trinity River at Grand Prairie, TX | 94 | | 08049580 | Mountain Creek near Venus, TX | 108 | | 08049700 | Walnut Creek near Mansfield, TX | 110 | | 08049800 | Joe Pool Lake near Duncanville, TX | 112 | | 08050050 | Mountain Creek Lake near Grand Prairie, TX | 114 | | 08050100 | Mountain Creek at Grand Prairie, TX | 116 | | 08050400 | Elm Fork Trinity River at Gainesville, TX | 118 | | 08050800 | Timber Creek near Collinsville, TX | 120 | | 08050840 | Range Creek near Collinsville, TX | 122 | | 08051100 | Ray Roberts Lake near Pilot Point, TX | 124 | | 08051500 | Clear Creek near Sanger, TX | 126 | | 08052700 | Little Elm Creek near Aubrey, TX | 132 | | 08052800 | Lewisville Lake near Lewisville, TX | 134 | | 08053000 | Elm Fork Trinity River near Lewisville, TX | 136 | | 08053500 | Denton Creek near Justin, TX | 138 | | 08053800 | Elizabeth Creek at State Highway 114 near Roanoke, TX | 142 | | 08054500 | Grapevine Lake near Grapevine, TX | 144 | | 08055000 | Denton Creek near Grapevine, TX | 156 | | 08055500 | Elm Fork Trinity River near Carrollton, TX | 158 | | 08056000 | Elm Fork Trinity River at Frasier Dam, Dallas, TX | 162 | ### 08042800 West Fork Trinity River near Jacksboro, TX LOCATION.--Lat 33°17'30", long 98°04'49", Jack County, Hydrologic Unit 12030101, on upstream side of bridge on State Highway 59, 4.0 mi downstream from Big Cleveland Creek, 7.0 mi upstream from Carroll Creek, 7.0 mi northeast of Jacksboro and at mile 660. DRAINAGE AREA. -- 683 mi². PERIOD OF RECORD.--Mar. 1956 to current year. Water-quality records.--Sediment data: Oct. 1976 to Sept. 1978. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 869.28 ft above NGVD of 1929 (from Texas Department of Transportation). Sept. 1960 to May 1961, nonrecording gage at same site and datum. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since 1974, at least 10% of contributing drainage area has been affected by discharge from the flood-detention pools of 21 floodwater-retarding structures. These structures control runoff from 70.9 mi² in the West Fork Trinity River drainage basin upstream from this station. No flow at times AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--18 years (water years 1956-73), 104 ft³/s (75,350 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1956-73).--Maximum discharge, 35,100 ft³/s, Apr. 27, 1957, gage height, 32.10 ft; no flow at times. DISCHARGE FROM THE DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1941 reached a stage of 30 ft, from information by local residents. | DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|---------------------------------------|---|---|--|--|---|--|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.00 | 0.03
0.01
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 |
0.36
0.44
0.41
0.41
0.56 | 0.00
0.00
0.00
0.00
0.21 | 0.34
0.32
0.29
0.23
0.08 | 29
13
5.7
5.9
4.7 | 0.90
0.75
1.4
3.0
4.6 | 0.00
0.00
0.00
0.00
57 | 0.22
0.20
0.56
0.72
e0.69 | 0.00
0.00
0.41
1.0
0.95 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.05
6.2 | 0.78
19
0.31
0.22
0.16 | 0.80
0.61
0.49
0.47
0.65 | 0.05
0.04
0.03
0.02
0.15 | 4.0
20
179
196
136 | 3.2
2.8
2.4
1.9 | 110
101
86
34
13 | e2.8
33
29
18
9.6 | 0.73
0.41
0.23
0.09
0.04 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 8.8
3.8
3.8
15
94 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.09
0.47
2.1
0.06
0.58 | 0.74
0.71
0.44
0.56
0.33 | 0.00
0.00
0.00
0.00
0.00 | 83
43
25
113
249 | 124
14
4.3
5.4
1.5 | 5.2
2.6
1.9
2.5 | 3.6
1.9
1.9
1.2
5.3 | 0.04
0.03
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 24
6.0
2.7
1.6
1.4 | 0.00
0.00
0.00
0.00
0.00 | 3.2
9.5
2.4
2.3
2.7 | 0.02
0.0
0.00
0.00
0.00 | 0.51
0.24
0.13
0.58
0.88 | 0.00
0.00
0.00
8.0
74 | 134
59
22
8.1
4.2 | 0.73
0.61
0.25
0.05
0.00 | 6.9
11
9.9
51
28 | 4.3
1.6
7.6
11
2.9 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 23
24
25 | | | | 0.10
0.00
0.00
0.00
0.64 | | | | 0.00
0.00
0.00
0.00 | | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.59
0.40
0.30
0.19
0.09 | 0.00
0.00
0.00
0.00
0.00 | 0.97
5.3
0.70
0.58
0.53
0.45 | 0.31
0.00
0.00
0.00
0.00 | 0.63
0.81
0.40
 | 4.7
3.2
2.9
2.6
2.9
7.1 | 0.94
0.85
0.80
0.89
1.5 | 0.00
0.00
0.21
0.06
0.00 | 0.64
0.48
0.31
0.16
0.13 | 0.14
0.07
0.02
0.02
0.01
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 168.06
5.421
94
0.00
333 | 0.04
0.001
0.03
0.00
0.08 | 69.38
2.238
18
0.00
138 | 27.02
0.872
19
0.00
54 | 13.89
0.496
0.89
0.00
28 | 215.85
6.963
74
0.00
428 | 1346.58
44.89
249
0.80
2670 | 252.06
8.131
124
0.00
500 | 540.44
18.01
110
0.00
1070 | 139.97
4.515
33
0.00 | 3.93
0.127
1.0
0.00
7.8 | 0.00
0.000
0.00
0.00
0.00 | | STATIS | TICS OF M | | | FOR WATER Y | EARS 197 | 4 - 2002 | z, BY WAT | ER YEAR (W | IY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 136.8
2363
1982
0.000
1978 | 41.74
219
1975
0.000
1978 | 59.99
1025
1992
0.000
1978 | 33.01
369
1985
0.000
1978 | 103.5
1049
1997
0.000
1978 | 127.3
697
1990
0.000
1978 | 125.5
2383
1990
0.000
1980 | 351.2
3127
1989
0.000
1984 | 240.3
1689
1989
0.000
1984 | 26.47
251
1975
0.000
1978 | 16.23
134
1989
0.000
1980 | 42.99
332
1996
0.000
1982 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALEN | IDAR YEAR | | FOR 2002 | WATER YEAR | ! | WATER YEA | RS 1974 - | 2002z | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 41782.19
114.5
5060
0.00
0.00 | | | 2777.
7.
249
0.
0.
279
7.
5510 | 609 | | 108.7
468
0.0
29100
0.0
0.0
33300
31.5
78780 | 72
May 17
0 Apr 6
0 Apr 12
May 17
2 May 17 | 1990
1984
1989
1974
1974
1989
1989 | | 50 PER
90 PER | CENT EXCE | EDS
EDS | | 2.5
0.00 |) | | 0. | 30
00 | | 0.9 | 0
0 | | e Estimated z Period of regulated streamflow. ## 08042800 West Fork Trinity River near Jacksboro, TX--Continued #### 08042820 Lost Creek Reservoir near Jacksboro, TX LOCATION.--Lat 33°14′36", long 98°07′11", Jack County, Hydrologic Unit 12030101, located on north streamward side of dam on Lost Creek 3.0 mi northeast of Jacksboro. DRAINAGE AREA. -- 123 mi². PERIOD OF RECORD. -- Mar. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS. -- No estimated daily contents. Records good. The lake is formed by a zoned earth and rock fill embankment 2,245 ft long. NAMEND. --NO ENLINATED DAILY CONTENTS. RECORDS GOOD. THE LAKE IS FORMED BY A ZONED EARTH AND TOCK fill embankment 2,245 ft long The dam was completed and storage began in early to mid 1990. A 60-inch diameter reinforced concrete tower serves as the principal spillway. The emergency spillway is an earth-cut side-channel spillway. The dam was built by the city of Jacksboro to impound water for municipal and recreational use. There was no known diversion from the lake during the current water year. Conservation pool storage is 11,960 acre-ft. Data regarding the dam is given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 1028.0 | | Crest of spillway | 1009.0 | | Crest of emergency spillway | 1016.0 | | Lowest gated outlet (invert) | 947.0 | COOPERATION.--Capacity table was furnished by the Texas Water Development Board. EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 13,440 acre-ft, Feb. 16, 2001, elevation, 1012.95 ft; minimum contents, 8,680 acre-ft, Oct. 20, 2000, elevation, 1000.56 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 10,900 acre-ft, June 16, 17, 18, elevation, 1,006.88 ft; minimum contents, 10,070 acre-ft, Mar. 17, 18, elevation, 1,004.66 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN MAR APR MAY JUN JUL AUG SEP 2.2 2.7 ---MEAN MAX MTN 1005.83 1005.50 1005.35 1005.14 1004.88 1004.99 1006.17 1006.65 1006.62 1006.31 1005.47 1005.01 +180 +50 +440 -20 -110 -320 CAL YR 2001 MAX 13040 MIN +1220 WTR YR 2002 MAX 10900 MIN 10080 (@) -420 -60 -80 -100 -120 (@) -120 Elevation, in feet, at end of month. Change in contents, in acre-feet. 08042820 Lost Creek Reservoir near Jacksboro, TX--Continued #### 08043000 Bridgeport Reservoir above Bridgeport, TX LOCATION.--Lat $33^{\circ}13'22"$, long $97^{\circ}49'54"$, Wise County, Hydrologic Unit 12030101, in brick valve house on upstream side and near left end of Bridgeport Dam on West Fork Trinity River, 4.6 mi west of Bridgeport, 13.0 mi upstream from Big Sandy Creek and at mile 626 DRAINAGE AREA. -- 1,111 mi². PERIOD OF RECORD.--Apr. 1932 to current year. Prior to Oct. 1950, end of month values only. Water-quality records.--Chemical data: Oct. 1969 to Sept. 1984. REVISED RECORDS .-- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to Jan. 12, 1988, nonrecording gages at various sites in vicinity of present gage at present datum. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily contents, which are poor. The reservoir is formed by a rolled earthfill dam 2,040 ft long. The dam was completed in Dec. 1931 and storage began Apr. 1, 1932. The original dam was 1,900 ft long, but was lengthened to 2,040 ft in 1971-72. The original service spillway was eliminated during construction (1971-72), and a new spillway with approach and discharge channels was built through natural ground 2,800 ft from the left end of dam. The new spillway is 90 ft wide and has eight vertical lift gates that are 11.25 x 22-ft. The controlled outlet works consist of a 48-inch diameter and an 18-inch diameter pipe encased in a concrete conduit extending through the dam. In addition, a controlled 60-inch diameter steel pipe extends through the service spillway wall to the spillway discharge basin. The dam is owned by the Tarrant Regional Water District. For elevations of outlet works, see table below. Capacity tables are based on surveys made in 1956 and 1968. Conservation pool storage is 374,836 acre-ft. Data regarding the dam are given in the following table: following table: | Top of dam. Crest of spillway. Top of gates. Top of conservation pool Sill of gates. Lowest value outlet (invert). | 866.0
842.0
836.9
820.0 | |---|----------------------------------| | Lowest value outlet (invert) | /51.4 | COOPERATION. -- Capacity table No. 5-C dated Oct. 1, 1988, was provided by Tarrant Regional Water District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 491,700 acre-ft, May 5, 1990, elevation, 844.36 ft; minimum contents observed since first appreciable storage in 1935, 7,170 acre-ft, Oct. 12-16, 1956. EXTREMES FOR 2001 WY YEAR. -- Maximum contents, 383,700 acre-ft, Apr. 11, elevation, 836.68 ft; minimum contents, 169,400 acre-ft, Oct. 20, elevation, 816.09 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 313,400 acre-ft, June 8, 9, 10, elevation, 830.98 ft; minimum contents, 278,600 acre-ft, Mar. 17, elevation, 827.86 ft. RESERVOIR STORAGE FROM DCP/EDL, in (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--
--|--|--|--|--|--|--|--|--|--| | 1 | 176500 | 172300 | 193100 | 199700 | 215800 | 321200 | 375300 | 375000 | 373500 | 367200 | 343100 | 320700 | | 2 | 175900 | 172300 | 193000 | 199800 | 216400 | 326300 | 375300 | 374800 | 373400 | 367000 | 342100 | 320500 | | 3 | 175200 | 172800 | 192900 | 199800 | 216700 | 329300 | 375800 | 374800 | 373400 | 366900 | 341000 | 320400 | | 4 | 175000 | 173200 | 192700 | 199900 | 217000 | 333600 | 376200 | 374900 | 373600 | 366700 | 340000 | 320200 | | 5 | 175000 | 174200 | 192700 | 200100 | 217100 | 339100 | 376500 | 375700 | 373600 | 366500 | 339000 | 320000 | | 6
7
8
9
10 | 174600
174200
173600
173000
172500 | 178400
179400
180400
181600
182200 | 192700
192700
192700
192600
192700 | 200200
200200
200200
200200
200200
200400 | 217200
217300
217500
217900
217800 | 341200
342000
342700
344600
345900 | 376600
376900
377000
377100
377200 | 375800
376500
377600
377900
377500 | 373500
373300
373100
373100
372900 | 366200
365900
365500
365100
364700 | 338000
336900
335900
334800
333800 | 320000
319700
319600
319300
318800 | | 11 | 171900 | 182600 | 192600 | 200700 | 217800 | 347500 | 381700 | 377000 | 372700 | 364000 | 332900 | 318600 | | 12 | 171500 | 183200 | 192300 | 200700 | 217800 | 349200 | 382600 | 376800 | 372400 | 363200 | 332000 | 318400 | | 13 | 171100 | 183400 | 192600 | 200800 | 218000 | 350600 | 381600 | 376200 | 372100 | 362400 | 331100 | 318200 | | 14 | 170800 | 183400 | 192700 | 200900 | 218300 | 351300 | 381100 | 375600 | 372000 | 361300 | 330400 | 318000 | | 15 | 170500 | 183200 | 192700 | 200900 | 220300 | 351800 | 380500 | 375000 | 372200 | 360200 | 329300 | 317900 | | 16 | 170500 | 183200 | 192700 | 201000 | 244100 | 351600 | 379400 | 374700 | 371900 | 359200 | 330500 | 317800 | | 17 | 170200 | 183100 | 192600 | 201200 | 261300 | 351600 | 378100 | 374600 | 371700 | 358200 | 329800 | 317400 | | 18 | 169900 | 183000 | 192500 | 201400 | 272300 | 351800 | 376800 | 374400 | 371300 | 357200 | 328800 | 316900 | | 19 | 169600 | 183000 | 192400 | 201600 | 280900 | 351900 | 375600 | 374300 | 370900 | 356300 | 328200 | e316500 | | 20 | 169700 | 182900 | 192400 | 201600 | 286700 | 351900 | 375300 | 374400 | 370600 | 355200 | 327600 | 316000 | | 21 | 169900 | 182800 | 192200 | 201600 | 290300 | 352000 | 375300 | 374200 | 370400 | 354300 | 326800 | 315600 | | 22 | 169700 | 182800 | 192100 | 201600 | 291500 | 352100 | 375500 | 373500 | 370100 | 353300 | 326000 | 315000 | | 23 | 169700 | 183000 | 192100 | 201700 | 292800 | 352300 | 377300 | 373200 | 369700 | 352200 | 325300 | 314500 | | 24 | 170100 | 184400 | 192100 | 201800 | 304000 | 355200 | 377100 | 373000 | 369300 | 351100 | 324600 | 313700 | | 25 | 170000 | 186800 | 193000 | 201900 | 309000 | 360500 | 376800 | 372600 | 368900 | 350100 | 323800 | 312900 | | 26
27
28
29
30
31 | 170000
170000
170000
171400
171800
172100 | 188600
190600
192300
192900
193100 | 195300
197200
198300
198900
199300
199600 | 201900
202000
202500
208500
212700
214500 | 310900
312200
314200
 | 363500
367400
371300
374000
375100
375400 | 376400
375800
375200
375200
375100 | 372400
372300
373700
373700
373800
373900 | 368700
368000
367600
367300
367300 | 349000
348000
347000
346100
345300
344300 | 323200
322800
322300
321700
321200
320800 | 312200
311600
311000
310400
309800 | | MEAN | 171800 | 182500 | 193700 | 202000 | 251200 | 350800 | 377200 | 374800 | 371300 | 358100 | 330400 | 316700 | | MAX | 176500 | 193100 | 199600 | 214500 | 314200 | 375400 | 382600 | 377900 | 373600 | 367200 | 343100 | 320700 | | MIN | 169600 | 172300 | 192100 | 199700 | 215800 | 321200 | 375100 | 372300 | 367300 | 344300 | 320800 | 309800 | | (+) | 816.43 | 818.95 | 819.70 | 821.38 | 831.05 | 836.05 | 836.02 | 835.93 | 835.42 | 833.57 | 831.62 | 830.68 | | (@) | -4700 | +21000 | +6500 | +14900 | +99700 | +61200 | -300 | -1200 | -6600 | -23000 | -23500 | -11000 | CAL YR 2000 MAX 223300 MIN 169600 (@) -22000 WTR YR 2001 MAX 382600 MIN 169600 (@) +133000 Estimated ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08043000 Bridgeport Reservoir above Bridgeport, TX--Continued ## 08043000 Bridgeport Reservoir above Bridgeport, TX--Continued ## RESERVOIR STORAGE FROM DCP/EDL, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|---|--|--|--|--|--| | 1 | 309300 | 299200 | 290700 | 289400 | 286100 | 282000 | 293300 | e304200 | 309200 | 310600 | 307600 | 297800 | | 2 | 308700 | 298900 | 290700 | 289400 | 286100 | 281700 | 293500 | e304600 | 308700 | 310500 | 307300 | 297400 | | 3 | 308000 | 298600 | 290500 | 289100 | 286000 | 281300 | 293300 | e303500 | 308600 | 310500 | 307100 | 297000 | | 4 | 307500 | 298200 | 290600 | 288900 | 285900 | 281100 | 293100 | e303700 | 308500 | 310500 | 306900 | 296600 | | 5 | 307000 | 297900 | 290700 | 289500 | 286400 | 280900 | 293000 | e303600 | 310600 | 310600 | 306600 | 296000 | | 6 | 306300 | 297500 | 290600 | 289500 | 286700 | 280600 | 293100 | e303700 | 311800 | 310800 | 306300 | 295400 | | 7 | 305700 | 296900 | 290500 | 289400 | 286700 | 280500 | 294600 | e303500 | 313000 | 310800 | 306100 | 294900 | | 8 | 305000 | 296500 | 290300 | 289400 | 286500 | 280500 | 298300 | e304000 | 313400 | 310900 | 305900 | 294900 | | 9 | 304500 | 296000 | 290000 | 289400 | 286700 | 280500 | 299400 | e303600 | 313400 | 310900 | 305500 | 294900 | | 10 | 304300 | 295500 | 289700 | 289400 | 286400 | 280300 | 299900 | e305200 | 313300 | 310800 | 305600 | 294800 | | 11 | 305200 | 295300 | 289500 | 289300 | 286200 | 280200 | 300200 | e304400 | 313000 | 310800 | 305500 | 294400 | | 12 | 305500 | 295200 | 289600 | 288900 | 286100 | 280200 | 300400 | e304400 | 312900 | 310600 | 305300 | 294000 | | 13 | 306900 | 295000 | 289500 | 288500 | 286100 | 280000 | 301000 | e310000 | 312900 | 311000 | 305100 | 293500 | | 14 | 306600 | 294800 | 289400 | 288100 | 286000 | 279900 | 301900 | 310000 | 312800 | 310900 | 304800 | 293100 | | 15 | 306400 | 294700 | 289200 | 287600 | 285800 | 279700 | 302300 | 309600 | 312500 | 310800 | 304500 | 293800 | | 16 | 306200 | 294600 | 290200 | 287200 | 285400 | 279200 | 303000 | 309700 | 312900 | 310500 | 304100 | 293300 | | 17 | 306000 | 294700 | 291100 | 286900 | 285100 | 279000 | 303700 | 310400 | 312800 | 310200 | 303900 | 292800 | | 18 | 305700 | 294900 | 291000 | 286400 | 284800 | e278800 | e303800 | 310000 | 312400 | 310200 | 303700 | 292200 | | 19 | 305500 | 294700 | 291000 | 286300 | 285400 | e283800 | e303700 | 309600 | 312200 | 310000 | 303500 | 292000 | | 20 | 305200 | 294300 | 290800 | 286200 | 285100 | 290000 | e303900 | 309300 | 312200 | 309800 | 303100 | 291300 | | 21 | 304700 | 294100 | 290800 | 286200 | 284900 | 291000 | e304200 | 309100 | 312200 | 309500 | 302900 | 290700 | | 22 | 304400 | 293800 | 290800 | 286100 | 284600 | 290900 | e304400 | 308700 | 312200 | 309400 | 302700 | 290100 | | 23 | 303900 | 293600 | 290700 | 286200 | 284300 | 290800 | e304000 | 308700 | 311900 | 309200 | 302400 | 289400 | | 24 | 303600 | 293200 | 290600 | 286300 | 284000 | 290900 | e304400 | 308500 | 311700 | 309100 | 302000 | 288800 | | 25 | 302900 | 292600 | 290300 | 286300 | 283700 | 291000 | e303900 | 308500 | 311500 | 309100 | 301400 | 288100 | | 26
27
28
29
30
31 | 302300
301800
301100
300600
300100
299600 | 292300
291700
291400
291000
290700 | 290100
290100
290000
289900
289700
289500 | 286200
286100
286200
286200
286300
286400 | 283000
282500
282200
 | 290800
290800
290800
290900
291500
293300 | e303600
e303900
e303900
e303900
e304300 | 308700
308900
309300
309400
309500
309400 | 311500
311300
311200
310900
310500 | 308800
308400
308000
307900
307900
307700 | 300900
300200
299500
299100
298600
298200 | 287600
287000
286400
285900
285200 | | MEAN | 304900 | 294900 | 290300 | 287700 | 285300 | 284600 | 300500 | 307300 | 311700 | 309900 | 303800 | 292300 | | MAX | 309300 | 299200 | 291100 | 289500 | 286700 | 293300 | 304400 | 310400 | 313400 | 311000 | 307600 | 297800 | | MIN | 299600 | 290700 | 289200 | 286100 | 282200 | 278800 | 293000 | 303500 | 308500 | 307700 | 298200 | 285200 | | (+) | 829.78 | 828.97 | 828.86 | 828.58 | 828.19 | 829.21 | e830.19 | 830.64 | 830.73 | 830.49 | 829.65 | 828.47 | | (@) | -10200 | -8900 | -1200 | -3100 | -4200 |
+11100 | +11000 | +5100 | +1100 | -2800 | -9500 | -13000 | CAL YR 2001 MAX 382600 MIN 199700 (@) +89900 WTR YR 2002 MAX 313400 MIN 278800 (@) -24600 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. 08043000 Bridgeport Reservoir above Bridgeport, TX--Continued ### 08043700 Lake Amon G. Carter near Bowie, TX LOCATION.--Lat 33°28'08", long 97°51'56", Montague County, Hydrologic Unit 12030101, on Big Sandy Creek, in pumping station 7.1 mi south of Bowie. DRAINAGE AREA. -- 100.0 mi². PERIOD OF RECORD. -- Mar. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station with voice modem. REMARKS.--Records good except those for estimated daily contents, which are fair. In 1954 the original lake was formed by an earthfill dam 2,000 ft across Big Sandy Creek for the city of Bowie. In 1985 a new reservoir dam was completed 1.0 mi below the old dam. The old and new portions of the reservoir are connected by a corrugated metal pipe arch culvert (boat pass breach) with an invert elevation of 908 ft NGVD of 1929. The reservoirs are also connected by 12 in siphon pipe through the old dam. Both reservoirs employ the emergency spillway on the old reservoir to pass flood water above elevation of 927 ft NGVD of 1929. The principal spillway tower has a 24 ft uncontrolled weir at 920 ft NGVD of 1929. Conservation pool storage is 28,589 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |---------------------------------------|-----------| | | (feet) | | Top of new dam | 945.0 | | Crest of spillway | 927.0 | | Conservation pool & uncontrolled weir | 920.0 | | Pipe arch culvert (boat pass breach) | 908.0 | COOPERATION. -- Capacity table was provided by the Texas Water Development Board, and put into effect Mar. 3, 1999. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 38,060 acre-ft, Mar. 1, 2001, elevation, 924.46 ft; minimum contents, 14,180 acre-ft, Oct. 13, 2000, elevation, 910.18 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 28,500 acre-ft, June 7, elevation, 919.93 ft; minimum contents, 23,800 acre-ft, Mar. 16, elevation, 917.16 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|---|--|---|--|---|--|--|---| | 1 | 25400 | 24600 | 24200 | 24300 | 24200 | 24000 | 24600 | 25900 | 25700 | 27900 | 27700 | 25900 | | 2 | 25400 | 24600 | 24200 | 24300 | 24200 | 24000 | 24600 | 25900 | 25600 | 27800 | 27700 | 25900 | | 3 | 25300 | 24600 | 24200 | 24300 | 24200 | 24000 | 24500 | 25900 | e25600 | 27700 | 27600 | 25900 | | 4 | 25300 | 24500 | 24200 | 24300 | 24200 | 24000 | 24500 | 25800 | e25600 | 27800 | 27600 | 25800 | | 5 | 25300 | 24500 | 24200 | 24300 | 24200 | 23900 | 24500 | 25800 | 27200 | 27800 | 27600 | 25800 | | 6
7
8
9 | 25200
25200
25100
25100
25100 | e24500
e24100
e24400
e24400
e24400 | 24200
24200
24100
24100
24000 | 24300
24300
24300
24400
24300 | 24300
24300
24300
24300
24300 | 23900
23900
23900
23900
23900 | 24500
24800
25500
25600
25600 | 25800
25800
25800
25800
25800 | e28300
e28500
28500
28400
28400 | 27900
27900
27900
27800
27800 | 27500
27500
27500
27400
27400 | 25800
25800
25800
25800
25800 | | 11 | 25300 | e24500 | 24000 | 24300 | 24200 | 23900 | 25600 | 25700 | 28400 | 27800 | 27400 | 25800 | | 12 | 25200 | e24500 | 24000 | 24300 | 24200 | 23900 | 25600 | 25700 | 28400 | 27800 | 27300 | 25800 | | 13 | 25200 | e24500 | 24000 | 24300 | 24200 | 23900 | 25700 | 25700 | 28400 | 27800 | 27300 | 25800 | | 14 | 25200 | 24500 | 24000 | 24300 | 24200 | 23800 | 26000 | 25700 | 28500 | 27800 | 27300 | 25800 | | 15 | 25200 | 24500 | 24000 | 24300 | 24200 | 23800 | 26000 | 25600 | 28400 | 27800 | 27200 | 26000 | | 16 | 25100 | 24400 | 24200 | 24300 | 24100 | 23800 | 26000 | 25600 | 28400 | 27800 | 27200 | 26000 | | 17 | 25100 | 24500 | 24300 | 24200 | 24100 | 23800 | 26100 | 25600 | 28400 | 27800 | 27100 | 26000 | | 18 | 25000 | 24500 | 24300 | 24200 | 24100 | 23800 | 26100 | 25500 | 28400 | 27800 | 27100 | 26000 | | 19 | 25000 | 24400 | 24300 | 24200 | 24200 | 24000 | 26100 | 25500 | 28300 | 27800 | 27000 | 26000 | | 20 | 25000 | 24400 | 24300 | 24200 | 24200 | 24400 | 26000 | 25500 | 28300 | 27900 | 27000 | 25900 | | 21 | 24900 | 24400 | 24300 | 24200 | 24200 | 24400 | 26000 | 25400 | 28300 | 27800 | 26900 | 25900 | | 22 | 24900 | 24300 | 24300 | 24200 | 24200 | 24400 | 26000 | 25400 | 28200 | 27800 | 26900 | 25900 | | 23 | 24900 | 24300 | 24300 | 24200 | 24200 | 24400 | 26000 | 25400 | 28200 | 27800 | 26800 | 25800 | | 24 | 24900 | 24300 | 24300 | 24200 | 24100 | 24400 | 26000 | 25300 | 28200 | 27800 | 26600 | 25800 | | 25 | 24800 | 24200 | 24300 | 24200 | 24100 | 24400 | 25900 | 25600 | 28100 | 27800 | 26500 | 25800 | | 26
27
28
29
30
31 | 24800
24700
24700
24700
24600
24600 | 24200
24200
24300
24200
24200 | 24300
24300
24300
24300
24300
24300 | 24200
24200
24200
24200
24200
24300 | 24100
24000
24000
 | 24300
24300
24300
24300
24400
24600 | 25900
25900
25800
25800
25900 | 25600
25600
25700
25700
e25700
e25700 | 28100
28000
28000
28000
27900 | 27700
27700
27600
27700
27700
27700 | 26300
26100
26000
26000
26000
25900 | 25800
25700
25700
25700
25700 | | MEAN | 25000 | 24400 | 24200 | 24300 | 24200 | 24100 | 25600 | 25700 | 27900 | 27800 | 27000 | 25800 | | MAX | 25400 | 24600 | 24300 | 24400 | 24300 | 24600 | 26100 | 25900 | 28500 | 27900 | 27700 | 26000 | | MIN | 24600 | 24100 | 24000 | 24200 | 24000 | 23800 | 24500 | 25300 | 25600 | 27600 | 25900 | 25700 | | (+) | 917.65 | 917.41 | 917.45 | 917.43 | 917.29 | 917.61 | 918.43 | 918.29 | 919.61 | 919.48 | 918.44 | 918.28 | | (@) | -820 | -400 | +100 | 0 | -300 | +600 | +1300 | -200 | +2200 | -200 | -1800 | -200 | CAT. YR 2001 MAX 38000 MTN 21300 (@) +3010 WTR YR 2002 MAX 28500 MIN 23800 (@) ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. e Estimated # 08043700 Lake Amon G. Carter near Bowie, TX--Continued # 08043900 Lyndon B. Johnson National Grasslands near Alvord, TX (National Atmospheric Deposition Program (NADP)) #### PRECIPITATION WATER-QUALITY RECORDS LOCATION.--Lat 33°23'30", long 97°38'23", Wise County, Hydrologic Unit 12030101, at State Highway 11, 6 mi northeast of Alvord and 11 mi north of Decatur. OWNER. -- U.S. Geological Survey. PERIOD OF RECORD.--July 1984 to Sept. 2002 (discountinued). INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with event recorder, and a National Weather Service 8-in rain gage (back-up only). EXTREMES FOR CURRENT YEAR.--Maximum field pH, 6.3, Jan. 22-29, Feb. 26-Mar. 5, June 11-18: minimum field pH, 4.5, Sept. 10-17. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | CALCIUM
ATM DEP
WET DIS
(MG/L)
(82932) | MAG-
NESIUM
ATM DEP
WET DIS
(MG/L)
(83002) | POTAS-
SIUM
ATM DEP
WET DIS
(MG/L)
(83120) | SODIUM
ATM DEP
WET DIS
(MG/L)
(83138) | NI-
TROGEN
AMMON.
ATM DEP
WET DIS
AS N
(MG/L)
(83044) | NI-
TROGEN
NITRATE
ATM DEP
WET DIS
AS N
(MG/L)
(83068) | CHLO-
RIDE
ATM DEP
WET DIS
(MG/L)
(82944) | SULFATE
ATM DEP
WET DIS
AS SO4
(MG/L)
(83160) | CALCIUM
ATM DEP
WET DIS
(MG/M2)
(82933) | MAG-
NESIUM
ATM DEP
WET DIS
(MG/M2)
(83003) | |--------------------|------|--|--|--|---|---|---|--|---|--|--|---|--| | OCT 30-
NOV 06 | 0905 | 0 | 0 | 1.75 | .17 | .18 | 1.08 | .790 | 1.53 | 1.64 | 3.46 | .6 | .1 | | NOV
13-20 | 0905 | e | 4.6 | .42 | .04 | .37 | .23 | .120 | .430 | .72 | 1.39 | 3.0 | .3 | | DEC
11-18 | 0905 | 9 | 4.9 | .08 | M | M | .03 | .080 | .100 | .05 | .54 | 5.3 | .3 | | DEC 26 2001- | | | | | | .03 | | <.090 | | | | | U | | JAN 02 2002
JAN | 0855 | 0 | 0 | . 28 | .02 | | <.02 | | .420 | .10 | .65 | .1 | | | 22-29
JAN 29- | 0905 | 16 | 6.3 | .91 | .04 | .05 | . 23 | .660 | .340 | .15 | 2.69 | 7.4 | . 4 | | FEB 05
FEB | 0905 | 13 | 4.8 | .18 | .02 | .02 | .17 | .250 | .250 | .28 | .98 | 3.1 | . 4 | | 05-12
FEB | 1035 | 6 | 5.0 | <.01 | <.003 | <.003 | М | .050 |
.090 | .02 | .34 | <.1 | <.02 | | 12-19
FEB 26- | 0905 | 11 | 5.7 | .60 | .04 | .04 | .26 | .300 | .150 | .26 | 1.40 | 13.5 | .9 | | MAR 05
MAR | 0905 | 23 | 6.3 | 1.80 | .12 | .10 | .41 | .580 | .770 | .28 | 2.36 | 8.7 | .6 | | 12-19
MAR | 0905 | 15 | 4.8 | .19 | .03 | .04 | .23 | .330 | .180 | .32 | 1.42 | 11.4 | 1.8 | | 19-26
MAR 26- | 0905 | 7 | 5.3 | .11 | .01 | .01 | .04 | .120 | .100 | .05 | .56 | 5.6 | .3 | | APR 02
APR | 0908 | 8 | 5.9 | .52 | .02 | .04 | .06 | .200 | .160 | .10 | .98 | 23.6 | 1.0 | | 02-09 | 0830 | 13 | 5.1 | .58 | .03 | .06 | .11 | .330 | .200 | .20 | 1.68 | 42.3 | 2.3 | | APR
09-16 | 0915 | 14 | 4.8 | .42 | .03 | .04 | .12 | .350 | .450 | .16 | 1.63 | 9.5 | .7 | | APR
16-23 | 0900 | 0 | 0 | 1.72 | .15 | .22 | .72 | 1.06 | .800 | 1.25 | 4.68 | 1.7 | .1 | | APR 30-
MAY 07 | 0930 | 12 | 5.7 | 1.03 | .06 | .14 | .22 | .530 | .520 | .32 | 2.13 | 4.3 | .3 | | MAY
07-14 | 0850 | 13 | 5.5 | .40 | .05 | .09 | .33 | .550 | .250 | .48 | 1.61 | 15.7 | 2.0 | | MAY
21-28 | 0905 | 11 | 6.0 | .43 | .07 | .22 | .29 | .050 | .240 | .50 | 1.13 | 24.1 | 3.7 | | MAY 28-
JUN 04 | 0855 | 6 | 5.4 | .12 | .02 | .03 | .10 | .150 | .130 | .13 | .40 | .7 | .1 | | JUN
04-11 | 0945 | 8 | 5.4 | .20 | .02 | .11 | .11 | .230 | .160 | .18 | .92 | 15.9 | 1.7 | | JUN
11-18 | 0850 | 9 | 6.3 | .75 | .03 | .05 | .11 | .200 | .220 | .16 | .69 | 26.0 | 1.0 | | JUN 25-
JUL 02 | 0945 | 9 | 5.3 | .20 | .04 | .04 | .20 | .180 | .180 | .35 | 1.16 | 6.5 | 1.4 | | JUL
02-09 | 0925 | 10 | 5.8 | .24 | .03 | .18 | .31 | .020 | .220 | .52 | 1.08 | 12.0 | 1.7 | | JUL
09-16 | 0910 | 8 | 6.0 | .57 | .01 | .05 | .03 | .270 | .300 | .07 | .67 | 25.6 | .7 | | JUL | | | | | | | | | | | | | | | 16-23
JUL | 0915 | 12 | 4.7 | .18 | .01 | .09 | .04 | .100 | .320 | .08 | .98 | 2.2 | .2 | | 23-30
JUL 30- | 0925 | 9 | 5.8 | .55 | .04 | .02 | .17 | .180 | .240 | .28 | .67 | 19.1 | 1.3 | | AUG 06
AUG | 0905 | 10 | 5.9 | .52 | .06 | .01 | .40 | .250 | .250 | .63 | .88 | 6.8 | .8 | | 20-27
SEP | 0905 | 10 | 5.2 | .69 | .04 | .05 | .10 | .120 | .260 | .16 | .88 | 9.8 | . 5 | | 03-10
SEP | 0922 | 9 | 6.1 | .12 | .04 | .81 | .06 | .510 | .110 | .14 | .74 | 3.3 | 1.1 | | 10-17 | 0940 | 18 | 4.5 | .34 | .01 | .02 | .01 | .340 | .390 | .06 | 2.08 | 7.6 | .3 | 08043900 Lyndon B. Johnson National Grasslands near Alvord, TX--Continued (National Atmospheric Deposition Program (NADP)) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | POTAS-
SIUM
ATM DEP
WET DIS
(MG/M2)
(83121) | SODIUM
ATM DEP
WET DIS
(MG/M2)
(83139) | NI-
TROGEN
AMMON.
ATM DEP
WET DIS
AS N
(MG/M2)
(83045) | NI-
TROGEN
NITRATE
ATM DEP
WET DIS
AS N
(MG/M2)
(83069) | CHLO-
RIDE
ATM DEP
WET DIS
(MG/M2)
(82945) | SULFATE
ATM DEP
WET DIS
AS SO4
(MG/M2)
(83161) | VOLUME
ATM DEP
WET
(L)
(83177) | |------------------------------------|--|--|---|--|---|---|--| | OCT 30-
NOV 06 | .1 | . 4 | .300 | .6 | .6 | 1.3 | .025 | | NOV
13-20 | 2.7 | 1.6 | .900 | 3.1 | 5.2 | 10.0 | .490 | | DEC
11-18 | .3 | 1.7 | 5.10 | 6.4 | 3.3 | 35.7 | 4.484 | | DEC 26 2001-
JAN 02 2002
JAN | U | <.005 | <.030 | .1 | U | .2 | .020 | | 22-29 | . 4 | 1.9 | 5.40 | 2.8 | 1.2 | 22.0 | .554 | | JAN 29-
FEB 05 | .3 | 2.9 | 4.20 | 4.3 | 4.8 | 16.7 | 1.158 | | FEB
05-12
FEB | <.02 | U | .400 | .7 | .2 | 2.8 | .550 | | 12-19 | .9 | 5.9 | 6.70 | 3.4 | 5.9 | 31.6 | 1.530 | | FEB 26-
MAR 05 | .5 | 2.0 | 2.80 | 3.7 | 1.3 | 11.4 | .327 | | MAR
12-19 | 2.1 | 13.5 | 20.0 | 10.8 | 19.2 | 85.0 | 4.063 | | MAR
19-26 | . 4 | 1.8 | 6.40 | 5.1 | 2.6 | 28.6 | 3.464 | | MAR 26-
APR 02 | 1.8 | 2.9 | 9.20 | 7.5 | 4.5 | 44.5 | 3.082 | | APR
02-09 | 4.1 | 8.1 | 23.8 | 14.4 | 14.6 | 122 | 4.951 | | APR
09-16 | .9 | 2.7 | 7.90 | 10.3 | 3.6 | 37.0 | 1.541 | | APR
16-23 | . 2 | .7 | 1.00 | .8 | 1.2 | 4.6 | .067 | | APR 30-
MAY 07 | . 6 | .9 | 2.20 | 2.2 | 1.3 | 8.9 | .283 | | MAY
07-14 | 3.5 | 12.9 | 21.7 | 9.8 | 18.9 | 63.2 | 2.667 | | MAY
21-28 | 12.5 | 16.3 | 3.10 | 13.2 | 28.1 | 63.4 | 3.812 | | MAY 28- | | | | | | | | | JUN 04
JUN | . 2 | .6 | .900 | .8 | .8 | 2.4 | .407 | | 04-11
JUN | 8.5 | 9.0 | 18.5 | 12.7 | 14.3 | 73.0 | 5.391 | | 11-18
JUN 25- | 1.8 | 3.7 | 7.00 | 7.7 | 5.6 | 23.9 | 2.357 | | JUL 02
JUL | 1.5 | 6.4 | 5.80 | 5.9 | 11.3 | 37.5 | 2.193 | | 02-09
.ππ. | 9.2 | 15.6 | <.780 | 10.8 | 26.0 | 54.1 | 3.401 | | 09-16
JUL | 2.4 | 1.3 | 12.2 | 13.5 | 3.1 | 30.0 | 3.045 | | 16-23
JUL | 1.2 | .5 | 1.20 | 3.9 | 1.0 | 12.1 | .838 | | 23-30 | .8 | 6.1 | 6.20 | 8.3 | 9.7 | 23.3 | 2.363 | | JUL 30-
AUG 06 | .2 | 5.1 | 3.20 | 3.2 | 8.2 | 11.5 | .884 | | AUG
20-27 | .7 | 1.4 | 1.80 | 3.6 | 2.3 | 12.4 | .960 | | SEP
03-10 | 22.1 | 1.7 | 14.0 | 3.0 | 3.8 | 20.2 | 1.854 | | SEP
10-17 | . 4 | .3 | 7.70 | 8.6 | 1.3 | 46.5 | 1.520 | Remark codes used in this report: <-- Less than M -- Presence verified, not quantified U -- Analyzed for, not detected Null value qualifier codes used in this report: e -- Required equipment not functional/avail o -- Insufficient amount of water #### 08043950 Big Sandy Creek near Chico, TX LOCATION.--Lat $33^{\circ}16'27"$, long $97^{\circ}40'42"$, Wise County, Hydrologic Unit 12030101, at left downstream side of bridge on Farm Road 1810, 4.5 mi upstream from Greathouse Branch, 6.0 mi east of Chico, and 6.5 mi upstream from mouth. DRAINAGE AREA. -- 312 mi². PERIOD OF RECORD.--Oct. 1936 to current year. Prior to 1996 water year, published as "near Bridgeport" (station 08044000). Water-quality records.--Chemical data: Apr. 1993 to Sept. 1995. Biochemical data: Apr. 1993 to Sept. 1995. Sediment data: Apr. 1993 to Sept. 1995. REVISED RECORDS. -- WSP 1148: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 728.88 ft above NGVD of 1929. Prior to May 24, 1996 at datum of 724.44 ft, prior to Oct. 1, 1984, at datum 3.00 ft higher. Satellite telemeter at station. REMARKS.--Records poor. Since May 1, 1956, at least 10% of contributing drainage area has been regulated. During the year, the city of Bowie diverted water from Lake Amon G. Carter for municipal use and discharged wastewater effluent into tributaries to Big Sandy Creek upstream from this station. Flow is also affected at times by discharge from the flood-detention pools of 19 floodwater-retarding structures. These structures control runoff from a 46.0 mi² area upstream from this station and below Lake Amon G. Carter. No known diversions. No flow at times. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--20 years (water years 1936-55), $85.6~{\rm ft}^3/{\rm s}$ ($62,030~{\rm acre-ft/yr}$) at site and datum then in use. EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1936-55).--Maximum discharge, 53,000 ft 3 /s June 10, 1941, gage height, 15.69 ft, at site and datum then in use; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stages since at least 1887 occurred in 1908 and 1915 and reached about the same stage as that of June 10, 1941, at site and datum then in use. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DEC FEB SEP DAY OCT NOV JAN MAR APR MAY JUN JUL AUG 0 00 0.02 0 04 0.73 0 95 1 3 96 24 11 7 6 7.5 1 3 0.73 9.3 5.6 2 0.01 1.6 14 8.6 1.2 0.01 0.04 1.0 46 0.00 0.05 0.73 0.91 7.9 4.4 0.06 1.6 28 12 1.1 0 11 0 00 0.07 0 79 1 5 1 5 21 11 6.6 19 3.9 1 1 5 0.12 0.10 2.8 1.6 20 1070 15 3.9 $\bar{1}.1$ 0.00 0.91 11 6 7 0 13 0 01 0.07 0 99 3 3 1 7 19 11 1170 15 3 3 1 0 5.2 1.9 9.9 11 2.9 0.15 0.00 0.05 0.79 262 0.97 8 0.18 0.00 0.01 0.77 3.9 2.1 1170 9.7 110 7.8 2.7 3.6 6.7 0 22 0 00 0.02 0.80 3 0 1 4 e809 8.3 68 6 5 1 5 5.9 10 0.03 55 48 1.3 11 0 01 0.06 0 71 e335 31 36 5 4 5 9 1 1 6 6 1 4 1 2 0.12 0.67 1.2 4.2 12 0.02 1.3 e149 12 29 91 e77 13 8.5 0.18 0.12 0.70 1.4 9.5 28 75 2.7 1.0 0.50 14 0.02 0.10 0.68 1.2 1.5 315 8.8 47 59 2.1 1.0 8.2 1.9 15 21 0.04 11 1.00 34 21 16 0.08 0.69 1.1 64 1.7 1.5 17 0.07 0.05 30 0.76 1.0 1.1 78 130 26 25 18 0.06 0.04 7.7 0.90 18 3.9 44 40 20 21 1.6 0.98 2.4 0.97 136 19 0.06 0.03 36 35 14 16 15 1.5 1.0 0.04 12 31 9.9 20 731 0.01 0.97 27 8.3 11 12 21 0.05 1.1 5.5 166 0.95 1.4 22 0.05 0.03 0.93 1.1 2.8 24 7.5 10 10 1.3 0.92 54 23 0.04 0.04 0.81 1.0 2.0 31 21 6.7 9.0 8.0 1.3 0.87 0.98 20 0.72 6.2 24 0.00 0.01 1.8 8.4 7.0 1.3 24 0.84 25 0.00 0.00 0.73 0.95 1.8 18 16 308 7.8 9.1 0.86 26 0.00 0.01 0.75 0 92 89 7.6 8.5 1.3 0.90 14 16 6.9 27 0.00 0.02 0.76 0.92 1.0 13 18 37 7.3 1.4 0.88 1.6 1.5 28 0.00 0.28 0.80 0.97 1.1 13 16 43 6.8 6.2 0.91 0.74 29 0.00 0.05 1.0 0.90 12 14 40 5.9 6.1 ---30 0.00 0.05 0.69 1.0 143 32 22 5.7 9.8 1.5 0.91 ---31 0.00 0.75 1.1 555 ---15 12 1.4 ---TOTAL. 18 66 0 96 61 83 26 91 115 86 1938 5 4596 1033.0 3124 3 555 4 84 6 32 55 0.032 62.53 731 MEAN 0.602 1.995 0.868 4.138 153.2 33.32 104.1 17.92 2.729 1.085 308 8.5 0.28 30 1.1 1170 1170 91 MAX 36 7.5 2.2 MTN 0.00 0.00 0.01 0.67 0 91 1 1 14 6.2 5 7 5 4 1 3 0.84 9120 AC-FT 37 1.9 123 53 230 3850 2050 6200 1100 168 65 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1956 - 2002z, BY WATER YEAR (WY) 39.25 MEAN 39.81 28.76 51.57 91.74 129.8 18.75 10.41 26.57 181 1973 MAX 1829 298 743 257 401 570 1175 1284 1250 230 491 1992 1965 1992 2001 1973 (WY) 1982 1977 1957 1990 1989 1962 MIN 0.000 0.000 0.000 0.000 (WY) 1959 1956 1956 1956 2000 1956 1956 1980 1956 1964 1957 1956 # 08043950 Big Sandy Creek near Chico, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER
YEARS 1956 - 2002z | |--|---------------------------|---------------------------|--| | ANNUAL TOTAL ANNUAL MEAN | 31014.66
84.97 | 11588.57
31.75 | 70.85 | | HIGHEST ANNUAL MEAN | 04.57 | 31.73 | 317 1982
0.40 2000 | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | 1860 Feb 16
0.00 Oct 1 | 1170 Apr 8
0.00 Oct 1 | 23800 Oct 13 1981
0.00 Oct 1 1955 | | ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW | 0.00 Oct 24 | 0.00 Oct 24
1560 Jun 5 | 0.00 Oct 1 1935
0.00 Oct 5 1955
945000 Oct 13 1981 | | MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) | 61520 | 12.12 Jun 5
22990 | g14.78 Oct 13 1981
51330 | | 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 256
2.2 | 40
1.5 | 92
6.0 | | 90 PERCENT EXCEEDS | 0.04 | 0.04 | 0.00 | - Estimated Period of regulated streamflow. At site and datum then in use. #### 08044500 West Fork Trinity River near Boyd, TX LOCATION.--Lat 33°05'07", long 97°33'30", Wise County, Hydrologic Unit 12030101, on right bank on downstream side of highway embankment, 10 ft right of right abutment of bridge on Farm Road 730, 0.6 mi northeast of Boyd, 3.5 mi downstream from Boggy Creek and at mile 602. DRAINAGE AREA. -- 1,725 mi². PERIOD OF RECORD .-- Jan. 1947 to current year. GAGE.--Water-stage recorder. Datum of gage is 660.57 ft above NGVD of 1929. Prior to Dec. 14, 1954, water-stage recorder at site 2.2 mi downstream at datum 5.48 ft lower. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Jan. 1947, at least 10% of contributing drainage area has been regulated. In addition, flow from 91.2 mi² above station is affected at times by discharge from the flood-detention pools of 36 floodwater-retarding structures in the Big Sandy and Salt Creek drainage basins. No known diversions. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, about 25 ft in May 1908, present site and datum, from information by local residents, who also reported a flood of about the same gage height between 1870-80. A flood in Apr. 1942 reached a stage of 20.6 ft, present site and datum, from information by Texas Department of Transportation. | | | DISCHARGE | FROM DCP, | CUBIC FEET | | COND, WAT | | CTOBER 200 | 1 TO SE | PTEMBER 20 | 02 | | |---|---|---|--|--|---------------------------------------|---|---|--|---------------------------------------|---|---|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 193
190
187
183
182 | 164
165
162
160
160 | 103
36
28
28
28 | 7.2
7.1
7.0
7.2
8.7 | 9.8
8.9
8.4
7.8
9.5 | 77
80
79
78
79 | 667
182
77
43
35 | 43
31
23
20
19 | 27
96
30
19
258 | 24
41
75
105
58 | 16
13
12
11
9.9 | 117
117
117
115
115 | | 6
7
8
9
10 | 180
175
171
169
165 | 160
160
160
160
151 | 28
28
27
26
26 | 10
9.9
9.0
8.6
8.4 | 14
15
13
12
11 | 80
79
64
16
9.9 | 32
165
869
1190
543 | 30
19
19
16
641 | 887
1020
551
263
112 | 172
84
33
23
19 | 9.4
9.0
8.5
7.9
7.5 | 116
116
122
127
126 | | 11
12
13
14
15 | 261
142
32
38
15 | 139
139
120
86
82 | 27
29
29
28
26 | 8.0
46
148
153
153 | 9.4
8.9
8.2
7.9 | 8.7
8.4
10
53
57 | 181
107
144
488
327 | 1410
650
244
118
72 | 80
62
45
113
80 | 17
16
199
206
60 | 9.7
9.8
9.4
9.8
9.3 | 118
117
116
115
125 | | 16
17
18
19
20 | 11
8.2
7.2
6.5
40 | 12 | 20
246
64
22
14 | 153
153
153
113
19 | 99
107
108
112
150 | 56
58
80
713
1870 | 150
106
108
64
51 | 71
520
285
190
60 | 97
102
51
37
30 | 32
30
30
26
22 | 8.9
8.7
8.5
8.4
8.3 | 128
146
171
171
171 | | 21
22
23
24
25 | 153
158
160
160
162 | 7.6
21
103
107
108 | 9.2 | 11
9.4
9.4
11 | 112
83
77
77
76 | 1720
674
171
73
45 | 44
39
35
32
28 | 33
28
24
22
87 | 27
24
22
21
20 | 19
17
17
15
16 | 8.3
8.2
8.1
8.2
93 | 167
165
162
160
179 | | 26
27
28
29
30
31 | 163
160
160
161
161
162 | 108
110
117
117
115 | 8.2
8.1
7.8
7.5
7.5
7.6 | 9.9
8.8
8.7
8.7
8.9
9.8 | 75
76
77

 | 33
26
23
22
86
674 | 25
26
27
25
46 | 276
159
94
73
54
34 | 19
18
17
17
16 | 17
15
13
13
14
17 | 108
113
121
121
117
117 | 195
193
191
190
190 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4115.9
132.8
261
6.5
8160 | 107.0
165
7.6 | 960.3
30.98
246
7.5
1900 | | 1386.8
49.53
150
7.8
2750 | 7103.0
229.1
1870
8.4
14090 | 5856
195.2
1190
25
11620 | 5365
173.1
1410
16
10640 | 4161
138.7
1020
16
8250 | 1445
46.61
206
13
2870 | 1017.8
32.83
121
7.5
2020 | 4358
145.3
195
115
8640 | | STATIS | TICS OF | MONTHLY ME | AN DATA F | OR WATER Y | EARS 194 | 7 - 2002 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 295.7
4063
1982
2.96
1957 | 1248
1982 | 174.0
3073
1992
2.21
1953 | 105.6
929
1992
0.75
1956 | 153.6
2003
1997
0.10
1953 | 234.2
1728
1998
0.26
1955 | 271.7
4339
1990
0.59
1955 | 687.1
5908
1990
25.2
1959 | 452.0
5439
1989
2.76
1953 | 197.5
1330
1950
7.11
1979 | 218.9
1157
1950
0.025
1980 | 177.9
1643
1962
0.23
1956 | | SUMMAR | Y STATI | STICS | FOR | 2001 CALENI | DAR YEAR | . 1 | FOR 2002 W | ATER YEAR | | WATER YEAR | RS 1947 - | 2002 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU ANNUAL 10 PER 50 PER | T ANNUAL T DAILY DAILY SEVEN- M PEAK M PEAK | MEAN MEAN MEAN DAY MINIMUM FLOW STAGE (AC-FT) CEEDS CEEDS | | 94424.9
258.7
4480
5.0
5.3
187300
567
158
12 | Feb 17
Sep 15
Sep 11 | | 40267.1
110.3
1870
6.5
7.3
2410
17.2
79870
185
51
8.7 | Mar 20
Oct 19
Dec 29
Mar 20
7 Mar 20 | | 263.6
1094
58.6
38800
0.0
0.0
60400
25.8
191000
477
66
4.4 | Oct 14
0 Aug 6
0 Sep 25
Oct 14 | 1948
1952
1981 | # 08044500 West Fork Trinity River near Boyd, TX--Continued #### 08044800 Walnut Creek at Reno, TX LOCATION.--Lat 32°56′44", long 97°34′58", Parker County, Hydrologic Unit 12030101, on left bank at abandoned bridge abutment, 100 ft upstream from bridge on FM 1542, 3,500 ft upstream from Cottonwood Branch and 2.4 mi west of intersection of FM 1542 and FM 730 in Center Point. DRAINAGE AREA.--75.6 mi². PERIOD OF RECORD.--Apr. 1992 to Sept. 1995 (annual maximum), Oct. 1995 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 681.11 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges and those above $3,000~{\rm ft}^3$, which are poor. No known regulation or diversions. No flow at times. | | DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |---|---|---|--|---------------------------------------|--------------------------------------|--|--|---|---------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.24
0.24
0.26
0.26
0.23 | 0.23
0.23
0.26
0.27
0.27 | 0.51
0.51
0.48
0.53
0.53 | 0.91
0.93
0.95
1.1
1.3 | 1.1
0.96
0.95
1.0
3.1 | 1.3
1.7
1.7
1.4 | 8.0
3.9
2.6
2.2
2.4 | 3.4
3.0
6.1
7.8
54 | 2.1
1.9
1.6
1.5
4.7 | 14
35
5.7
2.5
1.9 | 0.11
0.11
0.08
0.07
0.06 | 0.06
0.05
0.04
0.04
0.05 | | 6
7
8
9
10 | | 0.31
0.28
0.30
0.28
0.26 | | | | | | | | | 0.05
0.05
0.04
0.04
0.05 | 0.04
0.05
0.07
0.08
0.05 | | 11
12
13
14
15 | 0.75
2.7
0.80
0.34
0.24 | 0.26
0.39
0.39
0.45
0.45 | 0.49
0.69
0.73
0.72
0.71 | 0.99
0.88
1.0
0.96
0.88 | | | | | 1.7
1.5
1.7
1.8
2.4
 0.35 | 0.07
0.06
0.05
0.04
0.04 | 0.03
0.03
0.03
0.03
0.04 | | 16
17
18
19
20 | 0.17
0.17
0.16
0.14
0.14 | 0.49
0.66
0.57
0.47
0.35 | 5.0
21
5.3
1.9 | 0.88
0.95
0.99
1.1
1.0 | 1.1
0.97
1.2
9.8
5.2 | 0.94
1.0
15
443
171 | e12
e10
e8.6
e5.9
e5.2 | 3.1
3.6
3.2
2.6
2.3 | 8.8
8.0
3.8
3.1
2.6 | 0.66
0.59
0.48
0.46
0.44 | 0.04
0.03
0.04
0.04
0.04 | 0.03
0.03
0.03
0.05
0.04 | | | | | | | | | | 2.2
2.0
2.0
2.0
2.0 | | | 0.03
0.04
0.06
0.06
0.07 | 0.03
0.03
0.03
0.02
0.03 | | 26
27
28
29
30
31 | 0.16
0.15
0.19
0.20
0.21 | 0.33
0.32
0.42
0.54
0.54 | 0.88
0.91
0.97
0.95
0.89
0.88 | 1.4
1.0
0.99
1.0
1.1 | 0.96
0.99
1.1
 | 2.7
2.5
2.6
2.6
4.2
33 | 3.4
4.2
4.2
3.7
3.6 | 15
6.0
5.2
11
4.5
2.6 | 1.2
0.97
0.85
0.81
1.2 | 0.14
0.12
0.12
0.11
0.13
0.14 | 0.07
0.07
0.07
0.08
0.07
0.06 | 0.03
0.03
0.03
0.02
0.02 | | TOTAL
MEAN
MAX
MIN
AC-FT | 10.08
0.325
2.7
0.14
20 | 11.10
0.370
0.66
0.23
22 | 52.98
1.709
21
0.38
105 | 38.40
1.239
4.5
0.88
76 | 55.15
1.970
9.8
0.93
109 | 752.32
24.27
443
0.94
1490 | 369.3
12.31
93
2.2
733 | 231.4
7.465
54
2.0
459 | 84.03
2.801
10
0.81
167 | 68.76
2.218
35
0.11
136 | | 1.14
0.038
0.08
0.02
2.3 | | | | | | | | | | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.042
7.64
1999
0.003
2000 | 19.60
120
1997
0.25
2000 | 7.466
17.9
1998
0.61
2000 | 6.990
17.0
1998
0.27
2000 | 46.48
178
1997
0.54
2000 | 41.48
104
1998
6.76
2000 | 20.22
82.1
1997
5.36
2000 | 22.84
92.2
1997
1.43
1996 | 15.58
53.0
2000
0.84
1999 | 3.793
19.1
1997
0.13
2000 | 3.905
14.6
1997
0.004
2000 | 1.408
4.52
1996
0.000
2000 | | SUMMAR | Y STATIS | TICS | FOR | 2001 CALE | NDAR YEAR | . : | FOR 2002 T | WATER YEAR | | WATER YEAR | RS 1996 - | 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL 10 PERO 50 PERO | MEAN I ANNUAL ANNUAL I DAILY DAILY M SEVEN-D M PEAK F | MEAN MEAN MEAN MEAN LOW TAGE (AC-FT) MEDS | | | Feb 16
4 Oct 19
5 Oct 16 | | 1676.
4.!
443
0.0
3570
11.:
3330
7.:
0.9 | Mar 19 02 Sep 24 03 Sep 24 Mar 19 16 Mar 19 | | 15.86
53.7
3.96
2350
0.00
0.00
0.11490
d21.21
11490
21
1.9 | Mar 16
O Sep 4
O Sep 4
Feb 23
I Oct 19 | 1999
1999
2001 | After channel rectification, which occurred Nov. 1995 to Mar. 1997, peak gage-height, 17.30 ft. d Prior to channel rectification, which occurred Nov. 1995 to Mar. 1997, peak discharge, 7,760 ft³. 08044800 Walnut Creek at Reno, TX--Continued #### 08045000 Eagle Mountain Reservoir above Fort Worth, TX LOCATION.--Lat 32°52′39", long 97°28′29", Tarrant County, Hydrologic Unit 12030101, at left end of main section of Eagle Mountain Dam on West Fork Trinity River, 11.8 mi northwest of Fort Worth and at mile 583.3. DRAINAGE AREA. -- 1,970 mi². PERIOD OF RECORD. -- Feb. 1934 to current year. Prior to Oct. 1950 end of month values only. REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to Oct. 16, 1988, nonrecording gages at several sites within 1.0 mi of present site at present datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by two sections of rolled earthfill and a concrete spillway separated by high natural ground. Total length of the dam including spillway is 4,800 ft. The dam was completed Oct. 24, 1932, and storage began Feb. 24, 1934. The spillway is a 1,300-foot-wide cut through natural ground located between the two sections of earthfill that make up the dam. The original service spillway, located in the section to the right of the main dam, contains a concrete spillway with four 25-foot bays, three are equipped with vertical lift gates and the fourth is left open. In 1971, a side-channel spillway was constructed. The newest spillway is located 300 ft to the left of the original service spillway and has six 11.25 x 22-foot-wide roller lift gates. The main section of the dam contains the outlet works that consist of two concrete conduits with two 48-inch diameter valves in each conduit. The dam is owned by the Tarrant Regional Water District. The reservoir is used for flood control and for part of the municipal water supply for the city of Fort Worth. Flow from 91.2 mi² above station is affected at times by discharge from the flood-detention pools of 36 floodwater-retarding structures with a total combined detention capacity of 24,450 acre-ft in the Big Sandy and Salt Creek drainage basins. Conservation pool storage is 190,300 acre-ft. Data regarding the dam are given in the following table: | Top of dam. Crest of spillway. Top of gates (new side-channel spillway). Crest of (old service) spillway. Crest of spillway (new side-channel spillway). Lowest gated outlet (invert). | 676.0
659.0
649.1
637.0 | |---|----------------------------------| |---|----------------------------------| COOPERATION.--Capacity table, No. 4-C, furnished by Tarrant Regional Water District, was put into use Oct. 1, 1988. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 333,500 acre-ft, Apr. 26, 1942, elevation, 659.9 ft; minimum contents observed since first appreciable storage in 1935, 57,690 acre-ft, Nov. 19, 20, 1956, elevation, 629.3 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 181,800 acre-ft, May 13, elevation, 649.47 ft; minimum contents, 141,200 acre-ft, Mar. 14, 18, elevation, 644.59 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 152200 | 148100 | 146000 | 145800 | 143600 | 142900 | 167800 | 177500 | 178600 | 175600 | 164600 | 147900 | | 2 | 151900 | 148100 | 146000 | 145600 | 143500 | 143300 | 169300 | 177600 | 178200 | 175600 | 164100 | 147500 | | 3 | 151700 | 148100 | 146000 | 145300 | 143500 | 142900 | 169600 | 177700 | 178000 | 175900 | 163400 | 147100 | | 4 | 151500 | 148100 | 146100 | 145000 | 143400 | 142700 | 169400 | 177600 | 177700 | 176100 | 162700 | 146700 | | 5 | 151600 | 147900 | 146100 | 145400 | 143700 | 142500 | 169400 | 178400 | 177900 | 176100 | 162100 | 146400 | | 6 | 151200 | 147800 | 146100 | 145300 | 144000 | 142600 | 169400 | 178500 | 178600 | 176600 | 161400 | 146000 | | 7 | 150900 | 147600 | 145900 | 145000 | 144000 | 142700 | 170500 | 178200 | 179900 | 176700 | 160700 | 145600 | | 8 | 150600 | 147600 | 145700 | 144800 | 143900 | 142700 | 173400 | 178100 | 180000 | 176600 | 160000 | 145300 | | 9 | 150600 | 147400 | 145000 | 144600 | 144000 | 142900 | 175700 | 178300 | 179400 | 176300 | 159200 | 145300 | | 10 | 150700 | 147200 | 144700 | 144400 | 144100 | 142400 | 178000 | 178400 | 178900 | 176000 | 158500 | 145300 | | 11 | 151400 | 147200 | 144600 | 144100 | 143700 | 142100 | 179400 | 179000 | 178600 | 175600 | 158000 | 145300 | | 12 | 151600 | 147300 | 144900 | 143800 | 143600 | 142100 | 179800 | 180600 | 178500 | 175100 | 157600 | 145200 | | 13 | 152100 | 147300 | 144900 | 143500 | 143600 | 141700 | 180100 | 181100 | 178400 | 174800 | 157100 | 145100 | | 14 | 151800 | 147300 | 144700 | 143500 | 143200 | 141600 | 180200 | 180100 | 178500 | 174800 | 157100 | 145100 | | 15 | 151800 | 147300 | 144800 | 143400 | 143300 | 141700 | 179300 | 179400 | 178200 | 174500 | 156600 | 145300 | | 16 | 151300 | 147400 | 146400 | 143500 | 143000 | 141400 | 178500 | 178800 | 178700 | 174200 | 156000 | 145100 | | 17 | 150700 | 147800 | 147600 | 143500 | 143000 | 141400 | 178700 | 179400 | 178600 | 173900 | 155400 | 144900 | | 18 | 150200 | 147800 | 147800 | 143500 | 143000 | 141600 | 178600 | 179600 | 178400 | 173500 | 154800 | e144500 | | 19 | 150000 | 147900 | 148000 | 143700 | 143500 | 144200 | 178700 | 179000 | 178100 | 173000 | 154200 | e145000 | | 20 | 149700 | 147400 | 147700 | 143600 | 143500 | 153700 | 178600 | 178600 | 177900 | 172500 | 153800 | e144700 | | 21 | 149400 | 147100 | 147600 | 143600 | 143700 | 157600 | 178600 | 178300 | 177700 | 171900 | 153200 | e144300 | | 22 | 149400 | 146900 | 147600 | 143700 | 143700 | 161500 | 178300 | 177900 | 177400 | 171400 | 152700 | e144000 | | 23 | 149400 | 146700 | 147400 | 143800 | 143600 | 163800 | 178100 | 177700 | 177100 | 170800 | 152100 | 143700 | | 24 | 149400 | 146600 | 147200 | 144100 | 143400 | 164500 | 178300 | 177700 | 176900 | 170200
 151500 | 143300 | | 25 | 149000 | 146300 | 147000 | 143900 | 143800 | 165200 | 178100 | 177700 | 176600 | 169500 | 150900 | 143000 | | 26
27
28
29
30
31 | 148800
148700
148400
148300
148200
148100 | 146300
146200
146300
145900
145800 | 146800
146700
146600
146500
146200
146000 | 143700
143600
143500
143400
143400
143800 | 143500
143000
142900
 | 165000
165200
165300
165500
165900
166500 | 177800
177700
177900
177800
177600 | 178300
178700
179100
179400
179100
178900 | 176200
175900
175700
175300
174900 | 168800
167800
166900
166300
165800
165300 | 150400
149900
149500
149100
148700
148300 | 142800
142500
142200
141900
141600 | #### 08045000 Eagle Mountain Reservoir above Fort Worth, TX--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | MEAN | 150300 | 147200 | 146300 | 144100 | 143500 | 150500 | 176200 | 178700 | 177800 | 172800 | 155900 | 144800 | | MAX | 152200 | 148100 | 148000 | 145800 | 144100 | 166500 | 180200 | 181100 | 180000 | 176700 | 164600 | 147900 | | MIN | 148100 | 145800 | 144600 | 143400 | 142900 | 141400 | 167800 | 177500 | 174900 | 165300 | 148300 | 141600 | | (+) | 645.49 | 645.20 | 645.22 | 644.94 | 644.82 | 647.74 | 649.01 | 649.15 | 648.71 | 647.60 | 645.52 | 644.65 | | (@) | -4100 | -2300 | +200 | -2200 | -900 | +23600 | +11100 | +1300 | -4000 | -9600 | -17000 | -6700 | CAL YR 2001 WTR YR 2002 MAX 188700 MIN 113400 (@) MAX 181100 MIN 141400 (@) +32700 -10600 - (+) Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. e Estimated #### 08045400 Lake Worth above Fort Worth, TX LOCATION.--Lat 32°47'21", long 97°24'58", Tarrant County, Hydrologic Unit 12030102, on top of Lake Worth Dam on West Fork Trinity River, 240 ft to right of right end of uncontrolled concrete spillway, 2.9 mi upstream from Farmer's Branch, 3.3 mi upstream from bridge on State Highway 183 crossing West Fork Trinity River, 5.3 mi northwest of Tarrant County Courthouse in Fort Worth and at river mile 572.0. DRAINAGE AREA. -- 2,064 mi². PERIOD OF RECORD.--Oct. 1981 to current year. Water-quality records.--Chemical data: Jan. 1970 to Sept. 1984. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are poor. The lake is formed by a rolled earthfill dam 3,200 ft long, with an uncontrolled concrete spillway 700 ft long near the center of the dam. Deliberate impoundment began in June 1914 and the dam was completed in Oct. 1914. There is a 48-inch diameter pipe controlled by a 36-inch valve, which may be used to make small releases through the dam. The dam is owned by the city of Fort Worth. Conservation pool storage is 38,130 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------|-----------| | | (feet) | | Top of dam | 606.3 | | Crest of concrete spillway | 594.0 | | Lowest gated outlet (invert) | 584.25 | COOPERATION. -- Capacity Table 1-C was provided by U.S. Army Corps of Engineers, and put into effect Feb. 1968. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 56,040 acre-ft, May 3, 1990, elevation, 598.70 ft; minimum contents, 24,730 acre-ft, Sept. 9-10, 1985, elevation, 589.95 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 38,550 acre-ft, Apr. 16, elevation, 594.41 ft; minimum contents, 32,050 acre-ft, Sept. 18, elevation, 592.48 ft. | RESERVOIR | STORAGE | FROM | EDL/DCP, | in | (ACRE-FEET) | WATER | YEAR | OCTOBER | 2001 | TO | SEPTEMBER | 2002 | |-----------|---------|------|----------|----|-------------|--------|------|---------|------|----|-----------|------| | | | | | | DATLY MEAN | VALUES | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|-----------------------------|--|---|--|---|--|--|---| | 1 | 33780 | 33590 | 33900 | e33790 | 34340 | 33520 | 36580 | 36250 | 36290 | 34130 | 33590 | 33500 | | 2 | 33720 | 33640 | 33810 | e33740 | 34180 | 33910 | 36530 | 36240 | 36100 | 34090 | 33500 | 33480 | | 3 | 33680 | 33690 | 33780 | 33670 | 34100 | 33700 | 36390 | 36240 | 35920 | 34140 | 33540 | 33410 | | 4 | 33680 | 33710 | 33730 | 33580 | 34020 | 33620 | 36190 | 36190 | 35730 | 34130 | 33480 | 33380 | | 5 | 33810 | 33740 | 33700 | 33680 | 34170 | 33550 | 36080 | 37100 | 35690 | 34110 | 33470 | 33350 | | 6 | 33810 | 33730 | 33770 | 33670 | 34340 | 33640 | 36100 | 37410 | 35630 | e34170 | 33440 | 33380 | | 7 | 33740 | 33690 | 33850 | 33580 | 34230 | 33670 | 36600 | 37120 | 35570 | e34060 | 33440 | 33400 | | 8 | 33740 | 33790 | 33910 | 33630 | 34090 | 33750 | 37370 | 36950 | 36580 | e34130 | 33420 | 33620 | | 9 | 33770 | 33840 | 33840 | 33710 | 34120 | 33890 | 37150 | 36900 | 37690 | e33910 | 33440 | 33790 | | 10 | 33900 | 33860 | 33850 | 33880 | 34100 | 33720 | 36950 | 36780 | 37750 | 33850 | 33620 | 33690 | | 11 | 34440 | 33970 | 33950 | 33950 | 33850 | 33730 | 36840 | 36930 | 37200 | 33770 | 34280 | 33420 | | 12 | 34360 | 34110 | 34070 | 34040 | 33740 | 33850 | 36880 | 37400 | 36850 | 33690 | 34200 | 33120 | | 13 | 34420 | 34130 | 34020 | 34050 | 33760 | 33740 | 37020 | 38000 | 36680 | 33630 | 34240 | 32660 | | 14 | 34170 | 34100 | 33870 | e34080 | 33730 | 33760 | 37570 | 37970 | 36580 | 33530 | 34020 | 32420 | | 15 | 34030 | 34130 | 33770 | e33710 | 33780 | 33860 | 38130 | 37610 | 36290 | 33440 | 33720 | 32490 | | 16 | 33960 | 34060 | 34350 | 33830 | 33740 | 33770 | 38430 | 37460 | 36280 | 33460 | 33600 | 32250 | | 17 | 33900 | 34230 | 34690 | 33910 | 33680 | 33820 | 38100 | 37740 | 36120 | 33480 | 33970 | 32260 | | 18 | 33860 | 34180 | 34560 | 33970 | 33660 | 33950 | 37600 | 37800 | 35910 | 33510 | 34030 | 32100 | | 19 | 33920 | 34170 | 34500 | 34000 | 33790 | 34960 | 37310 | e37770 | 35690 | 33530 | 33990 | 32370 | | 20 | 33910 | 33900 | 34310 | 33760 | 33720 | 38250 | 37160 | 37550 | 35500 | 33520 | 33830 | 32430 | | 21 | 33870 | 33750 | e34250 | 33670 | 33740 | 37670 | 37130 | 37190 | 35390 | 33510 | 33660 | 32400 | | 22 | 33880 | 33720 | e34130 | 33560 | 33700 | 37150 | 36970 | 36920 | 35170 | 33490 | 33480 | 32520 | | 23 | 33940 | 33770 | e34130 | 33560 | 33630 | 36880 | 36800 | 36740 | 34970 | 33470 | 33290 | 32380 | | 24 | 33960 | 33840 | e34130 | 33670 | 33520 | 36770 | 36760 | 36640 | 34770 | 33500 | 33370 | 32300 | | 25 | 33860 | 33680 | e34130 | 33610 | 33690 | 36800 | 36600 | 36490 | 34550 | 33440 | 33330 | 32260 | | 26
27
28
29
30
31 | 33770
33730
33660
33610
33530
33510 | 33730
33730
33990
33990
33950 | e34130
e34130
e34060
e34000
e33950
e33860 | 33600
33650
33710
33790
33880
34480 | 33670
33480
33440
 | 36580
36450
36370
36350
36640
36720 | 36550
36490
36510
36430
36320 | 36340
36170
36170
36290
36330
36400 | 34340
34160
33980
33850
33860 | 33300
33300
33290
33430
33650
33730 | 33370
33150
33190
33300
33450
33460 | 32430
32300
32360
32320
32320 | | MAX | 34440 | 34230 | 34690 | 34480 | 34340 | 38250 | 38430 | 38000 | 37750 | 34170 | 34280 | 33790 | | MIN | 33510 | 33590 | 33700 | 33560 | 33440 | 33520 | 36080 | 36170 | 33850 | 33290 | 33150 | 32100 | | (+) | 592.94 | 593.08 | e 93.05 | 593.23 | 592.92 | 593.90 | 593.78 | 593.80 | 593.05 | 593.01 | 592.93 | 592.57 | | (@) | -310 | +440 | -90 | +620 | -1040 | +3280 | -400 | +80 | -2540 | -130 | -270 | -1140 | CAL YR 2001 MAX 42200 MIN 29410 (@) +3350 WTR YR 2002 MAX 38430 MIN 32100 (@) -1500 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. # 08045400 Lake Worth above Fort Worth, TX--Continued #### 08045525 Farmers Branch at Westworth Village, Fort Worth, TX LOCATION.--Lat $32^{\circ}45'52"$, long $97^{\circ}25'56"$, Tarrant County, Hydrologic Unit 12030102, on left bank 0.6 mi northwest of US Hwy 183 on Roaring Springs Road, along north side of Cottonwood tree grove, 1.62 mi upstream of confluence with West Fork Trinity DRAINAGE AREA. -- 6.09 mi². MIN PERIOD OF RECORD. -- Jul. 1998 to current year (gage height). GAGE.--Water-stage recorder. Datum of gage is 580.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS. -- Records good. No known regulation or diversions. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 14.70, Jun. 4, 2000, at 0015 hours; minimum gage height, 4.36, Jun. 20, 2000, at 0515 hours. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 13.47 ft, Mar. 19; minimum gage height, 5.16 ft, June 3, 4, 5. GAGE HEIGHT FROM DCP, in FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR JUN JUL AUG SEP JAN APR MAY 5.19 5.20 5.23 5.25 5.36 5.28 5.52 5.66 5.21 5.76 5.21 5.23 2 5.19 5.19 5.22 5.37 5.47 5.66 5.20 5.21 5.22 5.24 5.31 5.48 5.19 5.19 5.22 5.24 5.29 5.30 5.42 5.83 5.19 5.66 5.21 5.22 5.21 5.19 5.20 5.22 5.24 5.28 5 29 5.41 5.54 5.18 5.33 5 23 5 5.20 5.20 5.22 5.35 6.21 5.30 5.40 6.56 5.47 5.36 5.22 6 7 5 19 5 19 5 25 5 26 5 59 5 31 5 85 5 46 5 27 5 35 5 22 5 21 5.19 5.22 5.25 5.30 5.21 5.28 5.26 5.25 5.32 5.41 5.40 6.99 5.26 5.32 5.91 5.42 5.24 5.29 8 5.19
5.20 5.26 5.36 5.21 5.56 5.19 5.27 5.27 5 25 5.33 5.30 5.58 5.43 5 24 5.26 5 21 5 40 10 5.36 5.21 5.25 5.25 5.28 5.30 5.31 5.54 5.61 5.23 5.84 5.26 11 5 92 5 26 5 44 5 25 5 30 5 33 5 51 5 36 5 23 5 24 5 28 5 24 12 5.50 5.47 5.31 5.25 5.48 5.24 5.29 5.22 5.24 5.30 5.35 5.41 5.55 5.41 5.29 5.33 5.69 5.51 5.30 5.24 14 5.24 5 21 5 28 5 25 5 29 5 32 5.50 5 34 5 33 5 24 5 33 5 26 15 5.21 5.30 5.25 5.29 5.46 5.35 5.25 5.30 5.30 5.34 5.26 5.71 16 5 21 5 28 6 52 5 25 5 28 5 31 5 49 5 34 5 73 5 34 5 25 5 27 17 5.20 5.75 5.29 5.27 5.78 5.24 5.28 5.32 5.46 5.81 5.26 5.24 5.26 18 5.20 5.27 5.35 5.25 5.28 5.54 5.42 5.36 5.27 5.24 5.25 19 5.20 5 23 5 31 5 25 5 29 8 01 5.42 5 33 5 26 5 23 5 24 5 62 5.29 5.31 5.24 20 5.31 6.14 5.28 21 5 20 5 22 5 29 5 24 5 28 5 58 5 41 5 29 5 31 5 22 5 24 5 24 5.20 22 5.22 5.26 5.28 5.50 5.41 5.28 5.28 5.22 5.24 5.23 5.28 23 5.20 5.23 5.27 5.30 5.30 5.47 5.43 5.27 5.24 5.21 5.24 5.22 24 5.20 5.24 5.27 5.78 5.29 5.43 5.46 5.30 5.23 5.21 5.24 5.22 25 5.20 5.23 5.28 26 5.23 5.27 5.27 5.38 5.25 5.23 5.25 5.23 5.20 5.25 5.60 5.21 27 5.20 5.40 5.27 5.25 5.27 5.37 5.51 5.34 5.23 5.22 5.25 5.23 28 5.20 5.56 5.26 5.24 5.28 5.36 5.55 5.31 5.29 5.22 5.24 5.22 5.29 5.25 5.30 5.22 29 5.19 5.24 5.34 5.59 5.32 5.22 5.24 30 5.20 5.24 5.25 5.49 ___ 6.80 5.23 5.71 5.24 5.23 5.23 31 5.20 5.25 6.46 ---5.65 5.21 5.22 5.23 MEAN 5.25 5.27 5.33 5.32 5.34 5.53 5.57 5.45 5.30 5.30 5.25 5.28 6.52 5.22 6.21 5.27 6.56 5.21 5.73 5.18 5.71 5.21 MAX 5.92 5.75 6.46 8.01 6.99 5.76 5.84 5.21 5.19 5.19 5.24 5.28 5.40 5.21 Farmers Branch at Westworth Village, Fort Worth, TX--Continued #### 08045800 Lake Weatherford near Weatherford, TX LOCATION.--Lat 32°46'21", long 97°40'28", Parker County, Hydrologic Unit 12030102, in pumphouse 168 ft upstream from right end of dam on Clear Fork Trinity River, 2.4 mi downstream from Hays Branch, 3.9 mi upstream from Squaw Creek, and 7.3 mi east of Weatherford DRAINAGE AREA. -- 109 mi². PERIOD OF RECORD.--June 1976 to May 1980, Aug. 1998 to current year. Water-quality records.--Chemical data: Oct. 1978 to Sept. 1979. GAGE. -- Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily contents, which are poor. The lake is formed by a rolled earthfilled dam 4,055 ft long. The dam was completed and deliberate impoundment began in Mar. 1957. The service spillway is a semi-circular drip inlet with a crest length of 162 ft located 550 ft to the right of the pumphouse. The drop inlet discharges into a 9 x 9 ft concrete conduit that extends 425 ft under the dam. The emergency spillway is an uncontrolled excavated split-level cut channel located at the right end of the dam. The low-flow outlet works consist of an 18 in diameter concrete pipe with a valve control assembly. At end of year, flow from 43.9 mi² above this station was partly affected at times by discharge from the flood-detention pools of 22 floodwater retarding structures with a combined detention capacity of 11,000 acre-ft. Records furnished by the city of Weatherford show that 1,030 acre-ft was diverted from the lake for municipal use during the period Oct. to Apr. and 869 acre-ft of sewage effluent was returned to a tributary downstream from station. Conservation pool storage is 18,650 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |------------------------------------|-----------| | | (feet) | | Top of dam | 914.0 | | Crest of Spillway | 903.0 | | Invert of drop inlet (spillway) | 896.0 | | Invert of lowest gated outlet pipe | 857.0 | COOPERATION. -- The capacity table was furnished by the Texas Water Development Board and designated Table 1. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 23,560 acre-ft, Mar. 27, 1977, elevation, 899.65 ft, from floodmark; minimum contents, 12,880 acre-ft, Jan. 9, 10, 1979, elevation, 889.99 ft. EXTREMES FOR CURRENT YEAR. -- Maximum contents, 18,200 acre-ft, May 12, elevation, 895.60 ft; minimum contents, 13,600 acre-ft, Mar. 16, elevation, 891.21 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|---|---|-----------------------------|--|---|--|---|--|--|---| | 1 | 14700 | 14100 | e13900 | e14000 | 13800 | 13700 | e16700 | 17600 | 17900 | 17400 | 16600 | 15300 | | 2 | 14700 | 14100 | e13900 | e14100 | 13800 | 13700 | e16800 | 17600 | 17800 | 17500 | 16500 | 15200 | | 3 | 14700 | 14100 | e13800 | 14100 | 13800 | 13700 | e16800 | 17600 | 17800 | 17500 | 16500 | 15200 | | 4 | 14700 | 14100 | e13800 | 14100 | 13800 | 13700 | e16800 | 17600 | 17800 | 17500 | 16500 | 15200 | | 5 | 14700 | 14100 | e13800 | 14100 | 13800 | 13700 | e16700 | 17900 | 17800 | 17500 | 16400 | 15100 | | 6 | 14600 | 14000 | e13800 | 14100 | 13900 | 13600 | e16700 | 18100 | 17800 | 17500 | 16400 | 15100 | | 7 | 14600 | 14000 | e13900 | 14100 | 13900 | 13600 | e16700 | 18200 | 17800 | 17500 | 16300 | 15000 | | 8 | 14600 | 14000 | e13900 | 14100 | 13900 | 13700 | e17300 | 18200 | 17800 | 17500 | 16300 | 15000 | | 9 | 14500 | 14000 | e13800 | 14100 | 13900 | 13700 | 17300 | 18200 | 17800 | 17500 | 16200 | 15000 | | 10 | 14500 | 14000 | e13800 | 14100 | 13900 | 13600 | 17400 | 18200 | 17700 | 17400 | 16200 | 15000 | | 11 | 14700 | 14000 | e13800 | 14100 | 13800 | 13600 | 17400 | 18200 | 17700 | 17400 | 16200 | 15000 | | 12 | 14700 | 14000 | e13800 | 14100 | 13800 | 13600 | 17400 | 18200 | 17700 | 17400 | 16100 | 14900 | | 13 | 14700 | 14000 | e13800 | 14100 | 13800 | 13600 | 17500 | 18200 | 17600 | 17400 | 16100 | 14900 | | 14 | 14600 | 14000 | e13700 | 14100 | 13800 | 13600 | 17600 | 18200 | 17600 | 17300 | 16100 | 14900 | | 15 | 14600 | 14000 | 13700 | 14100 | 13800 | 13600 | 17600 | 18200 | 17600 | 17300 | 16000 | 14900 | | 16 | 14500 | 14000 | 13800 | 14100 | 13800 | 13600 | 17600 | 18100 | 17600 | 17300 | 16000 | 14900 | | 17 | 14500 | 14000 | 14000 | 14100 | 13800 | 13600 | 17600 | 18100 | 17600 | 17200 | 15900 | 14800 | | 18 | 14400 | 14000 | 14000 | 14000 | 13800 | 13600 | 17600 | 18100 | 17600 | 17200 | 15900 | 14800 | | 19 | 14400 | 14000 | 14000 | 14000 | 13800 | 13800 | 17600 | 18100 | 17600 | 17200 | 15800 | 14800 | | 20 | 14400 | 13900 | 14000 | 14000 | 13800 | e15200 | 17700 | 18000 | 17500 | 17100 | 15800 | 14800 | | 21 | 14400 | 13900 | 14000 | 14000 | 13800 | e16200 | 17700 | 18000 | 17500 | 17100 | 15700 | 14800 | | 22 | 14400 | 13900 | 14000 | 14000 | 13800 | e16400 | 17600 | 18000 | 17500 | 17000 | 15700 | 14800 | | 23 | 14400 | 13900 | 14000 | e14000 | 13800 | e16500 | 17600 | 17900 | 17500 | 17000 | 15600 | 14700 | | 24 | 14400 | 13900 | 13900 | e14000 | 13800 | e16400 | 17600 | 17900 | 17400 | 17000 | 15600 | 14700 | | 25 | 14300 | 13900 | 13900 | e14000 | 13800 | e16400 | 17600 | 17900 | 17400 | 16900 | 15600 | 14600 | | 26
27
28
29
30
31 | 14300
14300
14200
14200
14200
14100 | e14000
e13900
e14000
e13900
e13900 | 13900
e13900
e14000
e14000
e13900
e14000 | e14000
e13800
e13800
13800
13800
13800 | 13700
13700
13700
 | e16500
e16500
e16500
e16500
e16500
e16800 | 17600
17600
17600
17600
17600 | 17900
17900
17900
17900
17900
17900 | 17400
17400
17300
17300
17300 | 16900
16800
16700
16700
16700
16600 | 15500
15500
15400
15400
15400
15300 | 14600
14600
14500
14500
14500 | | MEAN | 14500 | 14000 | 13900 | 14000 | 13800 | 14700 | 17400 | 18000 | 17600 | 17200 | 16000 | 14900 | | MAX | 14700 | 14100 | 14000 | 14100 | 13900 | 16800 | 17700 | 18200 | 17900 | 17500 | 16600 | 15300 | | MIN | 14100 | 13900 | 13700 | 13800 | 13700 | 13600 | 16700 | 17600 | 17300 | 16600 | 15300 | 14500 | | (+) | 891.79 | 891.57 | 891.59 | 891.45 | 891.32 | 894.31 | 895.04 | 895.28 | 894.78 | 894.17 | 892.94 | 892.13 | | (@) | -500 | -200 | +100 | -200 | -100 | +3100 | +800 | +300 | -600 | -700 | -1300 | -800 | CAL YR 2001 MAX 20000 MIN 13700 (@) -700 WTR YR 2002 MAX 18200 MIN 13600 (@) -100 - (+) Elevation, in feet, at end of month. - (@) Change in contents, in acre-feet. e Estimated 08045800 Lake Weatherford near Weatherford, TX--Continued #### 08045850 Clear Fork Trinity River near Weatherford, TX LOCATION.--Lat 32°44′25", long 97°39′06", Parker County, Hydrologic Unit 12030102, near left end of bridge on weigh station exit road associated with Interstate Highway 20, 150 ft downstream from Squaw Creek, 2.8 mi downstream from Lake Weatherford Dam on the Clear Fork Trinity River, 3.8 mi upstream from South Fork Trinity River and 8.5 mi east of county courthouse in Weatherford. DRAINAGE AREA. -- 121 mi². PERIOD OF RECORD.--May 1980 to Sept. 1985, Oct. 1985 to Sept. 1998 (peaks above base discharge), Oct. 1998 to current year. Water-quality records.--Chemical data: Oct. 1980 to Sept. 1982. Biochemical data: Oct. 1980 to Sept. 1982. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 810.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair. Since installation of gage in 1980 at least 10% the contributing drainage area has been regulated. No known diversions. No flow at times. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
MEAN VA | | R 2001 TO | SEPTEMB | ER 2002 | | |
---|--|---|---------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.03
0.03
0.02
0.03
0.02 | 1.3
1.4
1.4
1.3 | 2.2
2.5
1.9
2.2
2.3 | 1.8
1.8
1.6
1.6 | 1.5
1.7
1.6
1.7 | 1.5
1.6
1.5
1.5 | 2.3
2.2
1.7
1.6
1.4 | 1.3
1.2
1.6
1.2 | 1.0
1.2
1.5
1.1 | | 0.47
0.38
0.35
0.40
0.46 | 0.23
0.22
0.20
0.19
0.20 | | 6
7
8
9
10 | 0.04
0.04
0.05
0.06
1.2 | | 2.4
2.5
2.4
2.4
2.4 | 1.5
1.5
1.5
1.4 | | | 7.8
28
31
9.0
4.7 | 15
4.3
2.7
2.3
2.6 | 1.6
1.1
0.99
0.99
1.3 | 2.0
1.9
1.8
2.0
1.8 | 0.45
0.45
0.40
0.36
0.30 | 0.19
0.20
0.27
0.39
0.32 | | 11
12
13
14
15 | 9.1
0.83
1.1
1.1
0.99 | 1.7
1.8
1.6
1.4
1.6 | 2.6
2.6
1.9
1.8
2.0 | 0.83
1.4
1.1
1.4 | 1.4
1.5
1.4
1.3
0.81 | 1.5
1.5
1.5
1.6
1.5 | 3.7
3.3
9.9
5.1
3.5 | 3.1
3.4
5.4
2.4
2.3 | 1.1
0.87
1.6
1.0
1.5 | 1.3
1.7
1.1
0.72 | 0.37
0.42
0.42
0.45
0.42 | 0.34
0.31
0.31
0.31
0.45 | | 16
17
18
19
20 | 0.92
1.1
1.1
1.2
1.3 | 1.6
2.2
1.5
1.4
1.5 | 18
7.2
1.9
1.7
1.7 | 1.6
1.6
1.5
1.6 | 1.4
1.4
1.4
1.5 | 1.4
1.3
2.2
88
31 | 2.8
2.4
2.1
2.0
1.9 | 2.1
2.9
2.3
2.0
2.0 | 3.6
0.96
0.62
0.54
0.56 | 0.81
0.99
0.86
0.62
0.53 | 0.34
0.31
0.31
0.29
0.28 | 0.41
0.42
0.41
1.6
0.41 | | 21
22
23
24
25 | 1.5 | e1.6
1.5
1.7
1.4
0.95 | 1.7
1.7
1.8
1.7 | 1.6 | 1.6
1.2
1.4
1.3 | 13
6.4
4.5
2.8
2.1 | 1.8
1.7
1.6
1.3 | 1.9
1.7
1.2
0.66
0.57 | 1.0
0.58
0.46
0.43
4.8 | 0.50
0.48
0.47
0.47
0.48 | 0.26
0.26
0.26
0.26
0.28 | 0.51
0.40
0.34
0.22
0.19 | | 26
27
28
29
30
31 | 1.3
1.2
1.2
1.2
1.3 | 1.3
0.70
1.1
2.3
3.5 | | 1.6
1.7
1.7
1.6
1.4
3.3 | 1.4
1.6
1.5
 | 1.8
1.6
1.6
1.7
5.0
3.5 | 1.4
1.3
1.2
1.2
1.6 | 0.88
1.9
1.9
2.0
1.7 | 0.82
0.52
1.1
1.3
6.4 | 0.45
0.43
0.40
0.39
0.39
0.47 | 0.28
0.26
0.26
0.26
0.27
0.24 | 0.19
0.47
0.45
0.46
0.40 | | TOTAL
MEAN
MAX
MIN
AC-FT | 34.36
1.108
9.1
0.02
68 | 46.15
1.538
3.5
0.70
92 | 84.1
2.713
18
1.7
167 | 48.93
1.578
3.3
0.83
97 | 46.61
1.665
7.1
0.81
92 | 190.9
6.158
88
1.3
379 | 140.8
4.693
31
1.2
279 | 157.91
5.094
82
0.57
313 | 42.34
1.411
6.4
0.43
84 | 55.93
1.804
17
0.39
111 | 10.52
0.339
0.47
0.24
21 | 11.01
0.367
1.6
0.19
22 | | STATIST | rics of M | ONTHLY MEA | | | | - 2002h | | R YEAR (WY | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 30.14
294
1982
0.59
2000 | 1982
0.51 | 27.92
384
1992
0.000
1991 | 13.85
110
1992
0.96
2000 | 38.94
215
1997
0.94
2000 | 41.27
144
2001
1.00
2000 | 40.44
399
1990
1.06
2000 | 62.62
418
1989
0.71
1984 | 44.89
509
1989
0.46
1998 | 8.622
75.7
1982
0.032
1998 | 3.744
12.8
1997
0.000
1998 | 2.641
9.57
1994
0.024
2001 | | SUMMARY | Y STATIST | CICS | FOR | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEA | RS 1980 - | 2002h | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC | MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA M PEAK FI M PEAK ST I PANEOUS I RUNOFF (CENT EXCE | IEAN IEAN IAN Y MINIMUM OW 'AGE OW FLOW AC-FT) IEDS | | 20060
91 | Feb 24
0 Sep 1
0 Sep 7 | | 1720
2.8 | Mar 19 12 Oct 3 13 Oct 1 14 Mar 19 12 Mar 19 | | 21290
50 | 1 Apr 27
0 Sep 12
0 Dec 26
Apr 27
7 Apr 27
0 Sep 12 | 1984
1987
1990
1990 | | | CENT EXCE | | | 1.5 | | | 1.4 | | | 1.7
0.4 | | | h See PERIOD OF RECORD paragraph. a From floodmark. 08045850 Clear Fork Trinity River near Weatherford, TX--Continued #### 08046500 Benbrook Lake near Benbrook, TX LOCATION.--Lat 32°39'02", long 97°26'54", Tarrant County, Hydrologic Unit 12030102, in intake structure of Benbrook Dam on Clear Fork Trinity River, 2.5 mi south of Benbrook, 3.5 mi upstream from Marys Creek and 14.6 mi upstream from mouth. DRAINAGE AREA. -- 429 mi². PERIOD OF RECORD.--Sept. 1952 to Sept. 2000, (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Benbrook Reservoir". REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 9,130 ft long, including a 500-foot uncontrolled off-channel concrete-gravity spillway with a 100-foot notch in center of ogee weir section. The outlet works consist of a 13.0-foot diameter concrete conduit controlled by two 6.5 by 13.0-foot broome-type gates and two 30-inch steel pipes controlled by slide gates. Deliberate impoundment began Sept. 29, 1952. From Aug. 1950 to Sept. 28, 1952, the lake was operated as a detention basin only. The capacity table is based on a survey made in 1945. The lake was built for flood control, navigation and low-flow regulation. Inflow is affected at times by the discharge from flood-detention pools of 12 floodwater-retarding structures with a combined detention capacity of 11,170 acre-ft. These structures control runoff from 37.6 mi². Conservation pool storage is 85,650 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |--|-----------| | | (feet) | | Top of dam | 747.0 | | Crest of spillway | 724.0 | | Crest of notch in spillway | 710.0 | | Top of conservation storage | 693.3 | | Crest of intake to wet wells (inverts) | 656.0 | | Lowest gated outlet (invert) | 622.0 | | | | COOPERATION.--Capacity Table No. 4 was provided by the Texas Water Development Board, from a Jan. 1998 survey, and was put into use as of Oct. 1, 1999. EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 212,200 acre-ft, May 3, 1990, elevation, 717.54 ft; minimum since lake first filled in 1957, 57,990 acre-ft, Sept. 30, 1999, elevation, 685.03 ft. EXTREMES FOR 2001 WY YEAR.--Maximum contents, 117,400 acre-ft, Mar. 5, elevation, 701.60 ft; minimum contents, 47,730 acre-ft, Oct. 15, elevation, 681.80 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 105,000 acre-ft, Apr. 10, elevation, 698.84 ft; minimum contents, 65,740 acre-ft, Nov. 4, 5, 6, 7, 8, elevation, 688.10 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|--------------------------------|--|---|--|---|--|--|---| | 1 | 49510 | 49280 | 52210 | 60180 | 75130 | 112800 | 93280 | 87020 | 83390 | 80940 | 71180 | 62740 | | 2 | 49300 | 49180 | 52370 | 60520 | 75630 | 115900 | 91610 | 86840 | 83330 | 81050 | 70630 | 63040 | | 3 | 49130 | 49220 | 52550 | 60810 | 76060 | 116600 | 90970 | 86570 | 83280 | 80880 | 70160 | 63230 | | 4 | 48970 | 49200 | 52740 | 61120 | 76410 | 117200 | 90470 | 86450 | 83160 | 80670 | 69710 | 63420 | | 5 | 48850 | 49160 | 52940 | 61450 | 76750 | 116500 | 89940 | 86740 | 83010 | 80420 | 69240 | 63660 | | 6 | 48700 | 49940 | 53130 | 61770 | 77030 | 114000 | 89420 | 87320 | 82930 | 80140 | 68770 | 63910 | | 7 | 48680 | 50110 | 53340 | 62040 | 77340 | 111700 | 89120 | 87910 | 82840 | 79830 | 68340 | 64090 | | 8 | 48690 | 50110 | 53510 | 62350 | 77650 | 109800 | 88920 | 87650 | 82790 | 79530 | 67830 | 64210 | | 9 | 48680 | 50170 | 53700 | 62640 | 78020 | 110400 | 88610 | 86300 | 82780 | 79260 | 67340 | 64430 | | 10 | 48590 | 50130 | 53860 | 62970 | 78260 | 109300 | 88550 | 85950 | 82750 | 78940 | 66840 | 64610 | | 11 | 48440 | 50030 | 53960 | 63410 | 78500 | 107900 | 88850 | 85770 | 82650 | 78630 | 66390 | 64730 | | 12 | 48260 | 50040 | 54050 | 63800 | 78730 | 110900 | 89330 | 85600 | 82560 | e78370 | 65960 | 64880 | | 13 | 48080 | 50100 | 54290 | 64180 | 79110 | 112500 | 89610 | 85420 | 82460 | e78120 | 65530 | 65000 | | 14 | 47920 | 50110 | 54450 | 64510 | 80560 | 110000 | 89810 | 85240 | 82370 | e77670 | e65230 | 65040 | | 15 | 47810 | 50030 | 54620 | 64830 | 81780 | 108700 | 89950 | 85100 | 82600 | e77330 | e64540 | 65080 | | 16 | 47870
| 49930 | 54760 | 65110 | 90020 | 107600 | 90020 | 84920 | 82590 | e76900 | 64280 | 65170 | | 17 | 47880 | 49830 | 54930 | 65510 | 97940 | 106500 | 89950 | 84750 | 82560 | 76620 | 64220 | 65210 | | 18 | 47920 | 49810 | 55060 | 65900 | 100900 | 104300 | 89910 | 84580 | 82500 | 76260 | 64410 | 65220 | | 19 | 47920 | 49740 | 55170 | 66300 | 102700 | 102400 | 89910 | 84450 | 82350 | 75910 | 64210 | 65300 | | 20 | 47950 | 49670 | 55340 | 66640 | 103500 | 100200 | 89890 | 84300 | 82160 | 75560 | 63930 | 65440 | | 21 | 48070 | 49710 | 55430 | 66930 | 102500 | 97790 | 89840 | 84050 | 82060 | 75210 | 63530 | 65700 | | 22 | 48380 | 49840 | 55590 | 67210 | 100700 | 95500 | 89840 | 83960 | 82140 | 74870 | 63100 | 65840 | | 23 | 48490 | e50120 | 55740 | 67450 | 99430 | 93950 | 89730 | 83880 | 82000 | 74540 | 62740 | 65980 | | 24 | 48740 | e50420 | 55890 | 67650 | 101900 | 94570 | 89600 | 83760 | 81830 | 74190 | 62410 | 66020 | | 25 | 48990 | e50740 | 56130 | 67880 | 105300 | 97700 | 89320 | 83660 | 81640 | 73840 | 62060 | 66090 | | 26
27
28
29
30
31 | 49180
49170
49040
49470
49500
49410 | e51040
e51410
51560
51770
52040 | 57170
58140
58650
59040
59420
59780 | 68090
68290
68650
70930
73670
74540 | 105100
105200
108700
 | 97300
96540
97060
97160
96550
95020 | 88890
88430
88030
87620
87240 | 83630
83590
83670
83630
83500
83440 | 81430
81250
81060
80850
80710 | 73500
73160
72910
72600
72260
71790 | 61870
61780
61610
61420
61460
61840 | 66150
66240
66250
66300
66330 | | MEAN | 48630 | 50150 | 55100 | 65400 | 88960 | 105300 | 89560 | 85150 | 82330 | 76840 | 65240 | 64980 | | MAX | 49510 | 52040 | 59780 | 74540 | 108700 | 117200 | 93280 | 87910 | 83390 | 81050 | 71180 | 66330 | | MIN | 47810 | 49160 | 52210 | 60180 | 75130 | 93950 | 87240 | 83440 | 80710 | 71790 | 61420 | 62740 | | (+) | 682.43 | 683.40
+2630 | 686.13
+7740 | 690.83 | 699.69
+34160 | 696.43
-13680 | 694.42
-7780 | 693.39
-3800 | 692.62
-2730 | 690.00
-8920 | 686.82
-9950 | 688.29
+4490 | CAL YR 2000 MAX 110000 MIN 47810 (@) -4820 WTR YR 2001 MAX 117200 MIN 47810 (@) +16710 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in Contents, in acre-feet. 08046500 Benbrook Lake near Benbrook, TX--Continued #### 08046500 Benbrook Lake near Benbrook, TX--Continued # RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|-----------------------------|--|---|--|---|--|--|---| | 1 | 66340 | 65790 | 67620 | 70010 | 74710 | 80480 | 96470 | 84820 | 84960 | 81680 | 78180 | 73320 | | 2 | 66330 | 65770 | 67670 | 70000 | 74970 | 80610 | 96360 | 84470 | 84880 | 81870 | 78030 | 73140 | | 3 | 66300 | 65770 | 67770 | 70000 | 75200 | 80730 | 94250 | 84280 | 84730 | 82030 | 77870 | 72980 | | 4 | 66260 | 65760 | 67820 | 70000 | 75400 | 80870 | 92380 | 84070 | 84660 | 82020 | 77720 | 72820 | | 5 | 66180 | 65740 | 67940 | 70000 | 75840 | 80950 | 90670 | 85090 | 84570 | 82010 | 77560 | 72650 | | 6 | 66130 | 65740 | 68040 | 70000 | 76710 | 81130 | 89720 | 86630 | 84550 | 82030 | 77400 | 72470 | | 7 | 66080 | 65750 | 68170 | 70000 | 77080 | 81330 | 92260 | 86900 | 84530 | 82010 | 77250 | 72300 | | 8 | 66000 | 65770 | 68210 | 70030 | 77340 | 81500 | 101700 | 86950 | 84520 | 81910 | 77090 | 72210 | | 9 | 65960 | 65850 | 68210 | 70030 | 77630 | 81580 | 104100 | 87240 | 84480 | 81800 | 76910 | 72160 | | 10 | 65940 | 65960 | 68270 | 70020 | 77770 | 81740 | 103700 | 89930 | 84320 | 81640 | 77220 | 72020 | | 11 | 66080 | 66080 | 68310 | 70000 | 77960 | 81850 | 101100 | 89140 | 84150 | 81540 | 77670 | 71840 | | 12 | 66320 | 66320 | 68400 | 69970 | 78150 | 81920 | 99000 | 87550 | 83990 | 81390 | 77560 | 71600 | | 13 | 66590 | 66470 | 68460 | 70010 | 78290 | 82040 | 97420 | 86120 | 83870 | 81260 | 77420 | 71420 | | 14 | 66520 | 66670 | 68570 | 69970 | 78510 | 82100 | 96630 | 85620 | 83850 | 81140 | 77260 | 71250 | | 15 | 66510 | 66810 | 68650 | 69940 | 78680 | 82120 | 95240 | 85570 | 83750 | 80970 | 77150 | 70980 | | 16 | 66490 | 67000 | 69250 | 69940 | 78830 | 82170 | 94010 | 85440 | 83740 | 80830 | 76980 | 70790 | | 17 | 66440 | 67270 | 69760 | 69940 | 79000 | 82250 | e93020 | 85600 | 83670 | 80720 | 76780 | 70550 | | 18 | 66380 | 67490 | 70020 | 69940 | 79200 | 82390 | 92060 | 85780 | 83520 | 80590 | 76590 | 70340 | | 19 | 66330 | 67490 | 70110 | 69940 | 79370 | e83560 | 90470 | 85780 | 83370 | 80450 | 76380 | 70230 | | 20 | 66320 | 67460 | 70130 | 69950 | 79540 | e98340 | 88990 | 85700 | 83170 | 80270 | 76180 | 70110 | | 21 | 66320 | 67450 | 70130 | 69940 | 79650 | 98440 | 87530 | 85600 | 82980 | 80090 | 75990 | 69920 | | 22 | 66310 | 67410 | 70130 | 69960 | 79810 | 97280 | 86230 | 85480 | 82800 | 79900 | 75800 | 69740 | | 23 | 66280 | 67400 | 70130 | 70040 | 79960 | 96310 | 86160 | 85340 | 82590 | 79760 | 75620 | 69520 | | 24 | 66190 | 67430 | 70120 | 70210 | 80100 | 95280 | 86120 | 85200 | 82380 | 79630 | 75460 | 69360 | | 25 | 66120 | 67440 | 70120 | 70380 | 80130 | 93880 | 85830 | 85140 | 82200 | 79460 | 75250 | 69250 | | 26
27
28
29
30
31 | 66070
65990
65960
65940
65890
65850 | 67420
67360
67420
67510
67540 | 70130
70130
70120
70060
70030
70030 | 70510
70580
70670
70700
70760
73450 | 80150
80240
80370
 | 91990
90900
91110
91240
93040
95650 | 85690
85630
85380
85150
85060 | 85040
84960
85040
85100
85110
85060 | 82020
81830
81650
81470
81460 | 79260
79060
78840
78600
78450
78320 | 74960
74670
74410
74130
73870
73590 | 69200
69120
69070
69020
68940 | | MEAN | 66210 | 66710 | 69110 | 70220 | 78240 | 86610 | 92280 | 85800 | 83490 | 80630 | 76420 | 70940 | | MAX | 66590 | 67540 | 70130 | 73450 | 80370 | 98440 | 104100 | 89930 | 84960 | 82030 | 78180 | 73320 | | MIN | 65850 | 65740 | 67620 | 69940 | 74710 | 80480 | 85060 | 84070 | 81460 | 78320 | 73590 | 68940 | | (+) | 688.14 | 688.68 | 689.46 | 690.50 | 692.53 | 696.59 | 693.84 | 693.84 | 692.84 | 691.94 | 690.55 | 689.12 | | (@) | -480 | +1690 | +2490 | +3420 | +6920 | +15280 | -10590 | 0 | -3600 | -3140 | -4730 | -4650 | CAL YR 2001 MAX 117200 MIN 60180 (@) +10250 WTR YR 2002 MAX 104100 MIN 65740 (@) +2610 e Estimated(+) Elevation, in feet, at end of month.(@) Change in Contents, in acre-feet. # 08046500 Benbrook Lake near Benbrook, TX--Continued #### 08047000 Clear Fork Trinity River near Benbrook, TX LOCATION.--Lat 32°39'54", long 97°26'30", Tarrant County, Hydrologic Unit 12030102, on left bank 1.5 mi downstream from Benbrook Dam, 1.7 mi southeast of Benbrook, 2.9 mi upstream from Marys Creek, and 13.1 mi upstream from mouth. DRAINAGE AREA. -- 431 mi². PERIOD OF RECORD. -- July 1947 to current year. REVISED RECORDS.--WDR TX-89-1: 1988. GAGE.--Water-stage recorder. Datum of gage is 604.22 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since water year 1953, at least 10% of contributing drainage area has been regulated. There is a diversion 1.0 mi upstream for Pecan Valley Golf Course. No flow at times most years. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--5 years (water years 1948-52) prior to regulation by Benbrook Lake, 105 ft³/s (76,070 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1948-52).--Maximum discharge, 82,900 ft³/s, May 17, 1949, gage height, 28.72 ft from rating curve extended above 11,000 ft³/s on basis of velocity-area studies and slope-area measurement of 82,900 ft³/s; no flow at times most years. Maximum stage since at least 1922, that of May 17, 1949. | | | DISCHARGE | FROM DCP, | CUBIC FEET | | ECOND, WA
LY MEAN V | | OCTOBER 2001 | TO SE | PTEMBER 200 | 2 | | |---|---------------------------------------|--|--|---|---------------------------------------|---|--------------------------------------|--|--|---|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11
11
11
12
12 | 11
12
12
13
12 | 15
15
15
15
15 | 7.2
7.2
7.2
6.9
7.4 | 5.3
4.8
4.8
5.1 | 6.0
6.3
6.7
6.7 | 0.49
408
1110
1090
836 | 0.38
0.31
0.38
0.23 | 5.3
5.5
5.8
5.8
7.2 | 3.6
2.1
3.0
1.6
1.8 | 1.1
1.0
1.2
0.92
0.78 | 21
1.9
1.3
1.3 | | 6
7
8
9
10 | 12
12
12
12
13 | 12
12
12
14
12 | 17
18
19
19 | 7.5
7.2
6.3
6.9
7.2 | 6.7
6.2
5.3
5.4
5.1 | 6.7
6.9
7.4
7.2
7.5 | 707
859
298
0.51
630 |
0.16
0.00
3.0
20
479 | 6.7
5.5
6.4
5.8
5.6 | 1.6
1.5
1.4
1.5 | 0.75
0.69
0.77
0.74
51 | 1.7
2.6
1.9
1.8
1.4 | | 11
12
13
14
15 | 16
18
15
12 | 15
13
13
13
15 | 20
20
22
19
19 | 7.1
7.6
8.2
8.5
9.1 | 5.7
5.6
5.7
5.4
5.7 | 7.8
8.2
9.5
8.7
7.4 | 1100
1080
1080
1090
1090 | 984
971
602
194
89 | 5.9
6.2
6.3
4.2
3.8 | 1.2
1.2
1.6
1.2 | 1.1
1.2
1.3
1.4
0.95 | 1.3
1.1
1.3
1.6
1.9 | | 16
17
18
19
20 | 12
11
11
11
11 | 15
17
13
12
13 | 34
9.2
7.2
7.2
6.9 | 8.8
8.6
9.1
8.9
8.5 | 5.9
5.8
5.9
5.8
5.4 | 8.1
8.8
11
85
13 | 1110
1070
1060
963
827 | 41
13
6.5
5.8
5.3 | 7.5
3.5
3.2
3.9
3.3 | 1.3
1.3
1.5
1.3 | 1.2
1.2
1.5
1.6
2.0 | 1.6
1.3
1.2
3.3 | | 21
22
23
24
25 | 11
12
12
12
12 | 13
13
14
14
14 | 6.8
7.0
6.9
7.2
7.2 | 8.8
7.8
8.8
11
5.9 | 4.9
5.2
5.6
5.5
5.7 | 513
858
844
839
1050 | 823
389
0.72
0.73
0.55 | 4.9
11
5.3
5.1
5.3 | 3.6
3.5
3.5
3.6
3.4 | 1.1
0.90
0.79
0.91
0.91 | 1.8
2.4
3.2
8.5
49 | 1.3
1.4
1.2
0.62
0.48 | | 26
27
28
29
30
31 | 12
11
11
12
12
11 | 13
15
17
15
15 | 7.1
7.1
7.1
7.4
7.2
7.2 | 6.3
6.4
6.7
6.8
13 | 5.8
6.1
6.1
 | 1160
374
0.46
0.42
16
0.52 | 0.53
0.39
0.36
0.41
0.41 | 5.2
6.5
5.5
5.6
5.7
4.9 | 3.6
3.8
3.8
3.7
7.3 | 0.89
1.3
1.1
1.1
1.0 | 62
54
53
51
50
48 | 0.57
0.70
0.71
0.88
0.98 | | MEAN
MAX
MIN | 12.10
18
11 | 13.47
17
11 | 13.22
34
6.8 | 9.481
57
5.9 | 5.875
14
4.8 | 190.0
1160
0.42 | 587.5
1110
0.36 | 112.8
984
0.00 | 4.907
7.5
3.2 | 1.406
3.6
0.79 | 14.69
62
0.69 | 2.035
21
0.48 | | STATIST | TICS OF | MONTHLY MI | EAN DATA F | OR WATER YE | EARS 19 | 53 - 2002 | z, BY WAT | TER YEAR (WY) | 1 | | | | | MEAN
MAX
(WY)
MIN
(WY) | 22.90
215
1994
0.000
1953 | 88.24
1479
1992
0.053
1971 | 56.90
680
1992
0.042
1954 | 79.34
1845
1992
0.000
1953 | 89.50
792
1992
0.000
1953 | 187.1
1734
1997
0.13
1953 | 121.7
881
1977
0.10
1959 | 217.4
2351
1990
0.000
1959 | 206.1
1804
1957
0.000
1953 | 57.01
1070
1989
0.029
1953 | 24.98
198
1979
0.000
1953 | 17.72
164
1962
0.000
1953 | | SUMMARY | Y STATIS | STICS | FOR | 2001 CALENI | DAR YEA | R | FOR 2002 | WATER YEAR | | WATER YEAR | S 1953 | - 2002z | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
10 PERC
50 PERC | ANNUAL ANNUAL DAILY DAILY | MEAN
MEAN
MEAN
DAY MINIMUI
FLOW
STAGE
CEEDS
CEEDS | М | 138.8
1640
1.5
1.6
586
16
2.9 | Mar 1
Jan
Jan 3 | 2 | 0.
2500
8.
55
6. | Mar 26
.00 May 7
.35 Apr 28
Apr 7 | | 97.35
514
0.27
6320
0.00
6740
14.71
196
6.9
0.10 | May
Oct
Oct
May
May | 1992
1953
3 1990
1 1952
1 1952
3 1990
3 1990 | $[\]ensuremath{\mathbf{z}}$ Period of regulated streamflow. 08047000 Clear Fork Trinity River near Benbrook, TX--Continued #### 08047050 Marys Creek at Benbrook, TX LOCATION.--Lat 32°41'42", long 97°26'49", Tarrant County, Hydrologic Unit 12030102, near left end of upstream side of bridge, 0.75 mi north of IH-20 on Wiscott Road in Benbrook, and 0.25 mi upstream from confluence with Clear Fork Trinity River. DRAINAGE AREA. -- 24 mi². PERIOD OF RECORD.--May 1998 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 604.97 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation. Low flow is affected at times by diversions from small dams upstream. No flow at times most years. | | Ι | DISCHARGE | FROM DCP, | CUBIC FEE | | COND, WAT | | CTOBER 20 | 001 TO SE | PTEMBER 20 | 02 | | |---|---|--|--------------------------------------|---|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---|--|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.18
0.19
0.03
0.01
0.00 | 0.02
0.02
0.02
0.02
0.02 | 0.08
0.07
0.07
0.06
0.07 | 1.6
1.7
1.5
1.9
4.1 | 10
5.7
5.3
4.2
63 | 2.8
5.4
2.5
2.4
1.8 | 48
34
21
11
9.2 | 5.0
6.8
33
16
235 | 8.4
10
8.4
7.4
27 | 26
23
22
7.6
8.5 | 0.63
0.06
0.04
0.04
0.04 | 0.02
0.02
0.01
0.02
0.02 | | 6
7
8
9
10 | | 0.02
0.03
2.6
0.03 | 0.07
0.06
0.06
0.06
0.05 | 1.7
1.4
1.4
1.7 | 31
15
9.9
7.9
6.9 | 1.8
1.9
1.9
2.1
1.8 | 64
320
212
62
43 | 30
11
25
34
91 | 18
11
11
9.9
8.2 | 10
5.4
4.0
3.3
3.2 | 0.04
0.03
0.03
0.03 | 0.02
0.05
5.5
0.05
0.04 | | 11
12
13
14
15 | 0.01 | 0.09
3.8
0.04
0.03
1.1 | | | 5.4
5.7
6.0
5.4
6.4 | | 28
19
50
42
24 | 34
25
38
23
21 | 7.1
6.4
29
11
10 | 2.1
2.7
3.8
2.4
1.9 | 0.93
0.32
0.06
0.02
0.02 | 0.04
0.04
0.04
0.18 | | 16
17
18
19
20 | | | 95
33
5.2
2.4
1.9 | 1.4
1.5
1.5
1.7 | | | 28
39
31
30
31 | 20
53
16
11
11 | 46
11
7.5
5.4
3.2 | 6.3
2.3
1.2
0.71
0.23 | 0.01
0.01
0.01
0.02
0.00 | 0.10
0.06
0.05
13
0.22 | | 21
22
23
24
25 | 0.01
0.01
0.02
0.02
0.02 | 0.04
0.04
0.04
0.04
0.04 | 2.6
2.3
2.9
4.5
1.3 | 1.4
1.5
10
43
6.0 | 2.7
2.5
2.2
2.2
2.2 | 55
29
23
17
9.6 | 30
30
25
19 | 11
10
10
10
9.6 | | | 0.00
0.01
0.01
0.01
0.01 | 0.08
0.07
0.08
0.07
0.06 | | 26
27
28
29
30
31 | 0.03
0.02
0.02
0.02
0.03
0.03 | 0.03
4.4
4.2
0.33
0.09 | 1.5
1.6
1.6
1.5 | 3.1
2.4
2.2
2.0
16
147 | 2.4
1.9
2.4
 | 8.8
8.0
7.9
6.8
292 | 15
13
8.6
7.9
6.5 | 9.9
16
17
15
12
9.1 | 1.4
1.3
13
0.45
27 | 0.07
0.07
0.14
0.04
0.75
0.06 | 0.01
0.01
0.01
0.01
0.02
0.01 | 0.06
0.06
0.07
0.06
0.07 | | TOTAL
MEAN
MAX
MIN
AC-FT | 41.55
1.340
23
0.00
82 | 38.39
1.280
21
0.02
76 | | 269.3
8.687
147
1.4
534 | | | 1314.2
43.81
320
6.5
2610 | | 320.25
10.68
46
0.45
635 | 138.25
4.460
26
0.04
274 | 52.45
1.692
50
0.00
104 | 32.16
1.072
13
0.01
64 | | STATIST | | | | | EARS 199 | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.962
6.53
1999
1.34
2002 | 32.7 | | 18.29
50.2
2001
2.36
2000 | 51.61
181
2001
6.80
2000 | 53.95
127
2001
11.1
2000 | 27.82
43.8
2002
14.8
1999 | 38.88
87.5
1999
9.71
2000 | 40.05
130
2000
1.33
1998 | 4.500
9.58
2001
0.21
1998 | 1.680
5.98
2001
0.18
2000 | 1.611
4.33
2001
0.12
2000 | | SUMMARY | Y STATIST | rics | FOR | 2001 CALEN | IDAR YEAR | . 1 | FOR 2002 W | ATER YEAR | 2 | WATER YEA | RS 1998 - | 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ANNUAL M I DAILY M SEVEN-DA M PEAK FI M PEAK ST | MEAN MEAN AY MINIMUN LOW PAGE (AC-FT) EEDS | 1 | 13959.02
38.24
1840
0.00
0.00
27690
90
7.9
0.03 | Feb 16) Oct 5) Oct 4 | | 5406.9
14.8
1120
0.0
0.0
4850
8.1
10720
29
2.1
0.0 | Mar 19
0 Oct 5
0 Oct 4
Mar 19
4 Mar 19 |)
 | 22.9
42.5
15.3
2880
0.0
0.0
20300
16.6
16610
47
4.0 | Jun 4
0 Aug 21
0 Oct 4
Jun 4
6 Jun 4 | 1998
2001
2000 | # 08047050 Marys Creek at Benbrook, TX--Continued #### 08047500 Clear Fork Trinity River at Fort Worth, TX LOCATION.--Lat 32°43′56", long 97°21′31", Tarrant County, Hydrologic Unit 12030102, at Fort Worth pumping station on left bank, 240 ft upstream from the Texas and Pacific Railway Co. bridge in Fort Worth, 830 ft upstream from East West Expressway bridge, 2.5 mi upstream from mouth, 5.0 mi downstream from Marys Creek, and 10.0 mi downstream from Benbrook Dam. DRAINAGE AREA. -- 518 mi². PERIOD OF RECORD. -- Mar. 1924 to current year. REVISED RECORDS. -- WSP 1392: 1924-25, 1927. WSP 1922: Drainage area. GAGE.--Water-stage recorder, crest-stage gage and concrete control. Datum of gage is 532.91 ft above NGVD of 1929. Prior to Apr. 3, 1970, various nonrecording and recording gages were located within 650 ft of present site at different datums. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are
poor. Since water year 1953, at least 10% of contributing drainage area has been regulated. The city of Fort Worth diverted water from pool at gage during the current year. The Benbrook Water and Sewage Authority diverted water from the river upstream from station during the current year for municipal use. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--28 years (water years 1925-52) prior to regulation by Benbrook Lake, 112 ${\rm ft}^3/{\rm s}$ (81,140 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1925-52).--Maximum discharge, $107,000 \text{ ft}^3/\text{s}$, May 17, 1949, gage height, 28.20 ft, present datum, from rating curve extended above $16,000 \text{ ft}^3/\text{s}$ on basis of contracted-opening measurement of $107,000 \text{ ft}^3/\text{s}$. No flow at times many years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 25, 1922, reached a stage of 27.5 ft, present datum, discharge, 74,300 ft³/s, by slope-area measurement of peak flow; data furnished by Fort Worth city engineer. Maximum stage since at least 1900, that of May 17, 1949, at present datum. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 9.9 6.8 e16 7.6 e16 3.3 9.9 e16 3.4 2.9 8.0 9.9 e154 e778 2.4 3.7 9.7 e124 e100 2.3 3.2 9.9 e98 e84 2.5 4.5 2.7 9 0 e79 e61 e142 e384 e418 8.9 e458 8.4 e478 7.7 2.7 9.7 8.5 7.3 e29 6.8 e24 8.0 6.4 9.8 e19 6.2 5.1 4.4 2.2 e17 7.3 5.8 8.0 4.9 e17 e17 3.8 5.3 9.9 e17 9.3 3.2 4.3 4.2 7.6 e17 1 a 9.6 4.4 2.7 e16 6.1 8.1 4.0 2.9 4.4 3.9 e16 9.3 e16 3.2 3.0 4 1 9.2 e16 ---4.5 9.8 e16 4370.3 917.9 TOTAL 896.2 724.3 879.0 1466.9 520.6 141.0 28.91 45.61 27.55 303.2 30.60 28.35 MEAN 24.14 54.61 924.6 47.32 17.35 MAX 7.3 9.2 9.0 2.9 MTN 2.3 9.3 2.3 3.2 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1953 - 2002z. BY WATER YEAR (WY) MEAN 56.08 107 5 86 71 109 3 137 7 254 4 187 6 306 5 256 9 72 28 32 43 31 13 MAX (WY) MTN 0.000 0.84 1 68 2 28 2 84 0 91 3 12 3.41 0 27 0.75 0 54 0.28 (WY) # 08047500 Clear Fork Trinity River at Fort Worth, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1953 - 2002z | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 73422.2 | 50709.2 | | | ANNUAL MEAN | 201.2 | 138.9 | 136.4 | | HIGHEST ANNUAL MEAN | | | 660 1992 | | LOWEST ANNUAL MEAN | | | 4.55 1954 | | HIGHEST DAILY MEAN | 2720 Feb 16 | 3350 Apr 7 | 11000 Mar 11 1990 | | LOWEST DAILY MEAN | 5.7 Jul 28 | 2.3 Aug 6 | 0.00 Oct 1 1952 | | ANNUAL SEVEN-DAY MINIMUM | 9.7 Oct 28 | 2.8 Aug 2 | 0.00 Oct 1 1952 | | MAXIMUM PEAK FLOW | | 14600 Apr 7 | 20900 May 2 1990 | | MAXIMUM PEAK STAGE | | 15.07 Apr 7 | 16.80 May 2 1990 | | ANNUAL RUNOFF (AC-FT) | 145600 | 100600 | 98850 | | 10 PERCENT EXCEEDS | 846 | 382 | 299 | | 50 PERCENT EXCEEDS | 33 | 22 | 16 | | 90 PERCENT EXCEEDS | 13 | 7.0 | 1.2 | Estimated Period of regulated streamflow. #### 08048000 West Fork Trinity River at Fort Worth, TX LOCATION.--Lat 32°45'39", long 97°19'56", Tarrant County, Hydrologic Unit 12030102, on left bank 125 ft upstream from Texas Electric Service Co. concrete dam, 980 ft downstream from centerline of Paddock Viaduct (North Main Street) at Fort Worth, 2,600 ft downstream from Clear Fork Trinity River and at mile 556.8. DRAINAGE AREA. -- 2,615 mi². PERIOD OF RECORD.--Oct. 1920 to current year. Gage-height records collected in this vicinity since 1910 are contained in reports of the National Weather Service. Water-quality records.--Chemical data: Oct. 1967 to Sept. 1976. Biochemical data: Oct. 1967 to Sept. 1976. REVISED RECORDS. -- WSP 1392: 1925. WSP 1922: Drainage area. GAGE.--Water-stage recorder and concrete dam control with angle-iron-crested notch for flow below 50 ft³/s. Datum of gage is 519.24 ft above NGVD of 1929. Prior to Aug. 22, 1954, at site 1,200 ft upstream at same datum. Aug. 22, 1954, to Oct. 15, 1955, at site 2,000 ft upstream at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily discharges, which are fair. Since installation of gage in Oct. 1920, at least 10% of contributing drainage area has been regulated. At times, flow is sustained by releases from the flood-detention pool of Benbrook Lake. The city of Fort Worth diverts water upstream of station and from Cedar Creek Reservoir (station 08063010) for municipal and industrial uses and returns wastewater effluent to river downstream from West Fork Trinity River at Beach Street (station 08048543). There are many small diversions upstream from station. Maximum stages have been affected by levee construction, levee breaks and channel rectification. No flow at times. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1866, that of May 17, 1949. | | _ | | | , | DAILY | MEAN V | ALUES | | | | | | |---|---|--|-----------------------------------|--|----------------------------|--|--|------------------------------------|-----------------------------|---|--|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 19 | 17 | 21 | 25 | 79 | 28 | 225 | 37 | 24 | 290 | 16 | 33 | | 2 | 17 | 16 | 20 | 25 | 44 | 35 | 384 | 29 | 22 | 94 | 8.8 | 27 | | 3 | 17 | 17 | 19 | 24 | 43 | 35 | 1340 | 160 | 20 | 396 | 5.7 | 15 | | 4 | 16 | 18 | 21 | 26 | 41 | 32 | 1320 | 48 | 18 | 82 | 5.2 | 12 | | 5 | 19 | 13 | 22 | 33 | 471 | 28 | 1150 | 2150 | 48 | 52 | 4.7 | 11 | | 6 | 17 | 12 | 37 | 33 | 186 | 29 | 1320 | 327 | 37 | 50 | 3.6 | 11 | | 7 | 16 | 13 | 26 | 28 | 73 | 28 | 4300 | 187 | 24 | 35 | 2.9 | 10 | | 8 | 15 | 11 | 19 | 28 | 61 | 29 | 1830 | 141 | 20 | 29 | 4.5 | 251 | | 9 | 16 | 29 | 16 | 28 | 61 | 28 | 445 | 300 | 179 | 25 | 5.9 | 158 | | 10 | 26 | 28 | 16 | 29 | 43 | 25 | 774 | 1050 | 335 | 21 | 1620 | 40 | | 11 | 516 | 32 | 34 | 28 | 41 | 25 | 1450 | 1230 | 144 | 34 | 88 | 26 | | 12 | 187 | 39 | 49 | 28 | 43 | 27 | 1420 | 1310 | 44 | 26 | 32 | 22 | | 13 | 342 | e35 | 57 | 28 | 44 | 27 | 1590 | 1410 | 64 | 20 | 26 | 20 | | 14 | 36 | e21 | 41 | 30 | 43 | 27 | 1640 | 856 | 66 | 19 | 105 | 18 | | 15 | 27 | 21 | 30 | 29 | 41 | 26 | 1870 | 460 | 24 | 16 | 71 | 104 | | 16 | 24 | 37 | 868 | 27 | 38 | 24 | 2390 | 317 | 259 | 44 | 21 | 41 | | 17 | 21 | 174 | 245 | 29 | 39 | 25 | 1940 | 760 | 32 | 51 | 14 | 42 | | 18 | 18 | 33 | 44 | 30 | 39 | 199 | 1640 | 407 | 21 | 50 | 12 | 37 | | 19 | 16 | 21 | 35 | 32 | 39 | 4920 | 1450 | 372 | 15 | 26 | 9.3 | 217 | | 20 | 16 | 17 | 30 | 29 | 35 | 2200 | 1250 | 302 | 16 | 17 | 7.6 | 65 | | 21 | 15 | 17 | 29 | 29 | 32 | 1020 | 1210 | 149 | 22 | 12 | 6.3 | 33 | | 22 | 15 | 18 | 29 | 29 | 32 | 1220 | 873 | 43 | 16 | e5.1 | 5.4 | 25 | | 23 | 17 | 19 | 28 | 59 | 32 | 1110 | 139 | 38 | 14 | e4.7 | 5.3 | 21 | | 24 | 19 | 18 | 27 | 259 | e32 | 1050 | 72 | 33 | 10 | 6.4 | 5.7 | 18 | | 25 | 17 | 16 | 25 | 46 | 30 | 1200 | 89 | 30 | 8.8 | 5.3 | 5.5 | 16 | | 26
27
28
29
30
31 | 16
16
17
17
18 | 18
18
93
35
23 | 24
24
24
e24
25
25 | 26
22
21
20
54
2060 | 27
27
27
 | 1350
755
120
107
2170
437 | 154
78
51
44
44 | 32
31
46
36
31
27 | 9.7
11
63
43
95 | 4.4
7.3
6.7
5.6
14
23 | 13
17
13
9.7
8.8
23 | 17
18
15
14
13 | | TOTAL | 1564 | 879 | 1934 | 3194 | 1743 | 18336 | 32482 | 12349 | 1704.5 | 1471.5 | 2175.9 | 1350 | | MEAN | 50.45 | 29.30 | 62.39 | 103.0 | 62.25 | 591.5 | 1083 | 398.4 | 56.82 | 47.47 | 70.19 | 45.00 | | MAX | 516 | 174 | 868 | 2060 | 471 | 4920 | 4300 | 2150 | 335 | 396 | 1620 | 251 | | MIN | 15 | 11 | 16 | 20 | 27 | 24 | 44 | 27 | 8.8 | 4.4 | 2.9 | 10 | | AC-FT | 3100 | 1740 | 3840 | 6340 | 3460 | 36370 | 64430 | 24490 | 3380 | 2920 | 4320 | 2680 | | STATIST | rics of M | ONTHLY MEA | AN DATA I | FOR WATER Y | EARS 1921 | - 2002 | , BY WATER | YEAR (WY | () | | | | | MEAN | 284.0 | 281.2 | 266.2 | 243.6 | 389.5 | 539.6 | 609.2 | 1116 | 765.5 | 237.9 | 114.1 | 148.7 | | MAX | 4548 | 3855 | 6071 | 3521 | 4130 | 3523 | 5595 | 12430 | 10240 | 3030 | 1447 | 2482 | | (WY) | 1982 | 1982 | 1992 | 1992 | 1997 | 1998 | 1942 | 1990 | 1989 | 1941 | 1950 | 1962 | | MIN | 0.12 | 3.64 | 5.02 | 6.08 | 5.57 | 4.72 | 7.71 | 15.2 | 5.73 | 1.33 | 0.000 | 0.000 | | (WY) | 1940 | 1956 | 1935 | 1930 | 1940 | 1940 | 1930 | 1959 | 1954 | 1956 | 1956 | 1930 | | SUMMARY | Y STATIST | ICS | FOR | 2001 CALEN | DAR YEAR | 1 | FOR 2002 W | TER YEAR | ! | WATER YEA | ARS 1921 - | 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERCE 50 PERCE | MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | 163327.1
447.5
6300
8.1
12
324000
1790
41
16 | Feb 27
Jul 28
Jul 27 | | 79182.9
216.9
4920
2.9
4.6
16500
6.37
157100
807
29
12 | Mar 19
Aug 7
Aug 3
Mar 19 | | 416.1
1823
15.6
47300
0.0
0.0
85000
25.5
301500
1070
40 | Apr 25
00 Aug 2
00 Jul 24
Apr 25
01 May 17 | 1924
1925
1922 | e Estimated # 08048000 West Fork Trinity River at Fort Worth, TX--Continued #### 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX LOCATION.--Lat 32°45′06", long 97°17′21", Tarrant County, Hydrologic Unit 12030102, on downstream side of bridge on Beach Street, 1,700 ft
downstream from Sycamore Creek, 0.9 mi downstream from Riverside Drive bridge, 2.6 mi east of the Tarrant County Courthouse and at mile 549.6. DRAINAGE AREA.--2,685 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1976 to current year. GAGE.--Water-stage recorder. Datum of gage is 478.70 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records poor. Since installation of gage in Oct. 1976, at least 10% of contributing drainage area has been regulated. At times, flow is sustained by releases from the flood-detention pool of Benbrook Lake. There are many diversions upstream from this station for municipal, industrial, and other uses. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1866 probably occurred in May 1949 (stage and discharge unknown). Maximum stages have been affected by levee construction, levee breaks, and channel rectification. | | | DISCHARGE | FROM DCP, | CORIC PERI | | MEAN V | | JCIOBER 200 | 1 10 SE | PIEMBER 20 | 102 | | |-------------|---------------------|-------------------|--------------|--------------|--------------|--------------|--------------|---|-----------------|--------------|--------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 35 | 35 | 64 | 64 | 368 | 72 | 424 | 65 | 78 | 585 | 52 | 12 | | 2 | 31 | 33 | 61 | 63 | 164 | 89 | 351 | 63 | 72 | 351 | 41 | 20 | | 3
4 | 28
26 | 31
28 | 60
59 | 63
63 | 144
133 | 83
79 | 1330
1320 | 190
113 | 68
63 | 1300
309 | 38
35 | 17
14 | | 5 | 28 | 34 | 60 | 77 | 760 | 79 | 1260 | 2690 | 92 | 185 | 35 | 13 | | | | | | | | | | | | | | | | 6
7 | 27
26 | 62
58 | 102
79 | 75
68 | 613
206 | 69
68 | 1550
5270 | 643
245 | 103
71 | 281
117 | 35
35 | 12
12 | | 8 | 25 | 219 | 65 | 64 | 131 | 68 | 2690 | 214 | 64 | 96 | 34 | 170 | | 9 | 24 | e171 | 59 | 62 | 123 | 68 | 972 | 580 | 153 | 87 | 35 | 142 | | 10 | 43 | 122 | 58 | 62 | 113 | 65 | 968 | 1660 | 403 | 87 | 2360 | 14 | | 11 | e383 | 171 | 70 | 61 | 106 | 64 | 1620 | 1510 | e220 | 99 | 530 | 8.0 | | 12 | e277 | e245 | 113 | 60 | 102 | 66 | 1610 | 1570 | e99 | 104 | 108 | 6.9 | | 13 | e446 | 319 | 106 | 59 | 96 | 65 | 1830 | 1790 | 105 | 100 | 73 | 6.0 | | 14
15 | e181
e105 | 76
e90 | 114
82 | 60
60 | 95
98 | 65
65 | 1850
2020 | 1270
715 | 145
65 | 94
88 | 73
165 | 8.9
59 | | 13 | 6103 | E90 | 02 | 80 | 90 | 05 | 2020 | /15 | 05 | 00 | 103 | 39 | | 16 | e80 | e130 | 1160 | 59 | 93 | 63 | 2720 | 427 | 644 | 140 | 144 | 72 | | 17
18 | e60
65 | e165
106 | 478
150 | 58
59 | 91
90 | 65
279 | 2290
1990 | 1340
755 | 134
86 | 149
169 | 152
72 | 15
29 | | 19 | 60 | 74 | 97 | 63 | 95 | 5830 | 1850 | 512 | 76 | e79 | 34 | 210 | | 20 | 46 | 65 | 85 | 60 | 96 | 4270 | 1680 | 447 | 149 | e59 | 28 | 135 | | 21 | 37 | 65 | 80 | 60 | 90 | 1270 | 1660 | 260 | 202 | 54 | 23 | 68 | | 22 | 34 | 65 | 78 | 60 | 74 | 1310 | 1490 | 269
137
107
100
95 | 202
75
67 | 56 | 19 | 26 | | 23 | 34 | 65 | 74 | 85 | 73 | 1200 | 371 | 107 | 67 | 41 | 18 | 14 | | 24 | 40 | 63 | 70 | 392 | 73 | 1140 | 151 | 100 | 60 | 38 | 17 | 4.0 | | 25 | 34 | 63 | 69 | 160 | 74 | 1190 | 148 | 95 | 54 | 35 | 16 | 2.3 | | 26 | 33 | 63 | 68 | 80 | 72 | 1290 | 342 | 98 | 99 | 33 | 15 | 2.1 | | 27 | 29 | 65 | 68 | 70 | 69 | 990 | 163 | 105 | 74 | 33 | 14 | 2.1 | | 28
29 | 26
25 | 142
117 | 69
68 | 68
65 | 71
 | 205
169 | 112
84 | 151
124 | 105
150 | 35
35 | 15
12 | 3.9
4.4 | | 30 | 29 | 78 | 62 | 74 | | 2350 | 69 | 94 | 168 | 67 | 8.9 | 4.5 | | 31 | 31 | | 62 | 3220 | | 846 | | 87 | | 89 | 7.7 | | | TOTAL | 2348 | 3020 | 3890 | 5594 | 4313 | 23524 | 40185 | 18166 | 3944 | 4995 | 4244.6 | 1107.1 | | MEAN | 75.74 | 100.7 | 125.5 | | 154.0 | 758.8 | 1340 | 586.0 | | | 136.9 | 36.90 | | MAX | 446 | 319 | 1160 | 3220 | 760 | 5830 | 5270 | 2690 | 644 | | 2360 | 210 | | MIN | 24 | 28 | 58 | 58 | 69 | 63 | 69 | 63 | 54 | 33 | 7.7 | 2.1 | | AC-FT | 4660 | 5990 | 7720 | 11100 | 8550 | 46660 | 79710 | 36030 | 7820 | 9910 | 8420 | 2200 | | STATIST | TICS OF | MONTHLY ME | AN DATA F | OR WATER YE | ARS 1977 | - 2002 | , BY WATER | R YEAR (WY) | | | | | | MEAN | 430.0 | 445.5 | 441.0 | | 584.6 | 974.6 | 690.2 | 1557 | 1135 | 218.9 | 102.8 | 85.04 | | MAX | 4881 | | | | | 3655 | 5668 | 12540 | 9448 | 1654 | 557 | 216 | | (WY) | 1982 | 1982 | 1992 | | 1997 | 1998
43.9 | 1990 | 1990 | 1989 | 1982 | 1995 | 1980 | | MIN
(WY) | 9.82
1978 | 23.8
1980 | 13.7
1978 | 30.2
1978 | 33.5
1996 | 1986 | 35.3
1983 | 20.2
1996 | 22.4
1978 | 5.67
1978 | 9.21
1985 | 9.27
1984 | | | STATIS | | | 2001 CALEND | | | | WATER YEAR | 1370 | WATER YEA | | | | SUMMARI | SIAIIS | 1105 | FOR | 2001 CALEND | AR ILAK | 1 | FOR 2002 V | NAIL MAILN | | WAIER IEF | TKS 19// | - 2002 | | ANNUAL | | | | 196627 | | | 115330.7 | | | 582.0 | | | | ANNUAL | MEAN
CANNUAL | MEAN | | 538.7 | | | 316.0 | | | | | 1992 | | | ANNUAL | | | | | | | | | 40.1 | | 1978 | | | DAILY | | | 7410 | Feb 27 | | 5830 | Mar 19 | | 35200 | | 3 1990 | | | DAILY M | | | 13 | Jul 29 | | 2.1 | 1 Sep 26 | | 0.7 | | 7 1998 | | | SEVEN-D
1 PEAK F | AY MINIMUM
LOW | 1 | 16 | Jul 27 | | 20300 | Mar 19
1 Sep 26
3 Sep 24
Mar 19
91 Mar 19 | | 0.8
46600 | | 5 1998
2 1990 | | | 1 PEAK S | | | | | | 29.9 | 91 Mar 19 | | 38.0 | | 2 1990 | | ANNUAL | RUNOFF | (AC-FT) | | 390000 | | | | | | | 2 | | | | CENT EXC | | | 1930 | | | 1170 | | | 1530 | | | | | CENT EXC | | | 80
24 | | | 76
26 | | | 55
15 | | | | JU FERC | TIMI EVC | | | 44 | | | 20 | | | 13 | | | e Estimated 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued #### 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued WATER-OUALITY RECORDS PERIOD OF RECORD. --CHEMICAL DATA: Oct. 1976 to Sept. 1999. BIOCHEMICAL DATA: Oct. 1976 to Sept. 1999. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Oct. 1976 to Sept. 2002 (discontinued). pH: Oct. 1976 to Sept. 2002 (discontinued). WATER TEMPERATURE: Oct. 1976 to Sept. 2002 (discontinued). DISSOLVED OXYGEN: Oct. 1976 to Sept. 2002 (discontinued). INSTRUMENTATION .-- Water-quality monitor since Oct. 1976. REMARKS.--Records poor. Interruption in the record was caused by malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous water years using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. Dissolved oxygen values bypassing saturation can be attributed to algae blooms in close proximity to the well intake intake. EXTREMES FOR PERIOD OF DAILY RECORD. -- TREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,000 microsiemens/cm, Nov. 6, 1978; minimum, 86 microsiemens/cm, July 1, 2001. pH: Maximum, 9.8 units, Aug. 8, Sept. 2, 1980; minimum, 6.4 units, June 16, 2002. WATER TEMPERATURE: Maximum, 38.5°C, Aug. 21, 1993; minimum, 0.0°C, Jan. 31, Feb. 1, 2, 1985. DISSOLVED OXYGEN: Maximum, 22.1 mg/L, Oct. 4, 1983; minimum, 0.0 mg/L, on many days during winter months. EXTREMES FOR CURRENT YEAR -- TREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 632 microsiemens/cm, Mar. 17; minimum, 135 microsiemens/cm, Aug. 10. pH: Maximum, 9.0 units, Aug. 16; minimum, 6.4 units, June 16. WATER TEMPERATURE: Maximum, 33.2°C, July 11, 24, 25; minimum, 5.8°C, Jan. 4. DISSOLVED OXYGEN: Maximum, 15.3 mg/L, July 10; minimum, 2.7 mg/L, Aug. 10. SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|--------|------|-----|--------|------|-----|---------|------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | 7 | | 1 | | | e439 | 481 | 442 | 465 | | | e475 | 441 | 416 | 433 | | 2 | | | e445 | 474 | 445 | 461 | | | e469 | 442 | 365 | 403 | | 3 | | | e450 | 484 | 450 | 467 | 470 | 462 | 467 | 491 | 386 | 429 | | 4 | | | e460 | 477 | 446 | 463 | 470 | 463 | 467 | 517 | 491 | 511 | | 5 | | | e470 | 475 | 442 | 464 | 469 | 465 | 467 | 516 | 502 | 508 | | 6 | | | e480 | 468 | 439 | 458 | 469 | 465 | 467 | 502 | 396 | 460 | | 7 | | | e490 | 502 | 458 | 486 | 470 | 455 | 465 | 429 | 393 | 400 | | 8 | | | e500 | 500 | 470 | 487 | 467 | 451 | 464 | 458 | 395 | 422 | | 9 | | | e510 | 609 | 415 | 482 | 465 | 442 | 461 | 426 | 397 | 409 | | 10 | | 364 | e435 | 446 | 427 | 435 | 461 | 441 | 451 | 406 | 399 | 403 | | 11 | 393 | 197 | 322 | 473 | 348 | 428 | 473 | 454 | 460 | 436 | 403 | 413 | | 12 | 381 | 226 | 329 | 481 | 309 | 402 | 473 | 436 | 446 | 436 | 409 | 422 | | 13 | 345 | 226 | 329 | 489 | 405 | 460 | 447 | 416 | 440 | 420 | 414 | 417 | | 14 | 349 | 335 | 342 | 503 | 489 | 495 | 433 | 384 | 405 | 433 | 417 | 422 | | 15 | 347 | 316 | 329 | 507 | 498 | 502 | 442 | 381 | 401 | 440 | 429 | 436 | | 16 | 350 | 316 | 335 | 514 | 470 | 501 | 446 | 229 | 350 | 466 | 439 | 459 | | 17 | 380 | 343 | 356 | 504 | 348 | 458 | 335 | 312 | 322 | 465 | 456 | 461 | | 18 | 431 | 370 | 386 | 471 | 451 | 463 | 340 | 310 | 323 | 481 | 459 | 472 | | 19 | 381 | 359 | 370 | 467 | 455 | 459 | 350 | 325 | 335 | 479 | 464 | 470 | | 20 | 400 | 365 | 379 | 491 | 467 | 482 | 393 | 350 | 374 | 477 | 470 | 473 | | 21 | 385 | 365 | 376 | 493 | 487 | 490 | 415 | 389 | 402 | 492 | 476 | 482 | | 22 | 443 | 374 | 391 | 494 | 488 | 491 | 423 | 356 | 391 | 498 | 488 | 494 | | 23 | 460 | 408 | 436 | 494 | 487 | 491 |
400 | 346 | 373 | 501 | 491 | 497 | | 24 | 461 | 423 | 447 | 489 | 487 | 488 | 421 | 350 | 393 | 502 | 348 | 448 | | 25 | 463 | 411 | 440 | 491 | 485 | 488 | 455 | 373 | 426 | 498 | 455 | 484 | | 26 | 461 | 400 | 435 | 491 | 481 | 485 | 373 | 350 | 355 | 475 | 451 | 460 | | 27 | 454 | 411 | 437 | 484 | 476 | 480 | 418 | 355 | 368 | 471 | 457 | 462 | | 28 | 458 | 411 | 443 | | | e483 | 500 | 418 | 474 | 477 | 461 | 471 | | 29 | 466 | 421 | 451 | | | e480 | 490 | 396 | 441 | 481 | 473 | 477 | | 30 | 477 | 428 | 454 | | | e478 | 433 | 383 | 407 | 483 | 430 | 479 | | 31 | 477 | 439 | 460 | | | | 431 | 381 | 397 | 475 | 159 | 250 | | MONTH | | | 417 | | | 472 | | | 417 | 517 | 159 | 446 | 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|---|--|---|---|---|---|--|--|--|---| | | | FEBRUARY | • | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 351
419
455
461
474 | 255
333
419
449
265 | 307
394
434
455
366 | 582
580
562
568
575 | 559
531
543
554
564 | 574
541
552
563
568 | 531
538
526
 | 381
508
353
 | 463
527
418
e383
e381 |

 |

 | e486
e490
e497
e473
e345 | | 6
7
8
9
10 | 335
399
450
452
413 | 272
335
399
403
396 | 298
370
418
432
402 | 581
583
588
595
613 | 569
578
578
579
589 | 575
580
582
587
599 |

 |

 | e396
e339
e244
e299
e351 |
336
346
418 |
153
231
300 | e273
e266
271
302
375 | | 11
12
13
14
15 | 515
538
550
540
530 | 404
514
533
528
520 | 476
526
542
535
524 | 611
608
607
606
609 | 606
602
602
601
600 | 609
605
604
603
605 |

 |

 | e396
e404
e396
e396
e383 | 384
392
398
402
422 | 253
358
354
382
390 | 312
381
381
392
406 | | 16
17
18
19
20 | 522
523
535
 | 519
519
519
 | 521
521
526
e520
e510 | 611
632
631
576
339 | 597
610
529
154
159 | 609
614
601
345
264 | 382
369
379
381
379 | 210
319
362
356
359 | 353
343
370
368
368 | 441
454
415
399
392 | 411
321
360
353
342 | 423
415
387
387
363 | | 21
22
23
24
25 | 465
506
523
499 | 453
464
459
462 | e500
458
487
506
478 | 396
421
420
416
403 | 292
384
391
388
374 | 352
405
400
403
389 | 377
386
399
 | 361
361
362
 | 369
371
380
e393
e396 | 423
439
456
457
462 | 390
405
415
420
426 | 401
414
434
436
444 | | 26
27
28
29
30
31 | 467
528
560
 | 457
460
532
 | 462
480
550
 | 388
399
550
550
532
398 | 367
366
380
525
169
288 | 377
375
448
539
317
351 |

 |

 | e399
e410
e433
e453
e461 | 496
485
493
449
455
476 | 431
434
439
434
433
439 | 447
458
455
441
443
455 | | MONTH | | | 464 | 632 | 154 | 501 | | | 388 | | | 402 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY 1 2 3 4 5 | MAX
467
473
493
488
493 | | MEAN 453 460 473 469 475 | 381
377
373
306
333 | | 364
368
312
279
288 | MAX | | e350
e356
e366
e373
e384 | 414
422
424
431
438 | SEPTEMB | | | 1
2
3
4 | 467
473
493
488 | JUNE 441 440 457 447 | 453
460
473
469 | 381
377
373
306 | JULY
346
360
211
268 | 364
368
312
279 | | AUGUST | e350
e356
e366
e373 | 414
422
424
431 | 393
408
412
421 | 407
413
418
426 | | 1
2
3
4
5
6
7
8 | 467
473
493
488
493
474
491
506
509 | JUNE 441 440 457 447 463 458 463 470 473 | 453
460
473
469
475
466
480
490
494 | 381
377
373
306
333
276
289
300
291 | JULY 346 360 211 268 239 226 266 251 265 | 364
368
312
279
288
264
273
272
278 |

400
405
408
410 | AUGUST 386 394 398 395 | e350
e356
e366
e373
e384
392
400
403
405 | 414
422
424
431
438
451
461
462
421 | 393
408
412
421
429
434
448
335
387
400 | 407
413
418
426
434
440
454
413
409 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 467
473
493
493
493
474
491
506
509
538 | JUNE 441 440 457 447 463 458 463 470 473 492 500 454 | 453
460
473
469
475
466
480
494
524
e544
e535
515
476 | 381
377
373
306
333
276
289
300
291
299
317
317
317
316 | JULY 346 360 211 268 239 226 266 251 265 260 274 285 298 | 364
368
312
279
288
264
273
272
278
279
292
301
305
307 | 400
405
408
410
407
252 | AUGUST 386 394 398 395 135 | e350
e356
e366
e373
e384
392
400
403
405
310
231
e252
e260
e270 | 414
422
424
431
438
451
461
462
421
425
425
411
401 | 393
408
412
421
429
434
448
335
387
400
396
383
383
377 | 407
413
418
426
434
440
454
413
409
410
415
401
393 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 467
473
493
488
493
474
491
506
509
538

534
506
495
443
439
438
420 | JUNE 441 440 457 447 463 458 463 470 473 492 500 454 431 337 406 399 376 | 453
460
473
469
475
466
480
494
524
e544
e535
515
476
461
408
417
411
405 | 381
377
373
306
333
276
289
300
291
299
317
317
316
335 | JULY 346 360 211 268 239 226 266 251 265 260 274 285 298 302 329 313 319 | 364
368
312
279
288
264
273
272
278
279
292
301
305
307
317
340
328
328
328
328 |

400
405
408
410
407
252

307
296
323
333
339 | AUGUST 386 394 398 395 135 214 269 276 290 322 314 | e350
e356
e366
e373
e384
392
400
403
405
310
231
e252
e260
e270
280
283
311
328 | 414
422
424
431
438
451
461
462
421
425
425
411
400
407
406
366
364
366 | 393
408
412
421
429
434
448
335
387
400
396
383
385
377
385
348
345
348 | 407
413
418
426
434
440
454
413
409
410
415
401
394
402
383
385
357
333 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 467
473
493
488
493
474
491
506
509
538

534
506
495
443
439
438
420
413
409
410
400
395 | JUNE 441 440 457 447 463 458 463 470 473 492 500 454 431 337 406 399 376 346 364 379 363 361 | 453
460
473
469
475
466
480
499
4524
e544
e535
515
476
461
408
417
411
405
398
388
395
383
379 |
381
377
373
306
333
276
289
300
291
299
317
317
316
335
351
339
338
 | JULY 346 360 211 268 239 226 265 251 265 260 274 285 297 298 302 329 313 319 298 | 364
368
312
279
288
264
273
279
292
301
305
307
317
340
328
328
328
328
328
328
328
331
313
324
325
331
324
324
325
331
333 |

400
405
408
410
407
252

307
296
323
333
339
343
342
336
339
357
372
394
396
401
405 | AUGUST 386 394 398 395 135 214 269 276 290 322 314 313 314 308 315 321 329 353 370 389 399 393 | e350
e356
e366
e373
e384
392
400
403
405
310
231
e252
e260
e270
280
228
328
328
329
329
329
329
329
329
329
329
329
329 | 414
422
424
431
438
451
461
462
421
425
425
411
400
407
406
366
364
366
359
370
381
388
391 | 393
408
412
421
429
434
448
335
387
400
396
383
385
377
385
348
345
348
345
348
345
348
345
348
345
348
345
348
345
348
345
348 | 407
413
418
426
434
440
454
413
409
410
415
401
393
402
383
355
357
333
336
361
371
383 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 467
473
493
488
493
474
491
506
509
538

534
506
495
443
439
439
439
410
400
395
404
402
363
363
363
363
363
364 | JUNE 441 440 457 447 463 458 463 470 473 492 500 454 431 337 406 399 376 346 364 379 363 361 370 332 333 296 299 341 | 453
460
473
469
475
466
480
494
524
e544
e535
515
476
461
408
417
411
405
398
388
395
383
379
392
379
353
345
349
358 | 381
377
373
306
333
276
289
300
291
299
317
317
316
335
351
339
338

315
320
324
331
339
340
348 | JULY 346 360 211 268 239 226 266 251 265 260 274 285 297 302 313 319 298 302 303 315 315 315 323 325 | 364
368
312
279
288
264
273
272
278
279
292
301
305
307
317
340
328
2360
e346
e300
e3303
309
312
313
324
325
331 |

400
405
408
410
407
252

307
296
323
333
343
343
342
336
339
357
372
394
401 | AUGUST 386 394 398 395 135 214 269 276 290 322 314 313 314 308 315 321 329 353 370 389 393 | e350
e356
e366
e373
e384
392
400
403
405
310
231
e252
e260
e270
280
283
311
328
329
329
328
327
331
342
362
379
396 | 414
422
424
431
438
451
461
462
421
425
425
411
400
407
406
366
364
366
359
370
381
388
391
392 | 393
408
412
421
429
434
448
335
387
400
396
383
385
377
385
348
345
348
296
308
354
362
370
374
381
383
373
368
381
377 | 407
413
418
426
434
440
454
410
410
415
401
393
402
383
355
357
333
336
361
371
380
383
388
388
388 | e Estimated 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|--|---------------------------------| | | OCTOBER | | NOVEMBER | | DECEMBER | | JANUARY | | FEBRUARY | | MARCH | | | 1
2
3
4
5 | 8.2
8.1
8.1
8.1
8.2 | 7.5
7.5
7.4
7.5
7.6 | 8.4
8.2
8.2
8.2
8.2 | 7.7
7.7
7.7
7.7
7.8 | 8.1
8.0
8.0
7.9
7.9 | 8.0
7.9
7.9
7.9 | 7.7
7.9
7.8
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.6
7.5
7.5
7.5
7.5 | 7.5
7.5
7.5
7.4
7.4 | 8.0
8.4
8.4
8.3
8.4 | 7.8
7.9
8.2
8.1
8.3 | | 6
7
8
9
10 | 8.2
8.3
8.2
8.2
8.3 | 7.6
7.7
7.7
7.7
7.7 | 8.1
8.3
8.3
8.1
8.2 | 7.7
7.8
7.9
7.6
8.0 | 7.8
7.8
7.7
7.7 | 7.7
7.7
7.7
7.7
7.6 | 7.9
7.9
7.9
7.9
7.8 | 7.6
7.7
7.6
7.6 | 7.5
7.6
7.6
7.6
7.6 | 7.4
7.5
7.5
7.5
7.5 | 8.4
8.3
7.9
8.2
8.1 | 8.2
7.9
7.7
7.8
7.7 | | 11
12
13
14
15 | 8.0
7.7
7.7
7.6
7.7 | 7.5
7.4
7.5
7.4
7.5 | 8.1
8.1
8.1
8.2
8.2 | 7.9
7.9
7.9
8.0
8.0 | 7.7
7.7
7.8
7.8
7.7 | 7.6
7.6
7.5
7.6
7.6 | 7.8
7.9
7.9
7.9
7.8 | 7.6
7.6
7.6
7.7
7.6 | 7.6
7.6
7.5
 | 7.5
7.5
7.4
 | 7.9
7.8
7.8
7.7
7.7 | 7.8
7.7
7.6
7.6
7.5 | | 16
17
18
19
20 | 7.8
8.1
8.0
8.2
8.2 | 7.6
7.6
7.7
7.8
7.7 | 8.0
8.0
7.9
8.0
8.0 | 7.9
7.8
7.8
7.8
7.9 | 8.0
7.8
7.7
7.6
7.6 | 7.7
7.6
7.5
7.5
7.5 | 7.8
7.8
7.8
7.9
7.9 | 7.5
7.5
7.7
7.5
7.6 |

7.7 |

7.5 | 7.6
7.5
8.0
8.1
8.1 | 7.5
7.5
7.5
7.9
7.7 | | 21
22
23
24
25 | 8.2
8.2
8.3
8.3 | 7.7
7.6
7.6
7.6
7.7 | 8.0
8.0
8.2
8.2
8.2 | 7.9
7.9
7.8
8.1
8.0 | 7.5
7.5
7.6
7.6
7.5 | 7.4
7.4
7.3
7.4
7.5 | 7.8
7.6
7.5
7.9
7.9 | 7.5
7.5
7.4
7.4
7.6 | 7.8
8.0
7.8
7.9
8.2 | 7.4
7.6
7.6
7.6
7.6 | 7.9
8.0
8.1
8.1 | 7.7
7.9
8.0
8.0 | | 26
27
28
29
30
31 | 8.5
8.5
8.5
8.3 | 7.8
7.7
7.7
7.7
7.7
7.6 | 8.2
8.2
8.1
8.1
8.2 | 8.0
8.1
8.0
8.0
8.1 | 7.6
7.6
7.7
7.7
7.7 | 7.5
7.5
7.5
7.4
7.6
7.7 | 7.7
7.6
7.4
7.4
7.5
8.0 | 7.5
7.4
7.3
7.3
7.3
7.4 | 8.3
8.2
8.0
 | 8.1
7.8
7.8
 | 8.2
8.2
8.1
7.8
8.2
7.8 | 8.2
8.1
7.8
7.7
7.7 | | MONTH | 8.5 | 7.4 | 8.4 | 7.6 | 8.1 | 7.3 | 8.0 | 7.3 | | | 8.4 | 7.5 | 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued PH, WH, FIELD, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------| | | APF | RIL | MZ | ΔY | JUI | VE. | JUI | LY | AUGI | JST | SEPTE | MBER | | 1
2
3
4
5 | 7.8
7.7
8.2
8.2
8.3 | 7.6
7.5
7.5
8.0
8.1 |

 |

 | 8.3
8.3
8.5
8.6
8.4 | 7.8
7.6
7.8
7.7
7.5 | 7.5

8.1
8.3
8.8 |

7.7
7.2 |

 |

 | 8.2
8.1
8.2
7.8
7.7 | 7.3
7.3
7.3
7.2
7.2 | | 6
7
8
9
10 | 8.3
8.3
8.2
8.1
8.0 | 8.2
8.1
8.0
8.0
7.9 | 8.0
8.1
8.1
8.1
8.4 | 7.9
7.8
7.8
7.8
7.8 | 8.6
8.4
8.4
8.3
8.4 | 7.8
7.8
7.5
7.4
7.6 | 8.6
8.4
8.4
8.5
8.5 | 7.5
7.5
7.3
7.4
7.4 | 8.3
8.6
8.2
8.3
8.2 | 7.5
7.3
7.5
7.3
7.3 | 7.7
7.6
7.7
7.5
7.5 | 7.2
7.3
7.3
7.3
7.2 | | 11
12
13
14
15 | 8.2
8.2
8.2
8.1
8.1 | 7.9
8.1
8.1
8.0
8.1 | 8.2
8.3
8.3
8.5
8.7 | 7.8
8.2
8.1
8.0
8.2 | 8.2
8.2
8.4 | 7.6
7.5
7.5 | 8.5
8.5
8.3
8.0
8.4 | 7.3
7.4
7.4
7.2
7.2 | 7.9
8.3
8.7
8.6 | 7.5
7.5
7.4
7.8 | 8.4
8.1
8.6
8.5
8.2 | 7.2
7.3
7.3
7.2
7.2 | | 16
17
18
19
20 | 8.4
8.2
8.2
8.2
8.2 | 8.1
8.0
8.2
8.1
8.1 | 8.6
8.4
8.2
8.4
8.6 | 8.1
8.1
7.9
7.8
7.7 | 8.0
8.2
8.4
8.5
8.4 | 7.5
7.4
7.2 | 7.7
8.4
 | 7.0
7.1
 | 9.0
8.8
8.8
8.9
8.8 | 7.7
7.9
7.7
7.7
7.5 | 8.6
8.6
8.1
8.1 | 7.2
7.2
7.2
7.3
7.3 | | 21
22
23
24
25 | 8.2
8.2
8.2
8.3
8.2 | 8.1
8.1
8.0
8.0 | 8.5
8.5
8.4
8.4 | 7.9
7.6
7.8
7.8
7.6 | 7.9
8.0
8.0
8.1
8.2 | 7.2
7.0
7.1
7.2
7.1 |

 | | 8.8
8.6
8.5
8.5 | 7.5
7.5
7.6
7.5
7.4 | 7.8
7.9
7.8
7.8
7.9 | 7.3
7.3
7.3
7.3
7.3 | | 26
27
28
29
30
31 | 8.2
8.3
8.2
 | 8.1
8.1
7.8
 | 8.3
8.1
7.9
8.5
8.4
8.3 | 7.8
7.6
7.5
7.6
7.9
7.9 | 8.4
7.5
8.4
8.1
7.5 | 7.0

7.0
 |

 | | 8.3
7.7
7.9
8.0
8.0
8.3 | 7.3
7.2
7.3
7.4
7.3
7.3 | 8.0
8.0
8.2
8.1
8.3 | 7.3
7.3
7.3
7.3
7.3 | | MONTH | | | | | | | | | | | 8.6 | 7.2 | PH, IN STANDARD UNITS
08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAX MIN MAX MIN MIN DAY MAX MEAN MEAN MAX MIN MEAN MEAN OCTOBER NOVEMBER DECEMBER JANUARY 20.5 20.8 20.7 21.5 18.8 23.4 23.3 23.1 23.8 22.9 23.7 24.3 23.7 23.9 17.9 19.8 19.4 19.7 19.2 8.0 7.8 7.3 6.6 6.7 7.6 6.7 5.9 5.8 6.1 7.8 7.4 6.7 6.1 6.4 ---26.9 19.9 1 2 3 4 5 21.2 21.4 21.1 20.9 26.9 26.1 27.2 23.4 ---------22.0 6 7 8 22.2 23.7 22.9 16.6 17.3 18.7 23.0 21.5 21.4 18.2 17.1 17.3 20.4 18.7 19.5 7.3 7.2 7.6 6.7 6.8 6.9 7.0 7.0 7.2 19.0 19.8 --- | 8
9
10 | 22.9
23.6
26.7 | 18.7
20.2
21.8 | 20.2
21.4
23.5 | 21.4
20.8
18.4 | 17.3
15.6
15.5 | 19.5
17.8
16.7 | | | | 7.6
8.2
9.1 | 6.9
7.6
8.1 | 7.2
7.9
8.5 | |--|---|---|---|--|--|--|--|--|--|--|--|--| | 11
12
13
14
15 | 23.3
22.4
22.0
21.6
22.3 | 20.4
21.4
21.4
20.1
19.9 | 21.8
21.7
21.6
20.7
21.0 | 17.4
18.1
18.9
19.0
17.9 | 16.4
16.4
17.0
17.1
17.1 | 16.9
17.1
17.7
17.9
17.5 | 12.4
11.8
12.1
11.5
11.3 | 11.5 | 12.1
11.5
11.9
10.9
10.6 | 9.2
9.2
9.8
9.6
9.5 | 8.9
9.0
9.0
9.3
9.2 | 9.1
9.1
9.4
9.4
9.4 | | 16
17
18
19
20 | 21.4
21.5
22.2
23.7
25.0 | 17.2
16.0
16.1
17.7
19.5 | 19.4
18.6
18.9
20.5
21.7 | 17.6
17.7
17.9
18.0
17.1 | 17.1
17.1
17.6
17.1
15.9 | 17.3
17.4
17.8
17.7
16.2 | 12.7
12.8
12.6
11.9 | 11.7 | 12.3
12.5
12.1
11.8
11.4 | 10.1
10.1
9.9
9.3
9.6 | 9.4
9.9
9.2
8.9 | 9.7
10.0
9.5
9.1
9.1 | | 21
22
23
24
25 | 24.4
25.1
26.1
24.5
22.5 | 19.4
20.4
21.7
20.1
17.4 | 21.3
22.4
23.3
22.4
19.7 | 16.0
15.2
16.2
16.2
15.5 | 15.1
15.0
15.2
15.4
15.0 | 15.4
15.1
15.5
15.7
15.1 | 11.1
11.8
11.8
11.5
11.0 | 10.6 | 10.9
11.2
11.7
11.2
10.6 | 9.2
9.2
9.6
10.8
10.5 | 8.9
9.0
9.2
9.6
9.8 | 9.0
9.1
9.3
10.1
10.3 | | 26
27
28
29
30
31 | 22.8
22.2
22.0
21.1
21.5
20.1 | 17.2
17.7
16.9
16.1
15.5
16.4 | 19.5
19.2
18.6
17.8
18.0
18.2 | 15.7
15.5
13.7
10.4 | 15.0
13.7
9.9
9.3
 | 14.6
11.7
9.7 | 10.9
10.1
9.9
10.0
9.5
8.6 | 10.0
9.8
9.5
9.4
8.5
8.0 | 10.3
9.9
9.7
9.7
8.9
8.1 | 10.0
10.2
10.5
10.7
12.2
12.2 | 10.7 | 9.8
10
10.3
10.6
10.8
9.1 | | MONTH | 27.2 | 15.5 | 20.8 | | | | | | | | | 8.8 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 8.8
8.9
8.7
9.1
9.7 | 8.1 | 0 0 | 8 1 | 9.3
8.1
7.2
7.3
7.4 | 9.5
9.3
7.5
7.7
7.9 | 16.4
16.2
18.3
15.3 | 15.7
15.2
14.5 | 15.9
15.7
17.4
14.9
15.1 | | 19.2
20.3 |

22.7
21.8 | | 6
7
8 | 8.0
7.5 | 6.8
6.8 | 7.4
7.1 | 9.2
9.4
10.1
12.5 | 8.1
8.9 | 8.6
9.1 | 15.6
16.2 | 13.7 | 15.3
14.9
16.1
17.7 | 24.2
25.0 | 22.6 | 22.7
23.6
24.2 | | 9
10 | 8.0
10.1
9.9 | 7.0
7.9
9.0 | 7.5
8.6
9.3 | 10.1
12.5
 | 9.4
10.0
 | 9.7
11.1
 | 17.2
19.6
19.6 | 16.3 | 16.1
17.7
18.2 | 25.5
24.6
24.9 | 23.2
21.0
19.0 | 23.9
23.3 | | 10 | 8.0
10.1
9.9 | 7.0
7.9
9.0 | 7.5
8.6
9.3
8.9
8.4
 | 10.1
12.5
 | 9.4 | 9.7
11.1

 | 17.2
19.6 | 16.3
17.6
17.4
17.3
17.1 | 18.2 | | 21.0 | | | 10
11
12
13
14 | 8.0
10.1
9.9
9.3
8.6 | 7.0
7.9
9.0
8.3
8.3 | 8.9
8.4
 |

 |

 |

15.9 | 17.2
19.6
19.6
19.1
18.4
19.2
21.1
21.3
21.0
21.4
21.9 | 16.3
17.6
17.4
17.3
17.1
17.0
18.2
19.2
20.1
20.5
20.5
20.7 | 18.2
18.0
17.9
17.7 | 24.9
24.1
24.7
23.6
23.8
24.8 | 21.0
19.0
22.1
23.6
21.9
22.1
22.5
22.6
20.5 | 23.3
23.1
24.2
22.8
22.7 | | 10
11
12
13
14
15
16
17
18
19 | 8.0
10.1
9.9
9.3
8.6

12.9 | 7.0
7.9
9.0
8.3
8.3

12.4
12.6
11.9 | 8.9
8.4

 |

16.4 |

15.4
14.9 |

15.9 | 17.2
19.6
19.6
19.0
19.1
18.4
19.2
21.1
21.3
21.0
21.4 | 16.3
17.6
17.4
17.3
17.1
17.0
18.2
19.2
20.1
20.5
20.5
20.7 | 18.2
18.0
17.9
17.7
18.7
19.9
20.7
20.8
20.9 | 24.9
24.1
24.7
23.6
23.8
24.8
25.4
24.3
23.9
24.6
23.9 | 21.0
19.0
22.1
23.6
21.9
22.1
22.5
22.6
20.5
22.3
22.3
21.5 | 23.3
23.1
24.2
22.8
22.7
23.4
23.8
23.3
22.9
23.1 | | 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.0
10.1
9.9
9.3
8.6

12.9
12.8
12.9
12.8
12.9
12.3 | 7.0
7.9
9.0
8.3
8.3

12.4
12.6
11.9 | 8.9
8.4

12.6
12.7
12.1
11.9
12.0 |

16.4
15.6
15.2
14.4
13.5 | 15.4
14.9
14.2
11.9
11.7 |

15.9
15.3
14.7
13.4
12.5
14.0 | 17.2
19.6
19.6
19.0
19.1
18.4
18.4
19.2
21.1
21.3
21.0
21.4
21.9
21.4
21.7
24.8
26.0 | 16.3
17.6
17.4
17.3
17.1
17.0
18.2
19.2
20.1
20.5
20.5
20.7
20.8
20.2
20.5
21.7 | 18.2
18.2
18.0
17.9
17.7
18.7
19.9
20.7
20.8
20.9
21.2
21.1
20.8
22.2
23.4 |
24.9
24.1
24.7
23.6
23.8
24.8
25.4
24.3
23.9
24.6
23.9
24.6
23.9 | 21.0
19.0
22.1
23.6
21.9
22.1
22.5
22.6
20.5
22.3
21.5
22.4
22.0
22.1
22.5 | 23.3
23.1
24.2
22.8
22.7
23.4
23.8
23.3
22.9
23.1
22.7
23.1
22.8
22.9 | | 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 8.0
10.1
9.9
9.3
8.6

12.9
12.8
12.9
12.6
11.9
12.3
13.3
12.7
10.7
9.8
 | 7.0
7.9
9.0
8.3
8.3
 | 8.9
8.4

12.6
12.7
12.1
11.9
12.0
12.7
11.6
10.1
9.6 |

16.4
15.6
15.2
14.4
13.5
15.3
15.1 | 15.4
14.9
14.2
11.9
11.7
13.1
13.5 |

15.9
15.3
14.7
13.4
12.5
14.0
14.6 | 17.2 19.6 19.6 19.0 19.1 18.4 18.4 19.2 21.1 21.3 21.0 21.4 21.9 21.4 21.7 24.8 26.0 21.9 21.3 | 16.3
17.6
17.4
17.3
17.1
17.0
18.2
19.2
20.1
20.5
20.5
20.7
20.8
20.2
20.5
21.7
20.9 | 18.2 18.2 18.0 17.9 17.7 18.7 19.9 20.7 20.8 20.9 21.2 21.1 20.8 22.2 23.4 21.4 20.4 21.1 | 24.9
24.1
24.7
23.6
23.8
24.8
25.4
24.3
23.9
24.6
23.9
24.2
24.0
23.7
23.8
25.0
24.2
24.0
23.7
23.8
24.2
24.0
23.7
23.8 | 21.0
19.0
22.1
23.6
21.9
22.1
22.5
22.6
20.5
22.3
22.3
21.5
22.4
22.0
22.1
22.5
22.5
22.3
22.3
21.5 | 23.3
23.1
24.2
22.8
22.7
23.4
23.8
23.3
22.9
23.1
22.7
23.1
22.8
22.7
23.1
22.8
22.7
23.1
22.8
22.7
23.1
22.8
22.7
23.5
22.7
23.1
22.8
23.7
23.1
23.8
23.7
23.1
23.8
23.7
23.1
23.8
23.7
23.1
23.8
23.7
23.1
23.8
23.7
23.1
23.8
23.7
23.1
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
23.8
23.7
24.6
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7 | 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 28.7
29.0
29.1
28.9
28.3 | 27.1
26.9
27.0
26.8
26.3 | 27.9
28.0
27.8
27.6
27.1 | 27.7
27.0
26.7
27.0
29.0 | 26.4
26.0
24.2
25.4
26.5 | 27.0
26.5
26.0
26.1
27.3 | 31.8
31.6
31.6
31.9
31.7 | 29.0
29.0
29.6
29.7
29.8 | 30.2
30.3
30.4
30.4 | 31.1
31.5
30.7
29.8
29.6 | 28.0
28.2
28.5
28.5
28.6 | 28.9
29.4
29.1
29.1
29.2 | | 6
7
8
9
10 | 29.1
28.6
29.0
29.2
29.3 | 26.5
26.9
27.0
26.7
27.3 | 27.5
27.6
27.9
27.8
28.3 | 29.3
30.2
31.7
32.0
32.2 | 26.9
28.4
29.4
30.2
30.5 | 28.0
29.0
30.1
31.0
31.3 | 30.9
31.7
31.0
32.3
30.7 | 29.4
29.6
29.9
29.4
25.1 | 30.1
30.5
30.4
30.6
28.0 | 29.5
29.1
28.5
27.9
28.0 | 28.6
28.5
26.5
26.9
26.9 | 29.1
28.8
27.6
27.4
27.4 | | 11
12
13
14
15 | 29.6
30.3
28.7
29.4 | 27.7
27.4
27.4 | 28.4
28.1
28.2 | 33.2
32.7
31.5
32.8
31.4 | 30.2
30.3
30.0
29.9
29.7 | 31.6
31.1
30.6
31.0
30.4 | 29.8
29.6
28.3
29.6 | 25.6
25.9
26.3
24.9
27.6 | 27.7
27.8
27.0
28.2 | 29.7
29.5
30.2
29.9
28.6 | 26.8
27.5
27.4
27.3
27.1 | 27.8
28.4
28.4
28.1
27.7 | | 16
17
18
19
20 | 28.4
27.8
28.4
28.9
29.2 | 25.0
26.4
26.4
26.0
26.2 | 26.8
27.0
27.0
27.0
27.2 | 29.7
29.7
30.8
 | 28.9
28.3
28.3
28.4 | 29.2
28.9
29.4
 | 30.3
30.5
31.4
31.2
31.5 | 27.3
28.1
28.0
28.5
28.6 | 28.6
29.1
29.5
29.7
29.9 | 28.7
29.3
28.5
27.5
27.3 | 27.2
27.0
26.9
25.7
25.0 | 27.7
28.0
27.6
26.6
26.0 | | 21
22
23
24
25 | 28.7
29.0
30.6
29.9
30.4 | 27.5
27.2
27.8
28.1
27.8 | 28.0
28.1
28.8
28.9
28.9 | 32.9
33.2
33.2 |

29.7
30.5 |

31.2
31.7 | 31.7
32.6
33.0
32.8
32.9 | 28.6
28.9
29.1
29.7
29.8 | 29.9
30.3
30.6
31.0
30.9 | 26.6
25.5
25.0
24.5
24.4 | 24.8
24.6
24.4
23.9
23.5 | 25.5
25.0
24.7
24.2
23.9 | | 26
27
28
29
30
31 | 30.3
29.1
29.5
30.0
28.4 | 28.0
27.7
28.1
28.1
26.8 | 28.8
28.3
28.5
28.8
27.9 | 32.7
31.9
31.3
30.7
31.5
31.5 | 30.7
29.8
29.7
29.3
29.4
28.8 | 31.6
30.7
30.5
30.0
30.3
30.2 | 32.3
29.6
29.6
29.2
28.8
30.3 | 29.5
28.6
28.3
28.2
28.0
27.9 | 30.3
29.1
28.8
28.6
28.5
28.6 | 25.1
28.2
26.7
27.6
26.9 | 23.5
23.9
23.9
23.8
24.5 | 24.2
25.1
24.7
25.3
25.5 | | MONTH | | | | | | | | 24.9 | | 31.5 | 23.5 | 27.0 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|---|---|------------------------------|--------------|------------------|---|---|--|---|---|--| | | | OCTOBER | ! | N | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 2 | | | | | | | 9.8
9.0 | 8.7
8.2 | 9.3
8.7 | 10.8
11.7 | 9.3
9.1 | 10.1
10.4 | | 3 | | | | | | | 8.7 | 8.3 | 8.4 | 11.5 | 9.6 | 10.5 | | 4
5 | | | | | | | 8.5 | 8.2 | 8.3 | 11.1
10.7 | 10.5
9.4 | 10.8
10.1 | | 6 | | | | | | | | | | 12.0 | 8.9 | 10.1 | | 7 | | | | | | | | | | 12.0 | 10.4 | 11.6 | | 8 | | | | | | | | | | 11.7 | 9.3 | 10.4 | | 9
10 | | | | 10.0 | 8.5 | 9.1 | | | | 11.6
11.1 | 8.9
9.7 | 10.6
10.4 | | 11 | | | |
9.8 | 8.5 | 9.1 | | | | 11.2 | 9.3 | 10.5 | | 12 | | | | 8.9 | 8.3 | 8.6 | | | | 10.7 | 8.5 | 9.5 | | 13 | | | | 9.1 | 8.0 | 8.4 | | | | 11.4 | 8.9 | 10.4 | | 14
15 | | | | 9.4
9.2 | 8.3
8.6 | 8.9
8.9 | | | | 11.3
10.5 | 9.4
8.5 | 10.1
9.6 | | | | | | | | | | | | | | | | 16 | | | | 8.6 | 6.1 | 7.2 | | | | 10.5 | 8.8 | 9.8 | | 17
18 | | | | 7.4
7.3 | 4.9
6.1 | 6.1
6.7 | | | | 10.7
10.4 | 8.7
9.3 | 9.9
10.0 | | 19 | | | | 7.4 | 4.8 | 6.5 | | | | 10.7 | 8.5 | 9.9 | | 20 | | | | 7.8 | 6.4 | 7.3 | 8.4 | 7.6 | 8.1 | 10.6 | 8.5 | 9.8 | | 21 | | | | 7.3 | 6.3 | 6.9 | 8.2 | 7.0 | 7.6 | 9.9 | 8.8 | 9.3 | | 22 | | | | 7.4 | 6.0 | 6.8 | 8.2 | 6.9 | 7.7 | 9.2 | 8.2 | 8.8 | | 23
24 | | | | 7.8
9.2 | 5.6
7.8 | 6.1
8.9 | 8.0
8.0 | 6.4 | 7.4 | 8.5
11.0 | 7.2
7.1 | 7.7
8.8 | | 25 | | | | 8.8 | 7.9 | 8.3 | 7.6 | 7.2 | 7.4 | 11.0 | 8.7 | 10.2 | | 26 | | | | 8.8 | 7 5 | 0 0 | 0 1 | 7 1 | 0 7 | 9.0 | 7 5 | 8.4 | | 26
27 | | | | 9.0 | 7.5
8.4 | 8.0
8.8 | 9.1
9.2 | 7.4
7.7 | 8.7
8.9 | 9.0 | 7.5
 | 8.4 | | 28 | | | | 9.7 | 8.7 | 9.1 | 8.7 | 7.5 | 8.0 | | | | | 29 | | | | 9.8 | 9.2 | 9.4 | 9.8 | 6.9 | 8.2 | | | | | 30
31 | | | | 10.1 | 9.3 | 9.7 | 10.4
10.9 | 9.1
10.0 | 9.9
10.5 | 11.3 | 4.4 | 10.3 | | MONTH | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | • | | MARCH | | | APRIL | | | MAY | | | 1 | 11.1 | FEBRUARY | 10.9 | | MARCH | | | APRIL | | 8.2 | MAY
6.9 | 7.5 | | | | FEBRUARY | • | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4 | 11.1
10.6
 | 10.6
9.9
 | 10.9
10.1
 |

 | MARCH |

 | | APRIL |

 | 8.2
9.5
 | MAY
6.9
7.5
 | 7.5
8.5
 | | 1
2
3 | 11.1
10.6
 | 10.6
9.9 | 10.9 |
 | MARCH |
 | | APRIL |
 | 8.2
9.5
 | MAY
6.9
7.5 | 7.5
8.5 | | 1
2
3
4
5 | 11.1
10.6

11.1 | 10.6
9.9

10.3 | 10.9
10.1

10.8 |

 | MARCH |

 |

11.8 | APRIL |

10.5 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5
 | | 1
2
3
4
5 | 11.1
10.6

11.1
11.1 | 10.6
9.9

10.3
10.8 | 10.9
10.1

10.8
10.9 |

 | MARCH |

 |

11.8
10.5
10.8 | APRIL 9.9 9.9 9.3 |

10.5
10.2
10.2 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5

 | | 1
2
3
4
5 | 11.1
10.6

11.1
11.1
10.8 | 10.6
9.9

10.3
10.8
10.0 | 10.9
10.1

10.8
10.9
10.3 |

 | MARCH |

 |

11.8
10.5
10.8
10.0 | APRIL 9.9 9.9 9.3 8.4 |

10.5
10.2
10.2
9.4 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5
 | | 1
2
3
4
5 | 11.1
10.6

11.1
11.1 | 10.6
9.9

10.3
10.8 | 10.9
10.1

10.8
10.9 |

 | MARCH | |

11.8
10.5
10.8 | APRIL 9.9 9.9 9.3 |

10.5
10.2
10.2 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5

 | | 1
2
3
4
5
6
7
8
9 | 11.1
10.6

11.1
11.1
10.8
10.2 | 10.6
9.9

10.3
10.8
10.0
9.5 | 10.9
10.1

10.8
10.9
10.3
9.9 |

 | MARCH |

 |

11.8
10.5
10.8
10.0
8.9 | APRIL 9.9 9.9 9.3 8.4 8.4 |

10.5
10.2
10.2
9.4
8.7 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5

 | | 1
2
3
4
5
6
7
8
9
10 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1 | | MARCH | |

11.8
10.5
10.8
10.0
8.9
8.5 | APRIL 9.9 9.9 9.9 9.3 8.4 8.4 7.9 8.2 8.9 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5

 | | 1
2
3
4
5
6
7
8
9
10 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1 |

 | MARCH | |

11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2 | APRIL 9.9 9.3 8.4 7.9 8.2 8.9 8.7 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5
8.5

 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 |

 | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 | 10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 | 10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 |

 | MARCH | |

11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 8.3 7.6 8.7 7.8 | 10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.9
8.7
8.2
8.3
8.3 | 8.2
9.5

 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | |

11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 8.3 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2 | 8.2 9.5 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.1
8.6
8.5
8.6
8.3 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 8.3 7.6 7.6 | 10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0
7.9 | 8.2
9.5

12.8 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.1
10.6

11.1
11.1
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.1
8.6
8.5
8.6
8.3 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.6 8.0 7.6 8.0 7.6 7.6 |
10.5
10.2
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0 | 8.2
9.5

12.8
13.3 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | |

11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.1
8.6
8.5
8.6
8.3 | APRIL 9.9 9.9 9.3 8.4 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 8.3 7.6 7.8 7.6 7.3 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.3
8.2
8.0 | 8.2
9.5

12.8
13.3
12.0 | MAY 6.9 7.5 | 7.5
8.5

11.6
11.3
10.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6
9.9

10.3
10.8
10.0
9.5
9.9
9.3

7.8
6.5
5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.1
8.6
8.5
8.6
8.3 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.6 8.0 7.6 8.0 7.6 7.6 | 10.5
10.2
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0 | 8.2
9.5

12.8
13.3 | MAY 6.9 7.5 | 7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6 9.9 10.3 10.8 10.0 9.5 9.9 9.3 7.8 6.5 5.4 | 10.9
10.1

10.8
10.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 6 7.5 7.6 7.3 | 10.5
10.2
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0
7.9
8.0
8.5
8.0 | 8.2
9.5

12.8
13.3
12.0
11.6
12.0 | MAY 6.9 7.5 10.3 10.0 9.2 9.3 8.2 8.5 | 7.5
8.5

11.6
11.3
10.5
10.4
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6 9.9 10.3 10.8 10.0 9.5 9.9 9.3 7.8 6.5 5.4 | 10.9
10.1

10.8
10.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.2
9.1
8.6
8.3
8.1
8.8
9.3
9.5
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.6 8.3 7.6 8.3 7.6 7.3 7.5 | 10.5
10.2
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0
7.9
8.4
8.5
8.0 | 8.2
9.5

12.8
13.3
12.0
11.6
12.0 | MAY 6.9 7.5 | 7.5
8.5

11.6
11.3
10.5
10.4
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6 9.9 10.3 10.8 10.0 9.5 9.9 9.3 7.8 6.5 5.4 | 10.9
10.1

10.8
10.9
10.3
9.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | |

11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.1
8.6
8.5
8.3
8.1
8.8
9.3
9.5
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.6 8.3 7.6 8.3 7.6 7.5 7.5 7.5 |

10.5
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0
7.9
8.0
8.4
8.5
8.0 | 8.2
9.5

12.8
13.3
12.0
11.6
12.0 | MAY 6.9 7.5 10.3 10.0 9.2 9.3 8.2 8.5 8.7 7.1 | 7.5
8.5

11.6
11.3
10.5
10.4
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6 9.9 10.3 10.8 10.0 9.5 9.9 9.3 7.8 6.5 5.4 | 10.9
10.1

10.8
10.9
10.1
9.5

8.4
7.0
6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.2
9.1
8.6
8.3
8.1
8.8
9.3
9.5
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.6 8.3 7.6 8.3 7.6 7.3 7.5 | 10.5
10.2
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.3
8.2
8.0
7.9
8.4
8.5
8.0 | 8.2
9.5

12.8
13.3
12.0
11.6
12.0 | MAY 6.9 7.5 | 7.5
8.5

11.6
11.3
10.5
10.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 11.1
10.6

11.1
11.1
10.8
10.2
10.3
9.9

8.7
7.8
6.6 | 10.6 9.9 10.3 10.8 10.0 9.5 9.9 9.3 7.8 6.5 5.4 | 10.9 10.1 10.8 10.9 10.3 9.9 10.1 9.5 8.4 7.0 6.1 | | MARCH | | 11.8
10.5
10.8
10.0
8.9
8.5
9.4
9.3
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2
9.2 | APRIL 9.9 9.9 9.3 8.4 7.9 8.2 8.9 8.7 8.4 8.6 8.3 7.6 6 7.5 7.6 7.3 7.5 7.5 7.5 7.5 7.5 | 10.5
10.2
10.2
10.2
9.4
8.7
8.2
8.9
9.2
9.0
8.9
8.9
8.7
8.2
8.0
7.9
8.4
8.5
8.0
8.3
8.0
7.9 | 8.2
9.5

12.8
13.3
12.0
11.6
12.0
11.6
11.6
9.4
11.4 | MAY 6.9 7.5 10.3 10.0 9.2 9.3 8.2 8.5 8.7 7.1 7.6 | 7.5
8.5

11.6
11.3
10.5
10.4
10.0
10.8
10.4
8.2
9.2 | 08048543 West Fork Trinity River at Beach Street, Fort Worth, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|-------------------------------------|--|--|--|--------------------------------------|---------------------------------|---------------------------------|--------------|----------|--------------| | | | JUNE | | | JULY | | 1 | AUGUST | | 5 | SEPTEMBE | R | | 1
2
3
4
5 | 12.7
13.3
14.6
13.8
11.7 | 8.0
7.9
9.0
6.9
6.5 | 10.2
11.0
11.5
10.5
9.2 | 8.3
9.8
9.1
9.4
12.0 | 4.8
5.4
7.6
6.8
5.9 | 5.7
7.8
8.4
7.6
8.9 | 9.2
9.2
9.3
9.1
13.4 | 8.0
8.1
8.2
8.3
8.5 | 8.5
8.4
8.5
8.6
9.9 |

 | |

 | | 6
7
8
9
10 | 13.9
14.4
13.5
12.5
10.2 | 8.1
9.1
5.2
4.2
5.9 | 10.7
11.1
9.6
8.0
8.3 | 11.2
13.1
13.1
13.6
15.3 | 6.7
7.9
6.8
5.7
5.1 | 8.7
9.9
10
9.4
9.4 | 11.3
12.0
10.1
12.5
10.3 | 5.3
3.6
5.3
2.8
2.7 | 8.4
7.7
7.7
6.7
6.8 |

 | |

 | | 11
12
13
14
15 | 12.7
11.9
9.8
13.4 | 9.0
7.3
7.0 | 10.3
8.5
10.2 | 11.3
10.6
8.4
9.3
10.2 | 4.7
4.9
4.7
4.5
4.0 | 8.3
6.8
5.9
5.7
6.2 | 6.6
8.0
10.9
9.2
10.8 | 3.3
4.2
3.9
4.4
5.2 | 5.1
5.7
6.9
6.6
7.1 |

 | |

 | | 16
17
18
19
20 | 12.9
9.8
12.6
14.8
13.8 | 6.8
6.7
7.0
6.4
6.6 | 8.4
8.2
9.1
9.5
9.0 | 6.8
10.3
8.3
 | 3.8
3.7
4.1
 | 4.7
5.5
6.4
 | 10.7
10.9
 | 4.3
6.0
 | 7.5
8.6
 |

 | |

 | | 21
22
23
24
25 | 11.1
11.9
14.9
14.3
13.4 | 6.9
6.3
6.2
7.9
6.6 | 8.9
8.8
9.5
10.8
9.6 |

8.3
8.4 |

7.3
7.4 |

7.8
7.9 |

 |

 |

 |

 | |

 | | 26
27
28
29
30
31 | 13.2
7.8
11.6
10.5
10.6 | 6.7
5.9
5.9
4.8
4.1 | 9.0
6.8
7.1
7.2
6.0 | 8.5
8.7
8.7
8.7
9.1
9.0 | 7.6
7.4
7.7
7.6
7.8
7.9 | 8.1
8.0
8.2
8.2
8.3
8.4 |

 | |

 |

 | |

 | | MONTH | | | | | | | | | | | | | DAILY MEAN DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER #### 08048970 Village Creek at Everman, TX LOCATION.--Lat 32°36'12", long 97°15'53", Tarrant County, Hydrologic Unit 12030102, at center of channel on downstream side of bridge on Rendon Road (Tarrant County Road 1015), 1.4 mi downstream from Deer Creek and 1.8 mi southeast of Everman High School. DRAINAGE AREA. -- 84.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1989 to current year. REVISED RECORDS.--WRD-TX-00-2: Maximum discharge for period of record, 11,4000 ft³/s at 21.96 ft: Peak discharge WY 2000, 10,600 ft³/s. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 589.93 ft above NGVD of 1929
(Tarrant County Public Works Department reference mark). Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No flow at times. No known regulation or diversions. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since about 1930, 27.37 ft, date uncertain, but may be same date, Mar 27, 1977, as date of maximum stage at discontinued downstream station, Village Creek at Kennedale (station 08048980). Flood of May 18, 1989, may have equalled, or slightly exceeded, the indicated known maximum stage. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES JUI, DAY ОСТ NOV DEC JAN FEB MΛD APR MAY .TITN AHG SEP 0.39 2.3 0.50 7.8 79 0.00 0.00 2 0.42 2.3 0.38 0.23 58 28 5.5 5.1 38 7.9 6.6 52 0.00 0.00 3 24 65 158 0.00 2.6 19 30 5 1.0 2.6 2.5 0.36 146 3.5 17 668 5.6 10 0.00 0.00 6 7 2.5 105 0.00 0.00 2.5 3.7 1.3 0.47 3.4 41 23 4.8 4.3 3.6 117 1650 0.00 0.00 2.8 8 1170 1.6 62 16 1.8 35 10 1 4 2.7 0 23 0.31 20 3.4 69 2090 4.2 1.3 435 0.00 58 2.6 0.17 0.26 13 144 3.7 0.75 92 0.00 12 15 14 4.7 3.7 0.42 12 3.6 3.7 44 84 3.3 3.2 0.80 2.6 8.0 0.00 13 6.4 9.5 84 3.1 141 69 0.79 13 2.4 12 8.7 3.7 86 65 4.8 2.7 0.00 3.5 15 3 5 1 4 0 11 8 1 4 0 51 41 3 4 0.53 23 0 00 16 14 271 0.12 7.2 3.9 37 30 45 0.92 1.7 0.00 8 8 0.23 6.4 5.8 7 5 3.1 0.00 17 0.08 107 3 8 42 195 0 00 0.11 4.8 126 31 99 4.0 0.00 0.00 18 32 19 0.28 10 0.34 5.8 2790 25 47 3.3 0.00 2.0 0.28 5.3 0.28 20 0.26 0.15 4.8 1920 23 26 2.6 0.00 1.7 21 0.44 0.34 3.7 0.10 109 21 20 2.2 0.05 0.00 0.00 1.7 1.7 1.7 4.2 22 3.1 0.08 57 19 16 1.5 0.01 0.00 0.00 23 2.2 0.12 3.9 37 17 14 0.81 0.00 0.00 0.00 24 0 96 1.6 44 3.4 29 15 13 0.66 0 00 0.00 0.00 25 1.2 0.81 0.52 31 3.5 23 13 12 0.50 0.00 0.00 0.00 26 1 2 0.74 0.69 5 0 3 3 1.8 31 13 0.46 0 00 0 00 0.00 0.92 27 2.8 3.0 17 0.00 1.5 0.43 16 12 9.9 0.00 0.00 28 0.75 10 0.46 1.6 3.4 13 45 22 0.00 0.00 0.00 29 0.65 13 0.89 1.2 ---14 11 37 24 0.00 0.00 0.00 2.7 0.83 16 30 0.59 0.34 14 14 0.00 0.00 0.00 644 0.24 2100 9.8 0.00 0.00 TOTAL 258.31 115.94 476.90 2194.88 1095.2 6096.7 3863 4080.1 211.43 387.54 566.29 22.90 12.50 18.27 MEAN 8.333 3.865 15.38 70.80 39.11 196.7 128.8 131.6 7.048 0.763 328 MAX 141 14 271 2100 2790 1650 2090 45 158 435 16 0.28 0.46 0.08 0.17 0.08 3.0 11 0.00 0.00 0.00 MIN AC-FT 512 230 946 4350 2170 12090 7660 8090 769 1120 419 45 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 2002, BY WATER YEAR (WY) 7.384 30.08 16.15 42.98 28.01 64.01 69.13 57.07 71.37 45.14 5.706 4.439 MEAN 240 52.1 367 117 165 195 233 339 296 14.3 MAX 15.5 1992 1992 1992 1997 1990 (WY) 1995 2002 1990 2.70 2000 1993 2001 2001 0.59 0.68 0.34 0.72 0.000 0.000 MTN 0.83 1.32 1.13 0.19 0.000 1996 1996 1998 1998 2000 (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1990 - 2002 ANNUAL TOTAL 13234 69 19369 19 ANNUAL MEAN 36.65 36.26 53.07 HIGHEST ANNUAL MEAN 92.6 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 1.37 1996 2280 2790 Mar 19 7330 Jun 4 2000 Feb 16 0.00 Jul 21 0.00 Jul 23 0.00 Aug 18 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMIM 0 00 Jul 21 0.00 Jul 23 0.00 Aug 25 1990 MAXIMUM PEAK FLOW Dec 20 1991 8830 Mar 19 c11400 MAXIMUM PEAK STAGE 19.74 Mar 19 21.96 Dec 20 1991 38420 26550 26250 ANNIIAL RINOFF (AC-FT) 10 PERCENT EXCEEDS 47 75 60 50 PERCENT EXCEEDS 5.6 3.2 3.4 90 PERCENT EXCEEDS 0.11 0.00 0.00 c From rating curve extended above 7,700 ft³/s on basis of area-velocity study. # 08048970 Village Creek at Everman, TX--Continued #### 08048970 Village Creek at Everman, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1989 to current year. BIOCHEMICAL DATA: Oct. 1989 to current year. PERIOD OF DAILY RECORD. -- RIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Oct. 1989 to Sept. 1990. pH: Oct. 1989 to Sept. 1990. WATER TEMPERATURE: Oct. 1989 to Sept. 1990. DISSOLVED OXYGEN: Oct. 1989 to Sept. 1990. INSTRUMENTATION. -- Water-quality monitor Oct. 1989 to Sept. 1990. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,000 microsiemens/cm, on several days during Jan. and May 1990; minimum, 129 microsiemens/cm, May 3, 1990. pH: Maximum, 9.1 units, Jan. 13, 1990; minimum, 7.0 units, Nov. 22, 1989. WATER TEMPERATURE: Maximum, 34.5°C, July 11, 1990; minimum, 0.5°C, Dec. 22, 1989. DISSOLVED OXYGEN: Maximum, 20.8 mg/L, Feb. 25, 1990; minimum, 2.4 mg/L, Nov. 8, 1989. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | ~ - | | | | | | | | | | |-----------|--|--|--|--|--|--|---|--|--|--|---|--|--| | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | NOV
08 | 0910 | 2.4 | 614 | 8.0 | 16.0 | 6.7 | 69 | <2.0 | 190 | 4 | 59.6 | 9.58 | 53.5 | | FEB
13 | 0940 | 9.7 | 655 | 8.2 | 7.0 | 12.6 | 105 | <2.0 | 250 | 30 | 83.2 | 9.39 | 47.7 | | MAR
21 | 0930 | 110 | 393 | 8.1 | 12.5 | 9.4 | 89 | 5.3 | 150 | 22 | 49.6 | 5.60 | 23.4 | | MAY
07 | 1015 | 41 | 500 | 8.0 | 23.5 | 7.2 | 87 | 4.2 | 170 | 30 | 57.3 | 7.51 | 33.3 | | JUN
04 | 0930 | 6.0 | 795 | 8.0 | 25.0 | 6.4 | 80 | 2.5 | 250 | 49 | 76.1 | 15.2 | 66.8 | | AUG | | | | | | | | | | | | | | | 28 | 1320 | E1.0 | 552 | 8.1 | 29.5 | 7.1 | 94 | 3.3 | 130 | 28 | 38.7 | 7.87 | 56.8 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | NOV | | | | | | | | | | | | | | | 08
FEB | 2 | 37 | 4.63 | 1 | 222 | 184 | 56.4 | 47.7 | . 4 | 6.2 | | 348 | | | 13
MAR | 1 | 29 | 4.45 | 2 | 259 | 216 | 78.0 | 38.5 | .3 | 8.2 | | 407 | | | 21
MAY | .8 | 25 | 4.81 | <1 | 152 | 127 | 37.5 | 17.1 | .3 | 9.86 | 252 | 227 | 50 | | 07 | 1 | 29 | 5.22 | 2 | 170 | 144 | 51.2 | 26.4 | .3 | 9.54 | 291 | 280 | 32 | | JUN
04 | 2 | 36 | 3.31 | 1 | 246 | 204 | 111 | 55.9 | . 4 | 5.98 | 512 | 458 | 27 | | AUG
28 | 2 | 48 | 5.31 | 1 | 120 | 101 | 61.8 | 58.0 | . 4 | 5.90 | 308 | 295 | <10 | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/LAS P) (00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | | NOV | | | | | | | | | | | | | | | 08
FEB | | <.008 | E.04 | <.04 | | .28 | | | <.06 | .02 | .067 | | | | 13
MAR | 1.66 | .009 | 1.67 | <.04 | | .35 | | | .100 | .09 | .267 | | | | 21
MAY | .76 | .020 | .78 | .07 | .65 | .72 | | | .174 | .14 | .442 | 10.0 | 3 | | 07
JUN | .60 | .021 | .62 | E.03 | | .53 | | | .11 | .10 | .297 | | 2 | | 04
AUG | .31 | .009 | .32 | <.04 | | .29 | | | <.06 | <.02 | | 5.4 | | | 28 | | <.008 | <.05 | <.04 | | .43 | .62 | E.05 | E.04 | <.02 | | 6.8 | | # 08048970 Village Creek at Everman, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) |
BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | |------------------|--|---|---|---|---|--|---|---|---|---|---|---|--| | NOV
08 | | | | | | | | | | | | | | | FEB
13
MAR | | | | | | | | | | | | | | | 21 | .19 | 2n | 46 | <.06 | <.04 | <.8 | .33 | 2.4 | 26 | E.04 | 5.9 | <.01 | 1.0 | | MAY
07 | .20 | E2 | 52 | <.06 | <.04 | <.8 | .35 | 2.0 | 12 | E.04 | 2.1 | <.01 | 1.1 | | JUN
04 | | | | | | | | | <10 | | E.9n | | | | AUG
28 | | | | | | | | | 56 | | 25.7 | <.01 | | | | | | Da | ite | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | | | | | | | | NOV
0
FEB | 8 | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | 1 | 1.31 | E1 | <1 | 2 | .81 | | | | | | | | | | _ | 0 10 | • | - | - | 0.0 | | | | | 2.19 <2 <1 3 -- .80 -- Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: $\ensuremath{\text{n}}$ -- Below the NDV MAY 07... JUN 04... AUG 28... #### 08049200 Lake Arlington at Arlington, TX LOCATION.--Lat 32°42′58", long 97°11′32", Tarrant County, Hydrologic Unit 12030102, near western boundary of Arlington, 1.5 mi upstream from the Texas and Pacific Railway Co. bridge and 7.0 mi upstream from mouth. DRAINAGE AREA. -- 143 mi². PERIOD OF RECORD.--CHEMICAL DATA: Jan. 1964 to June 2002 (discountinued). BIOCHEMICAL DATA: Jan. 1964 to June 2002 (discountinued). ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 # 324304097113601 -- Lk Arlington Site AC | | | | | 3243 | 040971136 | 01 FK | Arlington | Site AC | | | | | | |-----------------------------------|---|--|--|--|---|--|--|--|---|---|--|--|--| | Date | Time | RESER-
VOIR
STORAGE
(AC-FT)
(00054) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | | FEB
07
07
07
07
07 | 1321
1326
1332
1338
1344
1351 | 39100

 | .41

 | 1.00
10.0
20.0
30.0
40.0
45.0 | 285
283
279
279
260
250 | 8.2
8.0
8.0
8.0
7.8
7.7 | 12.0
11.0
10.5
10.0
10.0 | 9.8
9.3
9.2
9.0
6.7
6.0 | 92
85
83
81
60
54 | 100

91 | 11

9 | 35.4

31.7 | 3.44

2.95 | | 28
28
28
28
28
JUN | 1248
1253
1257
1302
1306 | 38900

 | .55

 | 1.00
10.0
20.0
30.0
44.0 | 270
270
270
270
270 | 7.9
7.9
7.8
7.8
7.7 | 17.0
17.0
16.5
16.0
15.5 | 10.8
10.8
10.5
9.9
9.0 | 114
114
110
103
92 | 100

110 | 13

14 | 36.2

36.6 | 3.38

3.41 | | 25
25
25
25
25 | 1043
1048
1054
1100
1105 | 36900

 | 1.46

 | 1.00
10.0
20.0
30.0
42.0 | 295
292
317
332
341 | 8.5
8.6
7.4
7.4
7.5 | 31.5
30.5
27.5
24.0
22.5 | 8.6
8.8
.8
2.0 | 119
120
10
24
2 | 100

130 | 11

 | 34.9

45.3 | 4.30

4.34 | | | | | | 3243 | 040971136 | 01 Lk | Arlington | Site AC | | | | | | | Date | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | | FEB 07 07 07 07 07 | 13.2

11.2 | .6

.5 | 21

20 | 3.91

3.76 |

<1 |

100 | 91

83 | 28.5

23.9 | 10.8

10.5 | . 2

. 2 | 3.8

5.0 | 155

140 |

.34 | | MAR 28 28 28 28 28 JUN | 13.2

13.3 | .6

.6 | 21

21 | 4.05

4.06 | <1

<1 | 111

112 | 92

92 | 25.9

26.0 | 10.0

10.1 | .2

.2 | 4.3

4.4 | 153

155 | .27

.27 | | 25 | | | | | | | | | | | | | | # 08049200 Lake Arlington at Arlington, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 # 324304097113601 -- Lk Arlington Site AC | | | | | | | _ | | | | | |------|--|--|--|--|--|--|--|--|---|---| | Date | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | FEB | | | | | | | | | | | | 07 | E.006 | .26 | E.03 | | .36 | < .06 | E.01 | | <10 | E1.8b | | 07 | | | | | | | | | | | | 07 | | | | | | | | | | | | 07 | | | | | | | | | | | | 07 | | | | | | | | | | | | 07 | .009 | .35 | .16 | .45 | .61 | .06 | .04 | .132 | E10 | 8.6 | | MAR | | | | | | | | | | | | 28 | .015 | .29 | .08 | .43 | .51 | E.05 | .05 | .156 | E8 | E1.5n | | 28 | | | | | | | | | | | | 28 | | | | | | | | | | | | 28 | | | | | | | | | | | | 28 | .017 | .29 | .13 | .41 | .54 | E.05 | .05 | .150 | E10 | 3.4 | | JUN | | | | | | | | | | | | 25 | <.008 | <.05 | <.04 | | .34 |
<.06 | <.02 | | <10 | <2.0 | | 25 | <.008 | <.05 | <.04 | | .32 | <.06 | <.02 | | <10 | 7.5 | | 25 | <.008 | E.04 | <.04 | | .32 | <.06 | <.02 | | 35 | 37.3 | | 25 | | | | | | | | | | | | 25 | <.008 | <.05 | .91 | .50 | 1.4 | .35 | .29 | .892 | 1900 | 1620 | | | | | | | | | | | | | # 324320097121101 -- Lk Arlington Site AL | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|---|--|--|---|--|---| | FEB | | | | | | | | | 07 | 1359 | 1.00 | 284 | 8.2 | 12.0 | 10.0 | 94 | | 07 | 1401 | 10.0 | 285 | 8.0 | 11.0 | 9.3 | 85 | | 07 | 1403 | 20.0 | 280 | 8.0 | 10.5 | 9.0 | 81 | | 07 | 1405 | 34.0 | 280 | 8.0 | 10.0 | 8.8 | 79 | | MAR | | | | | | | | | 28 | 1318 | 1.00 | 270 | 8.0 | 17.5 | 9.4 | 101 | | 28 | 1322 | 10.0 | 270 | 7.9 | 17.0 | 8.6 | 91 | | 28 | 1327 | 30.0 | 270 | 7.9 | 16.5 | 8.4 | 88 | | 28 | 1332 | 30.0 | 270 | 7.8 | 16.0 | 8.3 | 86 | | 28 | 1338 | 36.0 | 271 | 7.7 | 15.5 | 9.0 | 92 | | JUN | | | | | | | | | 25 | 1114 | 1.00 | 295 | 8.6 | 31.0 | 7.5 | 103 | | 25 | 1116 | 10.0 | 292 | 8.5 | 30.5 | 7.5 | 102 | | 25 | 1119 | 20.0 | 318 | 7.5 | 27.5 | . 3 | 4 | | 25 | 1121 | 31.0 | 329 | 7.5 | 24.5 | . 2 | 2 | # 324253097121801 -- Lk Arlington Site BC | Date | Time | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|--|---|--|---|---|--|---| | FEB | | | | | | | | | | 07 | 1414 | .30 | 1.00 | 282 | 8.2 | 12.0 | 10.1 | 95 | | 07 | 1416 | | 10.0 | 282 | 8.2 | 12.0 | 10.0 | 94 | | 07 | 1419 | | 20.0 | 279 | 8.0 | 10.5 | 9.0 | 81 | | 07 | 1421 | | 30.0 | 251 | 7.8 | 10.0 | 7.3 | 65 | | 07 | 1425 | | 38.0 | 271 | 7.8 | 9.5 | 7.9 | 70 | | MAR | | | | | | | | | | 28 | 1353 | .49 | 1.00 | 271 | 7.8 | 17.0 | 8.1 | 86 | | 28 | 1355 | | 10.0 | 270 | 7.8 | 17.0 | 8.0 | 85 | | 28 | 1358 | | 20.0 | 270 | 7.8 | 16.0 | 7.8 | 81 | | 28 | 1400 | | 30.0 | 270 | 7.8 | 15.5 | 7.6 | 78 | | 28 | 1402 | | 39.0 | 271 | 7.7 | 15.5 | 6.9 | 71 | | JUN | | | | | | | | | | 25 | 1130 | .98 | 1.00 | 295 | 8.6 | 31.5 | 7.3 | 101 | | 25 | 1132 | | 10.0 | 297 | 8.3 | 30.0 | 6.4 | 86 | | 25 | 1134 | | 20.0 | 312 | 7.5 | 28.0 | 1.4 | 18 | | 25 | 1137 | | 30.0 | 337 | 7.4 | 24.0 | .2 | 2 | | 25 | 1140 | | 37.0 | 337 | 7.5 | 23.0 | .2 | 2 | ### 08049200 Lake Arlington at Arlington, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 324301097123301 -- Lk Arlington Site BL | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|---|--|--|---|--|---| | FEB | | | | | | | | | 07 | 1435 | 1.00 | 283 | 8.2 | 12.5 | 10.2 | 97 | | 07 | 1437 | 10.0 | 278 | 8.0 | 10.5 | 9.1 | 82 | | 07 | 1440 | 20.0 | 278 | 8.0 | 10.0 | 8.9 | 80 | | 07 | 1443 | 33.0 | 267 | 7.9 | 10.0 | 8.2 | 73 | | MAR | | | | | | | | | 28 | 1415 | 1.00 | 270 | 7.8 | 16.5 | 9.0 | 94 | | 28 | 1418 | 10.0 | 270 | 7.8 | 16.5 | 10.4 | 109 | | 28 | 1421 | 20.0 | 270 | 7.8 | 16.0 | 10.4 | 108 | | 28 | 1424 | 29.0 | 271 | 7.7 | 15.5 | 9.5 | 97 | | JUN | | | | | | | | | 25 | 1151 | 1.00 | 293 | 8.6 | 31.5 | 7.7 | 106 | | 25 | 1155 | 10.0 | 295 | 8.5 | 30.5 | 7.0 | 95 | | 25 | 1159 | 20.0 | 312 | 7.5 | 28.0 | 1.6 | 21 | | 25 | 1202 | 30.0 | 333 | 7.4 | 25.5 | . 2 | 2 | | | | | | | | | | ### 324257097130301 -- Lk Arlington Site CC | Date | Time | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|--|---|--|--|---|--|---| | FEB | | | | | | | | | | 07 | 1452 | .24 | 1.00 | 278 | 8.0 | 14.5 | 9.0 | 89 | | 07 | 1454 | | 10.0 | 277 | 8.0 | 13.5 | 9.0 | 87 | | 07 | 1456 | | 25.0 | 278 | 8.0 | 13.5 | 9.0 | 87 | | MAR | | | | | | | | | | 28 | 1436 | .40 | 1.00 | 271 | 7.8 | 17.5 | 9.3 | 100 | | 28 | 1439 | | 10.0 | 271 | 7.8 | 17.0 | 9.2 | 97 | | 28 | 1442 | | 20.0 | 271 | 7.8 | 17.0 | 9.2 | 97 | | JUN | | | | | | | | | | 25 | 1213 | .85 | 1.00 | 296 | 8.4 | 32.0 | 6.5 | 91 | | 25 | 1216 | | 10.0 | 297 | 8.4 | 32.0 | 6.4 | 89 | | 25 | 1219 | | 21.0 | 296 | 8.4 | 32.0 | 6.4 | 89 | # 324228097130301 -- Lk Arlington Site DC | | | | | | PH | | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------|---------| | | | TRANS- | | SPE- | WATER | | | DIS- | | | | PAR- | | CIFIC | WHOLE | | | SOLVED | | | | ENCY | SAM- | CON- | FIELD | TEMPER- | OXYGEN, | (PER- | | | | (SECCHI | PLING | DUCT- | (STAND- | ATURE | DIS- | CENT | | Date | Time | DISK) | DEPTH | ANCE | ARD | WATER | SOLVED | SATUR- | | | | (M) | (FEET) | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | | | | (00078) | (00003) | (00095) | (00400) | (00010) | (00300) | (00301) | | FEB | | | | | | | | | | 07 | 1504 | .27 | 1.00 | 280 | 8.0 | 12.5 | 9.0 | 85 | | 07 | 1506 | | 10.0 | 281 | 8.0 | 10.5 | 9.1 | 82 | | 07 | 1508 | | 22.0 | 278 | 8.0 | 10.5 | 8.8 | 80 | | MAR | | | | | | | | | | 28 | 1457 | .40 | 1.00 | 271 | 7.8 | 17.0 | 10.4 | 110 | | 28 | 1500 | | 10.0 | 270 | 7.7 | 15.5 | 9.5 | 97 | | 28 | 1503 | | 21.0 | 271 | 7.7 | 15.5 | 9.4 | 96 | | JUN | | | | | | | | | | 25 | 1229 | 1.07 | 1.00 | 294 | 8.6 | 31.5 | 7.6 | 105 | | 25 | 1232 | | 10.0 | 297 | 8.4 | 30.5 | 6.5 | 88 | | 25 | 1235 | | 20.0 | 304 | 7.7 | 29.0 | 3.5 | 46 | # 08049200 Lake Arlington at Arlington, TX--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 # 324143097132201 -- Lk Arlington Site EC | | | | | | | | 5 | | | | | | | |------------------------------|------------------------------|--|---|--|--|--|---|---|--|--|--|--|--| | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | | FEB
07
07
07
MAR | 1521
1526
1531
1536 | 1.00
10.0
20.0
26.0 | 288
288
285
285 | 8.3
8.1
8.0
8.0 | 13.5
10.5
9.0
9.0 | 10.0
9.8
9.7
9.9 | 97
89
85
86 | 100

100 | 14

11 | 35.8

34.8 | 3.49

3.53 | 13.3

14.1 | .6

.6 | |
28
28
28
JUN | 1519
1524
1528 | 1.00
10.0
25.0 | 274
272
277 | 7.9
7.8
7.7 | 16.5
15.5
15.0 | 9.2
8.7
7.8 | 96
89
79 | 110

110 | 13

13 | 36.6

36.9 | 3.46

3.50 | 13.3

13.2 | .6

.6 | | 25
25
25 | 1250
1258
1305 | 1.00
10.0
23.0 | 292
290
307 | 8.7
8.5
7.4 | 31.5
30.0
28.0 | 6.9
7.0
.2 | 95
94
3 | 100

110 | 12

8 | 34.9

38.2 | 4.30

4.16 | 16.0

15.3 | .7

.6 | | | | | | 3241 | .430971322 | 01 Lk | Arlington | Site EC | | | | | | | Date | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | | FEB
07
07
07 | 21

22 | 3.94

3.88 | 1

<1 | 108

110 | 90

92 | 28.7

28.9 | 10.9

12.9 | .2

.2 | 3.6

4.7 | 155

159 |

.37 | E.007

.011 | .25

.38 | | MAR
28
28 | 21 | 4.14 | <1 | 113 | 84 | 26.4 | 10.3 | .2 | 4.8 | 156 | .31 | .013 | .33 | | 28
JUN
25 | 20
24 | 4.18
4.27 | <1
4 | 114
106 | 99
94 | 26.4
25.8 | 10.2
15.1 | .2 | 5.1
1.3 | 158
158 | .30 | .032 | .33 | | 25
25 | 22 | 4.11 | <1 | 128 | 105 | 27.0 | 13.3 | .3 | 3.0 |
169 | | <.008
E.004 | <.05
<.05 | | | | | | | | | | | | | | | | # 324143097132201 -- Lk Arlington Site EC | | NITRO- | NITRO- | NITRO- | | ORTHO- | PHOS- | | | |------|---------|---------|---------|---------|---------|---------|---------|---------| | | GEN, | GEN, | GEN,AM- | PHOS- | PHOS- | PHATE, | | MANGA- | | | AMMONIA | ORGANIC | MONIA + | PHORUS | PHATE, | ORTHO, | IRON, | NESE, | | | DIS- | DIS- | ORGANIC | DIS- | DIS- | DIS- | DIS- | DIS- | | | SOLVED | SOLVED | DIS. | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | Date | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | (UG/L | (UG/L | | | AS N) | AS N) | AS N) | AS P) | AS P) | AS PO4) | AS FE) | AS MN) | | | (00608) | (00607) | (00623) | (00666) | (00671) | (00660) | (01046) | (01056) | | FEB | | | | | | | | | | 07 | .04 | .36 | .40 | < .06 | .02 | .064 | 50 | 8.6 | | 07 | | | | | | | | | | 07 | | | | | | | | | | 07 | E.03 | | .41 | E.04 | .04 | .126 | <10 | 3.4 | | MAR | | | | | | | | | | 28 | .07 | .42 | .49 | .07 | .06 | .172 | 11 | E1.8b | | 28 | | | | | | | | | | 28 | .13 | .44 | .56 | E.05 | .06 | .181 | 11 | E2.1b | | JUN | | | | | | | | | | 25 | <.04 | | .34 | <.06 | <.02 | | <10 | E.8 | | 25 | <.04 | | .33 | <.06 | <.02 | | <10 | 13.3 | | 25 | .11 | .34 | .45 | <.06 | <.02 | | 11 | 430 | # 08049200 Lake Arlington at Arlington, TX--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 324133097130601 -- Lk Arlington Site EL | | | Da | te | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | |-----------------------|------------------------------|--|---|--|--|--|---|---|--|--|--|--|--| | | | 0 | 7
7
7 | 1541
1543
1545 | 1.00
10.0
20.0 | 287
287
286 | 8.3
8.1
7.9 | 13.0
10.5
8.5 | 10.4
9.8
9.5 | 100
89
82 | | | | | | | 2 | 8
8
8 | 1533
1536
1540 | 1.00
10.0
19.0 | 275
276
275 | 7.9
7.9
7.9 | 16.5
16.5
16.5 | 9.9
9.9
9.1 | 104
104
95 | | | | | | | 2 | 5
5
5 | 1316
1319
1321 | 1.00
10.0
17.0 | 295
297
313 | 8.6
8.4
7.4 | 32.0
30.0
28.0 | 6.7
5.2
.5 | 93
70
7 | | | | | | | | | 3240 |)410971346 | 01 Lk | Arlington | Site FC | | | | | | | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | | FEB
07
07 | 1556
1601
1607 | 1.00
10.0
16.0 | 289
282
281 | 8.4
7.9
7.8 | 13.0
8.0
7.0 | 10.6
10.2
10.5 | 102
87
87 |
 |
 |

 |

 |
 |

 | | MAR
28
28 | 1558
1603
1608 | 1.00
10.0
15.0 | 281
283
283 | 7.9
7.8
7.8 | 16.5
15.5
15.5 | 10.1
9.6
9.7 | 106
99
100 | 110

110 | 16

14 | 38.3

38.0 | 3.65

3.64 | 13.7

13.7 | .6

.6 | | JUN
25
25 | 1337
1344 | 1.00
14.0 | 294
266 | 8.6
7.7 | 32.0
28.5 | 10.4
7.1 | 145
93 | 110
97 | 11
12 | 35.0
32.8 | 4.30
3.55 | 16.0
13.3 | .7
.6 | | | | | | 3240 |)410971346 | 01 Lk | Arlington | Site FC | | | | | | | Date | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | | FEB
07
07
07 |
 |
 | 1

<1 | 109

E117 | 92

97 |
 |
 |
 |
 | |

.66 | E.005

.021 | . 24

. 68 | | MAR
28 | 20 | 4.21 | <1 | 116 | 96 | 27.1 | 10.5 | .2 | 5.0 | 161 | .32 | .017 | .34 | | 28
28 | 21 | 4.25 | <1 |
116 |
96 | 27.3 | 10.6 | .2 | 5.1 | 162 | .33 | .017 | .35 | | JUN
25
25 | 24
22 | 4.31
3.98 | 3
<1 | 109
E102 | 94
85 | 29.1
24.3 | 13.6
12.3 | .2 | 1.3
2.5 | 160
145 | .22 | <.008
.019 | <.05
.24 | ### 08049200 Lake Arlington at Arlington, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 324041097134601 -- Lk Arlington Site FC | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|--|--|--|--|---|---| | FEB | | | | | | | | | | 07 | <.04 | | .35 | E.03 | E.01 | | | | | 07 | | | | | | | | | | 07 | .07 | .49 | .56 | .11 | .10 | .319 | | | | MAR | | | | | | | | | | 28 | .07 | .43 | .50 | E.06 | .06 | .169 | 14 | 3.2 | | 28 | | | | | | | | | | 28 | .08 | .45 | .53 | E.05 | .06 |
.172 | 13 | 4.8 | | JUN | | | | | | | | | | 25 | <.04 | | .34 | <.06 | <.02 | | <10 | E1.4 | | 25 | .07 | .39 | .46 | <.06 | <.02 | | <10 | 34.4 | Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: b -- Value was extrapolated below n -- Below the NDV #### 08049500 West Fork Trinity River at Grand Prairie, TX LOCATION.--Lat 32°45′46", long 96°59′42", Dallas County, Hydrologic Unit 12030102, on left bank at upstream side of bridge on Belt Line Road, 1.3 mi northeast of Grand Prairie, 3.7 mi upstream from Mountain Creek, and at mile 514.6. DRAINAGE AREA. -- 3,065 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Apr. 1925 to current year. REVISED RECORDS. -- WSP 628: 1925. WSP 1922: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 405.42 ft above NGVD of 1929. Prior to Dec. 6, 1933, nonrecording gage at bridge on old channel 2,500 ft southeast of present site at datum 7.56 ft higher. Dec. 6, 1933, to May 24, 1956, water-stage recorder at site 440 ft downstream from site of nonrecording gage at datum 7.56 ft higher than present datum. May 25, 1956, to Apr. 18, 1957, nonrecording gage at site 1.5 mi downstream at different datum. Apr. 19 to Aug. 13, 1957, nonrecording gage on bridge at present site and at datum 5.00 ft higher than present datum. Aug. 14, 1957 to Sept. 30, 1982, water-stage recorder at present site and at datum 5.00 ft higher than present datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Apr. 1925, at least 10% of contributing drainage area has been regulated. The city of Fort Worth discharges wastewater effluent into the river upstream from this station. There are many diversions upstream from station for municipal, industrial, and other uses. The river channel at this station was relocated and rectified in 1956. DISCULATOR FROM DOD, CUIDIO FEET DED CECOMO, MATER VEAD COTODED 2001 TO CEDTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1900, 30.6 ft in May 1908 (former site and datum), from information by local resident. Flood in Apr. 1922 reached a stage of 29.0 ft (former site and datum), from floodmarks. | | | DISCHARGE | FROM DCP, | CUBIC FE | | COND, WA'
Y MEAN V | | OCTOBER 200 | 1 TO SE | PTEMBER 200 | 2 | | |--------------------------------------|--|---|--|--|--|--|---|--|---------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 196
193
189
188
194 | 176
163
169 | 240
217
211
210
209 | 206
201
213
220
245 | 5100
1280
883
714
1480 | 227
249
267
253
245 | 1630
1120
1340
1810
1730 | 321
301
393
582
5040 | 265
254
245
243
242 | 1400
1060
1610
1570
525 | 250
215
198
191
183 | 160
161
186
177
175 | | 6
7
8
9
10 | 178
177
178
180
186 | 164
162
278 | 343
326
234
202
194 | 273
261
237
225
221 | 2660
1360
906
693
569 | 234
232
232
260
234 | 1550
4880
11700
7630
2920 | 4930
1430
887
1160
3060 | 319
290
244
237
375 | 965
509
333
307
263 | 184
186
182
180
1020 | 168
163
278
552
345 | | 11
12
13
14
15 | 1650
1190
1920
779
452 | 407
652
299 | 211
341
388
467
337 | 214
200
202
201
203 | 489
306
260
268
274 | 223
224
229
220
220 | 2470
2410
2220
2660
2380 | 2640
2240
2530
1780
1210 | 499
340
279
417
326 | 452
574
318
264
434 | 3070
428
261
375
691 | 198
180
166
159
170 | | 16
17
18
19
20 | 344
257
223
202
193 | 277
471
297 | 3960
2430
936
479
352 | 200
198
190
189
201 | 278
298
296
301
311 | 211
217
896
4730
13300 | 2840
4420
2550
2130
1810 | 851
1540
1920
898
752 | 836
658
288
238
219 | 329
289
285
286
241 | 303
320
292
231
194 | 258
268
194
299
513 | | 21
22
23
24
25 | 192
190
192
185
174 | 196
177
173 | 313
283
270
249
235 | 193
205
217
1320
1150 | 314
282
277
276
266 | 11300
4560
2830
2170
1840 | 1610
1530
983
478
377 | 618
447
337
307
291 | 348
286
214
204
264 | 219
209
208
205
193 | 183
178
172
164
167 | 333
259
205
184
172 | | 26
27
28
29
30
31 | 177
167
167
173
172
169 | 183
398
551
317 | 218
229
228
218
215
206 | 397
277
247
235
234
8240 | 264
259
250
 | 1920
1840
950
547
5160
4040 | 621
538
384
343
333 | 290
306
363
484
363
291 | 268
468
344
466
394 | 195
204
197
194
300
310 | 368
234
186
176
171
163 | 162
153
150
151
159 | | TOTAL
MEAN
MAX
MIN
AC-FT | 11027
355.7
1920
167
21870 | 259.0
652
162 | 14951
482.3
3960
194
29660 | 17015
548.9
8240
189
33750 | 20914
746.9
5100
250
41480 | 60060
1937
13300
211
119100 | 69397
2313
11700
333
137600 | 38562
1244
5040
290
76490 | 10070
335.7
836
204
19970 | 14448
466.1
1610
193
28660 | 11116
358.6
3070
163
22050 | 6698
223.3
552
150
13290 | | STATIST | CICS OF | MONTHLY MI | EAN DATA F | OR WATER | YEARS 1925 | 5 - 2002 | , BY WATER | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 500.4
5779
1982
13.6
1940 | 4472
1982
18.9 | 489.5
8319
1992
25.0
1940 | 456.1
4504
1992
21.7
1930 | 685.5
4740
1997
26.8
1930 | 860.2
4521
1945
22.5
1940 | 863.1
7245
1942
42.6
1936 | 1599
14030
1990
48.5
1937 | 1075
11990
1989
17.0
1925 | 393.4
3475
1941
21.1
1939 | 249.4
1478
1950
12.1
1925 | 326.0
3094
1962
15.6
1931 | | SUMMARY | STATI | STICS | FOR | 2001 CALE | NDAR YEAR | I | FOR 2002 W | VATER YEAR | | WATER YEAR | S 1925 | - 2002 | | MAXIMUM
MAXIMUM | MEAN ANNUAL ANNUAL DAILY DAILY SEVEN- PEAK PEAK RUNOFF CENT EX | MEAN MEAN MEAN DAY MINIMUI FLOW STAGE (AC-FT) CEEDS CEEDS | | 350661
960.7
10500
147
154
695500
2770
337
171 | Feb 16
Jul 30
Aug 5 | | 282027
772.7
13300
150
162
14200
26.5
559400
1870
273
177 | Mar 20
Sep 28
Sep 24
Mar 20
Mar 20 | | 665.3
2629
79.3
48900
4.5
7.3
64400
33.88
482000
1580
185
49 | Sep
Jun 1
May | 1992
1956
3 1990
7 1925
7 1925
3 1990
3 1990 | # 08049500 West Fork Trinity River at Grand Prairie, TX--Continued #### 08049500 West Fork Trinity River at Grand Prairie, TX--Continued #### PRECIPITATION RECORDS PERIOD OF RECORD.--Oct. 2001 to Sept. 2002 (discontinued). GAGE.--Tipping-bucket rain gage (no wind shields used) with satellite telemetry. Datum of gage is 405.42 ft above NGVD of 1929. REMARKS.--Records fair. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 4.63 inches, July 11. | | | PRECIPIT | TATION FRO | M DCP, ir | | WATER YEA | AR OCTOBER
JES | 2001 TO | SEPTEMBER | R 2002 | | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.11
0.17 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
1.30 | 0.00
0.00
0.00
0.04
0.78 | 0.00
0.13
0.00
0.00
0.00 | 0.00
0.00
0.00
0.01
0.00 | 0.00
0.00
0.29
0.00
2.24 | 0.00
0.00
0.00
0.02
0.04 | 1.09
0.45
0.15
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.33
0.00 | 1.46
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.48
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.22
0.00 | 0.47
2.65
0.00
0.00 | 0.00
0.00
0.27
0.25
0.22 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 1.22
0.47
0.32
0.00
0.00 | 0.03
0.00
0.00
0.00
0.17 | 0.27
0.00
0.24
0.00
0.68 |
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.10
0.00
0.00 | 0.00
0.36
0.00
0.00 | 0.00
0.00
0.32
0.00
0.00 | 4.63
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00 | 0.00
0.09
0.00
0.00 | 1.97
0.14
0.00
0.00
0.00 | 0.00
0.00
0.01
0.01
0.00 | 0.00
0.00
0.00
0.05
0.00 | 0.00
0.00
0.67
3.20
0.01 | 0.13
0.00
0.00
0.00
0.00 | 0.00
0.95
0.00
0.00 | 0.72
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.01
0.00
0.00
0.00 | 0.00
0.01
0.29
0.97
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.06
0.28
0.02
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.35
2.94 | 0.00
0.00
0.00
 | 0.00
0.00
0.00
0.00
2.87
0.00 | 0.46
0.00
0.00
0.00
0.00 | 0.00
0.20
0.01
0.64
0.00
0.00 | 1.17
0.00
0.90
0.02
0.95 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL | 2.29 | 0.98 | 4.77 | 5.88 | 1.35 | 7.10 | 3.82 | 5.43 | 4.14 | 6.32 | 0.00 | 0.00 | 08049500 West Fork Trinity River at Grand Prairie, TX--Continued #### 08049500 West Fork Trinity River at Grand Prairie, TX--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. --CHEMICAL DATA: Jan. 1964 to current year. BIOCHEMICAL DATA: Jan. 1968 to current year. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Oct. 1966 to Sept. 1992, Aug. 1993 to current year. pH: Oct. 1976 to Sept. 1992, Aug. 1993 to current year. WATER TEMPERATURE: Oct. 1966 to Sept. 1992, Aug. 1993 to current year. DISSOLVED OXYGEN: Oct. 1976 to Sept. 1992, Aug. 1993 to current year. INSTRUMENTATION .-- Water-quality monitor since Nov. 1976. REMARKS.--Records good. Interruption in the record was caused by malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous water years using the daily records of specific conductance and regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- EXEMSE FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,320 microsiemens/cm, Dec. 12, 1978; minimum, 108 microsiemens/cm, May 1, 1986. pH: Maximum, 8.6 units, on several days during period of record; minimum, 6.6 units, Jan. 6, 1979. WATER TEMPERATURE: Maximum, 35.0°C, Aug. 8, 1982; minimum, 3.0°C, Jan. 9, 1973. DISSOLVED OXYGEN: Maximum, 15.9 mg/L, Feb. 27, 2002; minimum, 0.0 mg/L, on several days during period of record. #### EXTREMES FOR CURRENT YEAR. -- EXEMSE FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 982 microsiemens/cm, Oct. 7; minimum, 161 microsiemens/cm, May 5. pH: Maximum, 8.5 units, Feb. 26, 27, Sept. 18; minimum, 7.3 units, Oct. 11, 12, Aug. 10. WATER TEMPERATURE: Maximum, 32.9°C, July 25; minimum, 7.9°C, Feb. 6. DISSOLVED OXYGEN: Maximum, 15.9 mg/L, Feb. 27; minimum, 2.2 mg/L, June 4. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |------------------------|--|---|--|---|--|--|---|---|---|--|--|--|--| | NOV
07
MAR | 1100 | 186 | 747 | 7.8 | 21.5 | 7.3 | 84 | 2.6 | 170 | 57 | 54.1 | 8.29 | 75.5 | | 26 | 0930 | 1990 | 457 | 7.6 | 14.0 | 9.0 | 89 | 2.2 | 170 | 33 | 57.8 | 5.98 | 26.1 | | APR
30 | 0955 | 350 | 720 | 7.8 | 24.5 | 6.9 | 86 | 2.2 | 230 | 61 | 76.9 | 8.98 | 60.5 | | JUN
26 | 0945 | 209 | 713 | 7.6 | 28.0 | 5.8 | 77 | 2.4 | 180 | 48 | 58.2 | 8.03 | 64.2 | | JUL
18 | 1050 | 298 | 708 | 7.6 | 27.5 | 6.5 | 85 | 2.5 | 190 | 54 | 60.3 | 8.82 | 67.9 | | SEP
05 | 1015 | 194 | 726 | 7.3 | 30.0 | 5.7 | 76 | 4.2 | 160 | 29 | 53.5 | 7.40 | 74.6 | | 03 | 1015 | 171 | 720 | 7.5 | 30.0 | 3.7 | 70 | 1.2 | 100 | 2, | 33.3 | 7.10 | 71.0 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | NOV | | | | | | | | | | | | | | | 07
MAR | 3 | 47 | 10.7 | <1 | 137 | 114 | 66.9 | 78.0 | .7 | 8.8 | 429 | 13.2 | .033 | | | | | | | | | | | | | | | | | 26 | .9 | 25 | 4.37 | 1 | 164 | 136 | 44.9 | 25.1 | . 4 | 6.4 | 262 | 2.07 | .023 | | APR 30 | .9
2 | 25
36 | | 1 | | 136
168 | 44.9
78.6 | 25.1
53.9 | .4 | 6.4
8.7 | 262
442 | 2.07
9.98 | .023 | | APR
30
JUN
26 | | | 4.37 | | 164 | | | | | | | | | | APR
30
JUN | 2 | 36 | 4.37
6.90 | 1 | 164
202 | 168 | 78.6 | 53.9 | .3 | 8.7 | 442 | 9.98 | .020 | # 08049500 West Fork Trinity River at Grand Prairie, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | |-----------|--|--|--|--|--|--|--| | NOV | | | | | | | | | 07 | 13.3 | E.04 | | 1.0 | 1.36 | <.02 | | | MAR
26 | 2.10 | . 09 | .44 | .53 | .11 | .11 | .340 | | APR | 2.10 | .09 | | . 55 | .11 | . 11 | .540 | | 30 | 10.0 | <.04 | | .80 | .80 | .72 | 2.21 | | JUN | | | | | | | | | 26 | 11.7 | .04 | .74 | .78 | . 59 | .58 | 1.79 | | JUL | 0.05 | 0.4 | | | | - 4 | | | 18
SEP | 8.86 | <.04 | | .79 | .52 | .54 | 1.64 | | 05 | 10.2 | E.03 | | .96 | 1.21 | 1.14 | 3.48 | Remark codes used in this report: < -- Less than E -- Estimated value SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------
--|--|--|--|--|--| | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 940
915
886
911
935 | 840
849
817
823
886 | 884
885
847
869
909 | 800
826
851
827
862 | 724
780
793
792
805 | 771
800
820
812
831 | 731
812
859
807
762 | 614
676
740
745
715 | 677
751
801
774
741 | 816
797
797
762
840 | 732
723
724
694
736 | 769
758
753
727
789 | | 6
7
8
9
10 | 968
982
966
942
887 | 927
931
920
887
852 | 944
950
940
915
870 | 847
762
794
845
820 | 748
707
713
621
750 | 799
735
755
751
791 | 801
766
727
794
849 | 670
557
662
680
724 | 769
674
696
738
786 | 853
847
787
765
851 | 770
719
707
701
764 | 806
791
739
738
807 | | 11
12
13
14
15 | 865
459
493
486 | 361
346
313
331
482 | 569
410
367
427
e496 | 829
780
708
547
687 | 655
655
473
476
547 | 762
723
551
503
637 | 817
742
762
698
670 | 718
677
547
589
600 | 781
715
672
661
631 | 828
851
877
908
855 | 776
791
806
816
780 | 801
820
840
860
815 | | 16
17
18
19
20 | 594
672
769
823
853 | 581
605
697
773 | e570
625
702
760
813 | 729
721
802
634
696 | 640
685
634
549
585 | 694
698
723
570
656 | 600
315
407
520
607 | 212
257
281
396
509 | 289
285
349
466
576 | 811
880
860
881
892 | 749
776
822
819
842 | 777
836
841
843
863 | | 21
22
23
24
25 | 856
869
824
769
829 | 792
766
758
725
752 | 829
821
788
751
789 | 730
857
832
811
811 | 630
730
778
759
754 | 680
802
800
783
782 | 697
745
762
785
778 | 605
687
695
695
694 | 661
715
731
742
731 | 895
865
822
791
560 | 821
811
769
477
516 | 859
843
801
635
539 | | 26
27
28
29
30
31 | 858
869
869
894
852
755 | 793
823
810
811
735
712 | 825
846
828
851
791
734 | 772
768
726
715
629 | 729
720
600
616
589 | 745
741
678
661
614 | 775
742
735
773
815
836 | 679
680
661
695
708
739 | 728
709
700
731
762
783 | 638
727
809
803
786
770 | 521
638
700
755
750
178 | 585
692
770
780
768
264 | | MONTH | | | 761 | 862 | 473 | 722 | 859 | 212 | 672 | 908 | 178 | 758 | 08049500 West Fork Trinity River at Grand Prairie, TX--Continued SPECIFIC CONDUCTANCE, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | SPECIF | IC CONDO | CIANCE, II | I US/CM (| 2 ZSC, WAIER | YEAR | OCTOBER | 2001 10 | SEPIEMBER | 2002 | | |---|---|--|--|---|---|--|---|--|---|--|---|--| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 348 | 198 | 275 | 881 | 833 | 855 | 441 | 380 | 421 | 795 | 746 | 774 | | 2 | 420 | 348 | 394 | 881
883 | 813 | 844 | 511 | 380
441
427
425 | 486 | 828 | 781 | 804 | | 3 | 491 | 408 | 457 | 918
895
838 | 819 | 864 | 551
535 | 427 | 506 | 836 | 787 | 816 | | 4 | 518 | 456 | 489 | 895 | 799 | 853 | 535 | 425 | 470 | 836
846 | 724 | 790 | | 5 | 508 | 418 | 469 | 838 | 767 | 807 | 459 | 438 | 451 | 724 | 161 | 401 | | 6 | 418 | 331 | 351 | 824 | 766 | 797 | 501 | 446 | 469 | 355 | 286 | 314 | | 7 | 449 | 364 | 420 | 824
900 | 805 | 855 | 482 | 216 | 372 | | 355 | 385 | | 8 | 515 | 442 | 490 | 012 | 860 | | | 213 | 238 | 478 | 392 | 446 | | 9 | 587 | 498 | 550 | 894 | 859 | 876 | 273
369 | 273 | 316 | | 406 | 460 | | 10 | 652 | 564 | 610 | 915 | 857 | 887 | 429 | 369 | 402 | 406 | 277 | 335 | | 11 | 645 | 595 | 617 | 946 | 873 | 904 | 457 | 429 | 439 | 404 | 353 | 387 | | 12 | 655 | 617 | 630 | 918 | 849 | 000 | E10 | 431 | 467 | 383 | | 368 | | 13 | 683 | 643 | 667 | 878 | 825 | 853 | 457
447 | 430 | 441 | 400 | 362 | 385 | | 14 | 727 | 683 | 705 | 946 | 855 | 903 | 447 | 414 | 435 | | 379 | 400 | | 15 | 740 | 709 | 723 | 913 | 884 | 898 | 434 | 415 | 424 | 462 | 416 | 443 | | 16 | 767 | 719 | 748 | 956 | 890 | 922 | 438 | 325 | 416 | 507 | 448 | 483 | | 17 | 783 | 744 | 767 | 942 | 899 | 920 | 400 | 246 | 355 | 508 | 410 | 464 | | 18 | 829 | 754 | 795 | 931 | 533 | | 447 | 393 | 427 | 425 | 361 | 397 | | 19 | 780 | 716 | 754 | 751 | 195 | 467 | 473 | 447 | 461 | 494 | 425 | 472 | | 20 | 788 | 719 | 756 | 268 | 218 | 240 | 474 | 455 | 467 | 510 | 458 | 489 | | 0.1 | 0.01 | 754 | 701 | 200 | 0.61 | 206 | 404 | 440 | 460 | F00 | 401 | 506 | | 21
22 | 821
844 | 754
766 | 781
806 | 322
391 | 261
322 | 296
368 | 484
468 | 448
447 | 468
459 | 528
585 | 481
505 | 506
545 | | 23 | 868 | 807 | 837 | 439 | 391 | 414 | 537 | 451 | 492 | 629 | 573 | 607 | | 24 | 866 | 806 | 840 | 439
454 | 438 | 446 | 655 | 537 | 601 | 682 | | 656 | | 25 | 898 | 817 | 864 | 462 | 439 | 453 | 705 | 653 | 686 | 701 | | 684 | | | | | | | | | | | | | | | | 26 | 877 | 774 | 831 | 452
463
555
641 | 425 | 442 | 720 | 642 | 692 | 746 | | 717 | | 27
28 | 838
887 | 765
796 | 796
840 | 463
555 | 427
449 | 450
507 | 711
755 | 668
672 | 689
713 | 758
694 | 662
657 | 718
675 | | 29 | | | | 641 | 555 | 600 | 764 | 737 | 751 | 674 | | 635 | | 30 | | | | 639 | 290 | 389 | 774 | 738 | 756 | 659 | 604 | 636 | | 31 | | | | 380 | 311 | 344 | | | | 682 | 624 | 661 | | | | | | | | | | | | | | | | MONTH | 898 | 198 | 652 | 956 | 195 | 677 | 774 | 213 | 492 | 846 | 161 | 544 | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | | | | DAY | MAX | MIN
JUNE | MEAN | | JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY
1 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1
2 | 735
767 | JUNE
671
707 | | | JULY | 421
376 | 654
715 | AUGUST
582
593 | 622
673 | 797
825 | SEPTEMB
783
790 | ER
791
808 | | 1
2
3 | 735
767
776 | JUNE
671
707
707 | 710
744
751 | | JULY | 421
376
416 | 654
715
751 | AUGUST
582
593
701 | 622
673
730 | 797
825
804 | SEPTEMB
783
790
738 | ER
791
808
775 | | 1
2
3
4 | 735
767
776
779 | JUNE
671
707
707
697 | 710
744
751
749 | | JULY | 421
376
416
376 | 654
715
751
771 | AUGUST
582
593
701
736 | 622
673
730
754 | 797
825
804
738 | 783
790
738
695 | 791
808
775
705 | | 1
2
3 | 735
767
776 | JUNE
671
707
707 | 710
744
751 | | | 421
376
416 | 654
715
751 | AUGUST
582
593
701 | 622
673
730 | 797
825
804 | SEPTEMB
783
790
738 | ER
791
808
775 | | 1
2
3
4 | 735
767
776
779 | JUNE
671
707
707
697 | 710
744
751
749 | | JULY | 421
376
416
376 | 654
715
751
771 | AUGUST
582
593
701
736 | 622
673
730
754 | 797
825
804
738
720 | SEPTEMB 783 790 738 695 683 | 791
808
775
705 | | 1
2
3
4
5 | 735
767
776
779
754 | JUNE
671
707
707
697
696 |
710
744
751
749
726 | 500
428
493
401
552
555
533 | JULY 332 313 344 342 398 399 399 | 421
376
416
376
477
476
472 | 654
715
751
771
825
813
758 | AUGUST 582 593 701 736 758 758 | 622
673
730
754
789 | 797
825
804
738
720 | 783
790
738
695
683
720
756 | 791
808
775
705
696 | | 1
2
3
4
5 | 735
767
776
779
754 | JUNE 671 707 707 697 696 | 710
744
751
749
726
e786
e829
e860 | 500
428
493
401
552
555
533
593 | JULY 332 313 344 342 398 399 399 529 | 421
376
416
376
477
476
472
560 | 654
715
751
771
825
813
758
786 | AUGUST 582 593 701 736 758 758 733 738 | 622
673
730
754
789
791
744
763 | 797
825
804
738
720
756

813 | 783
790
738
695
683
720
756
526 | 791
808
775
705
696
738
e774
686 | | 1
2
3
4
5
6
7
8 | 735
767
776
779
754 | JUNE 671 707 707 697 696 | 710
744
751
749
726
e786
e829
e860
e878 | 500
428
493
401
552
555
533
593
646 | JULY 332 313 344 342 398 399 399 529 576 | 421
376
416
376
477
476
472
560
610 | 654
715
751
771
825
813
758
786
812 | AUGUST 582 593 701 736 758 758 733 738 776 | 622
673
730
754
789
791
744
763
796 | 797
825
804
738
720
756

813
782 | 783
790
738
695
683
720
756
526
549 | 791
808
775
705
696
738
e774
686
693 | | 1
2
3
4
5 | 735
767
776
779
754 | JUNE 671 707 707 697 696 | 710
744
751
749
726
e786
e829
e860 | 500
428
493
401
552
555
533
593 | JULY 332 313 344 342 398 399 399 529 | 421
376
416
376
477
476
472
560 | 654
715
751
771
825
813
758
786 | AUGUST 582 593 701 736 758 758 733 738 | 622
673
730
754
789
791
744
763 | 797
825
804
738
720
756

813 | 783
790
738
695
683
720
756
526 | 791
808
775
705
696
738
e774
686 | | 1
2
3
4
5
6
7
8
9 | 735
767
776
779
754
 | JUNE 671 707 707 697 696 | 710
744
751
749
726
e786
e829
e860
e878
e781 | 500
428
493
401
552
555
533
593
646
690 | JULY 332 313 344 342 398 399 399 529 576 621 | 421
376
416
376
477
476
472
560
610
660 | 654
715
751
771
825
813
758
786
812
811 | AUGUST 582 593 701 736 758 758 733 738 776 317 | 622
673
730
754
789
791
744
763
796
613 | 797
825
804
738
720
756

813
782
558 | 783
790
738
695
683
720
756
526
549
498 | 791
808
775
705
696
738
e774
686
693
528 | | 1
2
3
4
5
6
7
8 | 735
767
776
779
754 | JUNE 671 707 707 697 696 | 710
744
751
749
726
e786
e829
e860
e878 | 500
428
493
401
552
555
533
593
646 | JULY 332 313 344 342 398 399 399 529 576 | 421
376
416
376
477
476
472
560
610 | 654
715
751
771
825
813
758
786
812 | AUGUST 582 593 701 736 758 758 733 738 776 | 622
673
730
754
789
791
744
763
796 | 797
825
804
738
720
756

813
782 | 783
790
738
695
683
720
756
526
549 | 791
808
775
705
696
738
e774
686
693 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 735
767
776
779
754 | JUNE 671 707 707 697 696 633 | 710
744
751
749
726
e786
e829
e860
e878
e781 | 500
428
493
401
552
555
533
593
646
690
748
693
735 | JULY 332 313 344 342 398 399 529 576 621 327 327 603 | 421
376
416
376
477
476
472
560
610
660
689
549
673 | 654
715
751
771
825
813
758
786
812
811
459 | 582
593
701
736
758
758
758
733
736
717
317
272
330
454 | 622
673
730
754
789
791
744
763
796
613
313
406
497 | 797
825
804
738
720
756

813
782
558
592
747
760 | 783
790
738
695
683
720
756
526
549
498
500
592
739 | 791
808
775
705
696
738
e774
686
693
528
553
689
749 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 735
767
776
779
754

727
 | JUNE 671 707 707 697 696 633 | 710
744
751
749
726
e786
e829
e860
e878
e781
659
e715
e745
e790 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654 | 654
715
751
771
825
813
758
786
812
811
459
459
459
517
610 | AUGUST 582 593 701 736 758 758 733 738 737 317 272 330 454 405 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558 | 797
825
804
738
720
756

813
782
558
592
747
760
773 | 783
790
738
695
683
720
756
526
529
498
500
592
739 | 791
808
775
705
696
738
e774
686
693
528
553
689
764 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 735
767
776
779
754
 | JUNE 671 707 707 697 696 633 | 710
744
751
749
726
e786
e829
e860
e878
e781 | 500
428
493
401
552
555
533
593
646
690
748
693
735 | JULY 332 313 344 342 398 399 529 576 621 327 327 603 | 421
376
416
376
477
476
472
560
610
660
689
549
673 | 654
715
751
771
825
813
758
786
812
811
459
459
517 | 582
593
701
736
758
758
758
733
736
717
317
272
330
454 | 622
673
730
754
789
791
744
763
796
613
313
406
497 | 797
825
804
738
720
756

813
782
558
592
747
760 | 783
790
738
695
683
720
756
526
549
498
500
592
739 | 791
808
775
705
696
738
e774
686
693
528
553
689
749 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 735
767
776
779
754

727
 | JUNE 671 707 707 697 696 633 | 710
744
751
749
726
e786
e829
e860
e878
e781
659
e715
e745
e590
e610 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709 | JULY 332 313 344 342 398 399 529 576 621 327 327 603 503 348 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587 | 654
715
751
771
825
813
758
812
811
459
459
517
610
554 | 582
593
7011
736
758
758
733
738
736
317
272
330
454
405 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808 | 783
790
738
695
683
720
756
526
549
498
500
592
739
753
761 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 735
767
776
779
754

727
 | JUNE 671 707 707 697 696 633 | 710
744
751
749
726
e786
e829
e860
e878
e781
659
e715
e745
e590
e610 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587 | 654
715
751
825
813
758
786
812
811
459
459
459
517
610
554 | AUGUST 582 593 701 1736 758 758 733 738 737 317 272 330 454 405 363 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808 | 783 790 738 695 683 720 756 526 526 549 498 500 592 739 753 761 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 735
767
776
779
754

727
 | JUNE 671 707 707 697 696 633 | 710
744
751
749
726
e786
e829
e860
e878
e781
659
e715
e745
e590
e610 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709 | JULY 332 313 344 342 398 399 529 576 621 327 327 603 503 348 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587 | 654
715
751
771
825
813
758
812
811
459
459
517
610
554 | 582
593
7011
736
758
758
733
738
736
317
272
330
454
405 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808 |
783
790
738
695
683
720
756
526
549
498
500
592
739
753
761 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 735
767
776
779
754

727

610
728 | JUNE 671 707 707 697 696 633 520 603 | 710
744
751
749
726
e786
e829
e860
e878
e781
659
e715
e745
e590
e610
e511
e517
572
683 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717 | 654
715
771
825
813
758
812
811
459
459
517
610
554
517
650
607
614 | AUGUST 582 593 701 736 758 758 733 738 737 317 272 330 454 405 363 452 514 525 551 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
705 | 783 790 738 695 683 720 756 526 526 549 498 500 592 739 753 761 745 603 591 601 | 791
808
775
705
696
738
e774
686
693
528
553
689
764
787
803
644
599
656 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 735
767
776
779
754

727

610 | JUNE 671 707 707 697 696 633 520 | 710
744
751
749
726
e786
e829
e860
e878
e781
e745
e590
e610
e511
e517
572 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736 | JULY 332 313 344 342 398 399 529 576 621 327 603 503 348 568 594 666 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587 | 654
715
751
825
813
758
786
812
811
459
517
610
554
517
650
607 | XUGUST 582 593 701 736 758 758 733 738 776 317 272 330 454 405 363 452 514 525 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
5956 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618 | 783 790 738 695 683 720 756 526 549 498 500 592 739 753 761 745 603 591 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 735
767
777
776
779
754

727

610
728
802 | JUNE 671 707 707 697 696 633 520 603 716 | 710
744
751
749
726
e786
e829
e860
e878
e781
e745
e590
e610
e511
e517
572
683
777 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
759
728 | JULY 332 313 344 342 398 399 529 576 621 327 603 503 348 568 594 666 679 683 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703 | 654
715
751
771
825
813
758
786
812
811
459
517
610
554
517
650
607
614
641 | XUGUST 582 593 701 736 758 758 733 738 776 317 272 330 454 405 363 452 514 452 551 551 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605 | 797
825
804
738
720
756

813
3782
558
592
747
760
773
808
848
745
618
705
733 | 783 790 738 695 683 720 756 526 549 498 500 592 739 753 761 745 603 591 601 498 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787
803
644
599
656
581 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 735
767
776
779
754

727

610
728
802 | JUNE 671 707 707 697 696 633 520 603 716 | 710
744
751
749
726
e786
e829
e8860
e878
e781
659
e715
e745
e590
e610
e511
e517
572
683
777 | 500
428
493
401
552
555
533
646
690
748
693
735
682
709
708
674
736
728
768 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703 | 654
7151
7711
825
813
758
812
811
459
459
517
610
554
517
650
607
614
641 | AUGUST 582 593 701 736 758 758 738 738 738 736 317 272 330 454 405 363 452 514 525 551 551 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
618
705
733 | 783 790 738 695 683 720 756 526 526 549 498 500 592 739 761 745 603 591 601 498 | 791
808
775
705
696
738
e774
686
693
528
553
689
764
787
803
644
599
656
581 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 735
767
777
776
779
754

727

610
728
802 | JUNE 671 707 707 697 696 633 520 603 716 | 710
744
751
749
726
e786
e829
e860
e878
e781
e745
e590
e610
e511
e517
572
683
777 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
759
728 | JULY 332 313 344 342 398 399 529 576 621 327 603 503 348 568 594 666 679 683 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703 | 654
715
751
771
825
813
758
786
812
811
459
517
610
554
517
650
607
614
641 | XUGUST 582 593 701 736 758 758 733 738 776 317 272 330 454 405 363 452 514 452 551 551 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605 | 797
825
804
738
720
756

813
3782
558
592
747
760
773
808
848
745
618
705
733 | 783 790 738 695 683 720 756 526 549 498 500 592 739 753 761 745 603 591 601 498 | 791
808
775
705
696
738
e774
686
528
553
689
749
764
787
803
644
599
656
581 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 735
767
776
779
754

727

610
728
802
851
845
740
794 | JUNE 671 707 707 697 696 633 520 603 716 759 605 630 697 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e745 e590 e610 e511 e517 572 683 777 807 645 700 753 | 500
428
493
401
552
555
533
646
690
748
693
735
682
709
708
674
736
728
788
780
745 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 683 724 717 705 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723 | 654
715
771
825
813
758
812
811
459
459
459
517
650
607
614
641
675
722
742
772 | AUGUST 582 593 701 736 758 758 738 738 738 736 317 272 330 454 405 363 452 514 525 551 551 606 658 718 718 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
618
733 | 783 790 738 695 683 720 756 526 526 549 498 500 592 739 761 745 603 591 601 498 503 548 666 | 791
808
775
705
696
738
e774
6893
528
553
689
764
787
803
644
599
656
581 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 735 767 776 779 754 727 610 728 802 851 845 740 | JUNE 671 707 697 696 633 520 603 716 759 605 630 | 710
744
751
749
726
e786
e829
e860
e878
e781
e745
e590
e610
e511
e517
572
683
777 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
759
728
768
768
768
760 | JULY 332 313 344 342 398 399 529 576 621 327 603 503 348 568 594 666 679 683 683 724 717 | 421
376
416
376
477
476
472
560
660
689
549
673
654
587
666
641
693
717
703 | 654
7151
7711
825
813
758
786
812
811
459
517
610
654
517
660
607
614
641
675
722
742 | XUGUST 582 593 701 736 758 758 733 738 776 317 272 330 454 405 363 452 514 525 551 551 606 658 718 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
552
587
605 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
705
733
571
586
665 | 783 790 738 695 683 720 756 526 549 498 500 592 739 753 761 745 603 591 601 498 503 548 568 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787
803
644
599
656
581 |
| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 735 767 776 779 754 727 610 728 802 851 845 740 794 749 | JUNE 671 707 697 696 633 520 603 716 759 605 630 697 454 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e745 e590 e610 e511 e517 572 683 777 807 645 700 753 690 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
759
728
768
780
745
787 | JULY 332 313 344 342 398 399 399 529 576 621 327 603 503 348 568 594 666 679 683 683 724 717 705 732 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755 | 654
715
751
771
825
813
758
788
812
811
459
517
610
554
517
641
641
675
722
742
772
793 | XUGUST 582 593 701 736 758 758 733 738 776 317 272 2330 454 405 551 551 606 658 718 736 758 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605
642
689
729
756
778 | 797
825
804
738
720
756

813
3782
558
592
747
760
773
808
848
745
618
705
733
571
586
665
721
699 | 783 790 738 695 683 720 756 526 549 498 500 592 739 753 761 745 603 591 601 498 503 548 616 659 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787
803
644
599
656
581
538
569
634
663
680 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 735
767
776
779
754

727

610
728
802
851
845
740
794
749 | JUNE 671 707 707 697 696 633 520 603 716 759 605 630 697 454 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e745 e590 e610 e511 e517 572 683 777 807 645 700 753 690 | 500
428
493
401
552
555
533
646
690
748
693
735
682
709
708
674
736
728
788
780
745 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 683 724 717 705 732 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755 | 654
715
771
825
813
758
812
811
459
459
459
517
650
607
614
641
675
722
742
772 | AUGUST 582 593 701 736 758 758 733 738 736 317 272 330 454 405 363 452 514 525 551 551 606 658 718 738 738 738 736 758 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
618
733 | 783 790 738 695 683 720 756 526 526 549 498 500 592 739 761 745 603 591 601 498 503 548 666 659 | 791
808
775
705
696
738
e774
6893
528
553
689
764
787
803
644
599
656
581
538
569
634
663
680 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 735 767 776 779 754 727 610 728 802 851 845 740 794 749 696 786 786 786 | JUNE 671 707 697 696 633 520 603 716 759 605 630 697 454 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e745 e590 e610 e511 e517 572 683 777 807 645 700 753 690 596 662 513 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
759
728
768
760
745
787
787 | JULY 332 313 344 342 398 399 399 529 576 621 327 603 503 348 568 594 666 679 683 683 724 717 705 732 755 757 768 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755 | 654
7151
7711
825
813
758
786
812
811
459
517
610
554
517
6607
614
641
675
722
772
793
794
701
677 | XUGUST 582 593 701 736 758 738 738 738 737 317 272 2330 454 405 551 551 606 658 718 736 758 527 478 631 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605
642
689
729
756
778 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
705
733
571
665
721
699
774
806
817 | 783 790 738 695 683 720 756 526 526 529 498 500 592 739 753 761 745 603 591 601 498 503 548 616 659 698 771 786 | 791
808
775
705
696
738
e774
686
693
528
553
689
749
764
787
803
644
599
656
581
538
639
634
663
680 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 735
767
776
779
754

727

610
728
802
851
845
740
794
749
696
786
6568
614 | JUNE 671 707 707 697 696 633 520 603 716 759 605 630 697 454 454 523 372 366 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e745 e590 e610 e511 e517 572 683 777 807 645 700 753 690 596 662 513 547 | 500
428
493
401
552
555
533
646
690
748
693
735
682
709
708
674
736
759
728
768
780
760
745
787 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 683 724 717 705 732 755 757 768 740 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755 | 654
715
7711
825
813
758
812
811
459
459
517
610
554
517
650
607
614
641
675
722
742
742
772
793
794
701
6729 | AUGUST 582 593 701 736 758 758 733 738 736 317 272 330 454 405 363 452 514 525 551 606 658 718 736 758 527 478 631 677 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605
642
689
729
756
778
697
626
651
712 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
605
733
571
586
665
665
721
699 | 783 790 738 695 683 720 756 526 526 529 498 500 592 739 761 745 603 591 601 498 503 548 668 616 659 | 791
808
775
705
696
738
6774
683
528
553
689
764
787
803
644
599
656
581
538
569
634
663
680 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 735 767 776 779 754 727 610 728 802 851 845 740 794 749 696 686 618 6568 614 586 | JUNE 671 707 697 696 633 520 603 716 759 605 630 697 454 454 523 372 366 441 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e590 e610 e511 e517 572 683 777 807 645 700 753 690 596 662 513 547 551 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
728
760
745
787
789
799
815
774
775 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 683 724 717 705 732 755 757 768 740 470 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755
767
772
788
762
669 | 654
7151
7711
825
813
7586
812
811
459
459
517
610
554
517
650
6014
641
675
742
742
772
793
794
701
677
772 | 582
593
758
758
758
733
736
776
317
272
330
454
405
363
452
514
525
551
551
606
658
718
736
758 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605
642
689
729
756
6778 | 797
825
804
738
720
756

813
818
558
592
747
7600
773
808
848
745
618
705
733
571
586
665
721
699 | 783 790 788 695 683 720 756 526 526 529 498 500 592 739 753 761 745 603 591 698 508 616 659 698 771 786 810 832 | 791 808 775 705 696 738 e774 686 693 528 553 689 749 764 787 803 644 599 634 599 634 680 739 791 806 840 844 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 735
767
776
779
754

727

610
728
802
851
845
740
794
749
696
786
6568
614 | JUNE 671 707 707 697 696 633 520 603 716 759 605 630 697 454 454 523 372 366 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e745 e590 e610 e511 e517 572 683 777 807 645 700 753 690 596 662 513 547 | 500
428
493
401
552
555
533
646
690
748
693
735
682
709
708
674
736
759
728
768
780
760
745
787 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 683 724 717 705 732 755 757 768 740 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755 |
654
715
7711
825
813
758
812
811
459
459
517
610
554
517
650
607
614
641
675
722
742
742
772
793
794
701
6729 | AUGUST 582 593 701 736 758 758 733 738 736 317 272 330 454 405 363 452 514 525 551 606 658 718 736 758 527 478 631 677 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605
642
689
729
756
778
697
626
651
712 | 797
825
804
738
720
756

813
782
558
592
747
760
773
808
848
745
618
605
733
571
586
665
665
721
699 | 783 790 738 695 683 720 756 526 526 529 498 500 592 739 761 745 603 591 601 498 503 548 668 616 659 | 791
808
775
705
696
738
6774
683
528
553
689
764
787
803
644
599
656
581
538
569
634
663
680 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 735 767 776 779 754 727 610 728 802 851 845 740 794 749 696 686 618 6568 614 586 | JUNE 671 707 697 696 633 520 603 716 759 605 630 697 454 454 523 372 366 441 | 710 744 751 749 726 e786 e829 e860 e878 e781 659 e715 e590 e610 e511 e517 572 683 777 807 645 700 753 690 596 662 513 547 551 | 500
428
493
401
552
555
533
593
646
690
748
693
735
682
709
708
674
736
728
760
745
787
789
799
815
774
775 | JULY 332 313 344 342 398 399 399 529 576 621 327 327 603 503 348 568 594 666 679 683 683 724 717 705 732 755 757 768 740 470 | 421
376
416
376
477
476
472
560
610
660
689
549
673
654
587
666
641
693
717
703
741
757
741
723
755
767
772
788
762
669 | 654
7151
7711
825
813
7586
812
811
459
459
517
610
554
517
650
6014
641
675
742
742
772
793
794
701
677
772 | 582
593
758
758
758
733
736
776
317
272
330
454
405
363
452
514
525
551
551
606
658
718
736
758 | 622
673
730
754
789
791
744
763
796
613
313
406
497
558
448
499
596
552
587
605
642
689
729
756
6778 | 797
825
804
738
720
756

813
818
558
592
747
7600
773
808
848
745
618
705
733
571
586
665
721
699 | 783 790 788 695 683 720 756 526 526 529 498 500 592 739 753 761 745 603 591 698 508 616 659 698 771 786 810 832 | 791 808 775 705 696 738 e774 686 693 528 553 689 749 764 787 803 644 599 634 599 634 680 739 791 806 840 844 | e Estimated 101 08049500 West Fork Trinity River at Grand Prairie, TX--Continued PH, WH, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | • | | | | | | | | | | | |----------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--|--| | DAY | MAX | MIN | | | OCT | OBER | NOVE | BER | DECEM | BER | JANU | JARY | FEBRU | JARY | MAI | RCH | | 1
2
3
4
5 | 7.6
7.6
7.7
7.7
7.7 | 7.5
7.5
7.6
7.6 | 7.9
8.1
8.1
8.0
8.0 | 7.7
7.7
8.0
7.9
7.9 | 7.7
7.7
7.7
7.6
7.6 | 7.7
7.6
7.6
7.6
7.6 | 7.9
7.8
7.8
7.8
7.8 | 7.8
7.7
7.7
7.7
7.6 | 8.0
7.8
7.8
7.8
7.8 | 7.8
7.8
7.7
7.7 | 8.2
8.1
8.2
8.2
8.2 | 7.9
7.8
7.8
7.8
7.8 | | 6
7
8
9
10 | 7.7
7.7
7.7
7.7
7.6 | 7.6
7.6
7.6
7.6
7.5 | 7.9
7.9
7.9
7.9
7.8 | 7.8
7.8
7.8
7.8
7.7 | 7.7
7.8
7.9
7.9 | 7.6
7.6
7.8
7.8
7.7 | 7.7
7.8
7.8
7.8
7.8 | 7.7
7.7
7.7
7.7
7.6 | 7.7
7.7
7.7
7.8
7.9 | 7.6
7.6
7.7
7.7 | 8.3
8.2
8.0
8.0
8.2 | 7.8
7.9
7.7
7.7 | | 11
12
13
14
15 | 7.6
7.9
8.0
7.9
8.0 | 7.3
7.3
7.8
7.8
7.9 | 7.9
7.9
7.8
7.8
7.8 | 7.7
7.7
7.6
7.7
7.7 | 7.8
7.7
7.8
7.7
7.8 | 7.6
7.5
7.5
7.6
7.6 | 7.8
7.8
7.8
7.7 | 7.6
7.6
7.7
7.6
7.6 | 7.8
7.7
7.7
7.7
7.7 | 7.7
7.6
7.6
7.6
7.7 | 8.0
8.2
8.2
8.2
8.0 | 7.7
7.7
7.8
7.8
7.8 | | 16
17
18
19
20 | 8.0
8.0
7.9
8.0
8.0 | 7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.7 | 7.7
7.7
7.6
7.6
7.6 | 7.9
7.7
7.7
7.7
7.7 | 7.5
7.5
7.6
7.7
7.5 | 7.8
7.7
7.7
7.8
7.8 | 7.6
7.6
7.6
7.6
7.7 | 7.7
7.6
7.6
7.6
7.6 | 7.6
7.6
7.5
7.6
7.6 | 8.0
8.0
7.8
7.9 | 7.7
7.7
7.4
7.4
7.6 | | 21
22
23
24
25 | 8.0
8.0
8.0
8.0
7.9 | 7.9
7.9
7.9
7.9 | 7.6
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.7
7.7
7.7
7.7
7.8 | 7.6
7.7
7.7
7.7
7.7 | 7.9
7.8
7.7
7.9
7.8 | 7.7
7.7
7.6
7.6
7.8 | 7.8
7.8
7.9
8.0
8.1 | 7.6
7.7
7.7
7.7
7.8 | 7.6
7.7
7.7
7.7
7.7 | 7.5
7.5
7.6
7.6
7.6 | | 26
27
28
29
30
31 | 7.9
7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.8
7.7 | 7.7
7.7
7.7
7.7
7.8 | 7.5
7.6
7.6
7.5
7.7 | 7.8
7.8
7.7
7.7
7.8
7.8 | 7.7
7.7
7.6
7.7
7.7 | 7.9
7.9
7.9
7.9
7.8
8.1 | 7.8
7.8
7.8
7.7
7.7 | 8.5
8.5
8.4
 | 7.9
8.0
8.0
 | 7.8
7.8
7.7
7.7
7.8
7.5 | 7.7
7.7
7.6
7.6
7.5
7.4 | | MONTH | 8.0 | 7.3 | 8.1 | 7.5 | 7.9 | 7.5 | 8.1 | 7.6 | 8.5 | 7.5 | 8.3 | 7.4 | 08049500 West Fork Trinity River at Grand Prairie, TX--Continued PH, WH, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | APF | RIL | MZ | ΑΥ | JUI | ΙE | JUL | Y | AUGU | JST | SEPTE | MBER | | 1
2
3
4
5 | 7.5
7.6
7.6
7.8
7.7 | 7.4
7.5
7.5
7.6
7.7 | 8.0
8.0
7.9
7.9
8.1 | 7.7
7.7
7.6
7.6
7.5 | 7.5
7.7
7.7
7.9
7.8 | 7.4
7.5
7.5
7.5
7.7 | 7.7
7.7
7.7
7.7
7.8 | 7.4
7.5
7.5
7.6
7.7 | 8.1
8.0
8.0
7.9 | 7.6
7.7
7.7
7.8
7.8 | 8.1
8.0
7.9
7.9 | 7.8
7.7
7.7
7.7
7.6 | | 6
7
8
9
10 | 7.7
7.7
7.7
7.6
7.5 | 7.7
7.5
7.5
7.5
7.4 | 7.6
7.6
7.7
7.7 | 7.5
7.5
7.6
7.5
7.5 | 7.8
7.9
7.9
7.9
7.8 | 7.6
7.7
7.7
7.7
7.6 | 7.8
7.8
8.0
8.0 | 7.6
7.6
7.7
7.7 | 7.9
7.8
7.9
7.9 | 7.7
7.7
7.7
7.7
7.3 | 8.0

7.9
7.8
7.8 | 7.6

7.8
7.5
7.7 | | 11
12
13
14
15 | 7.6
7.7
7.8
7.8
7.8 | 7.5
7.6
7.7
7.7
7.7 | 7.7
7.8
7.8
7.8
7.8 | 7.5
7.6
7.8
7.8
7.8 | 8.0

 | 7.7

 | 8.0
7.9
8.0
7.9
7.8 | 7.8
7.5
7.7
7.7
7.6 | 7.6
7.6
7.8
7.9
7.8 | 7.4
7.5
7.5
7.7
7.6 | 8.1
8.0
8.1
8.1 | 7.7
7.8
7.9
7.8
7.8 | | 16
17
18
19
20 | 7.9
7.8
7.7
7.8
7.8 | 7.7
7.5
7.6
7.7
7.8 | 7.9
7.8
7.7
7.8
7.9 | 7.7
7.6
7.5
7.6
7.6 | 7.9
8.1
8.1 |
7.6
7.7
7.8 | 7.8
7.8
8.0
8.0 | 7.6
7.6
7.7
7.7 | 8.0
8.3
8.1
8.0 | 7.6
7.8
7.8
7.7
7.7 | 7.9
8.2
8.5
8.3
8.0 | 7.8
7.8
8.0
7.8
7.7 | | 21
22
23
24
25 | 7.8
7.8
7.8
7.7
7.8 | 7.7
7.8
7.7
7.7 | 8.0
8.0
8.0
7.9 | 7.7
7.7
7.7
7.7
7.7 | 8.0
8.2
8.1
8.1 | 7.7
7.7
7.8
7.8
7.5 | 8.1
8.0
8.0
7.9
8.0 | 7.7
7.7
7.7
7.7
7.6 | 8.0
7.9
7.9
7.9
7.8 | 7.7
7.8
7.7
7.7
7.7 | 8.1
8.3
8.3
8.2
8.1 | 7.8
7.9
7.9
8.0
7.9 | | 26
27
28
29
30
31 | 7.8
7.8
7.8
7.9
8.0 | 7.6
7.6
7.7
7.6
7.7 | 7.7
7.6
7.7
7.6
7.6
7.6 | 7.6
7.5
7.5
7.5
7.5
7.4 | 7.8
7.7
7.8
7.7
7.8 | 7.5
7.6
7.6
7.5
7.5 | 8.0
7.9
7.9
7.8
7.8
7.7 | 7.7
7.7
7.7
7.7
7.4
7.5 | 7.8
7.7
7.7
7.8
8.0
8.1 | 7.7
7.5
7.6
7.6
7.7 | 8.0
8.1
8.1
8.1 | 7.9
7.9
7.9
7.9
7.9 | | MONTH | 8.0 | 7.4 | 8.1 | 7.4 | | | 8.3 | 7.4 | 8.3 | 7.3 | | | TRINITY RIVER BASIN # 08049500 West Fork Trinity River at Grand Prairie, TX--Continued 103 WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | MAX | | | MAX | | MEAN | | MIN | MEAN | |--
---|--|--|--|--|--|--|--|--|--|---|--| | | | OCTOBER | | N | | | DI | | | | JANUARY | | | 1
2
3
4
5 | 25.3
25.2
25.0
26.0
25.3 | 23.2
23.3
23.5
24.0
23.2 | 24.2
24.2
24.3
24.9
24.6 | 22.0
22.9
23.7
23.7
23.4 | 20.3
21.6
22.1
22.6
22.0 | 21.1
22.2
22.9
23.1
22.7 | 14.7
16.8
18.0
19.5
20.3 | | | | | | | 6
7
8
9
10 | 23.2
22.4
22.3
23.5
25.2 | 21.5
20.7
21.0
22.1
23.4 | | 22.6
21.9
22.2
21.5
19.9 | | 22.0
21.4
21.3
20.0
19.6 | 21.2
20.6
19.4
16.5
15.0 | 20.3
19.4
16.5
15.0
13.8 | 20.7
20.0
18.0
15.9
14.5 | 12.9
12.5
13.0
14.5
15.1 | 11.6
11.2
11.0
12.3
14.1 | 12.1
11.9
11.9
13.4
14.6 | | 14
15 | 21.4 | | 22.5
21.6
20.8
20.4 | 19.6
20.8
20.4
19.6
20.2 | 18.9
18.8
19.0
19.0 | 19.4
20.1
19.5
19.3
19.9 | 14.5
16.6
16.8
14.9
14.3 | 13.9
13.9
13.1
13.1
12.7 | 14.2
15.4
15.0
13.9
13.2 | 15.0
14.2
14.1
14.4
13.9 | 13.9
13.0
12.6
13.0
12.5 | 14.3
13.6
13.3
13.6
13.3 | | 18 | 20.9
20.6
21.0
22.3
23.6 | 18.9
19.0
20.2
21.7 | 19.8
20.0
21.1
22.5 | 20.6
21.0
21.4
20.6
18.3 | 19.7
19.8
20.6
18.1
16.9 | 20.2
20.5
21.1
19.3
17.7 | 14.5
13.7
13.9
14.1
13.9 | 12.7
13.0
12.7
12.8
13.0 | 13.3
13.2
13.3
13.5
13.4 | 14.8
14.4
13.4
13.9
13.9 | 13.1
13.4
13.0
12.6
12.5 | 13.9
13.9
13.1
13.2
13.1 | | 21
22
23
24
25 | 23.8
24.2
25.2
24.8
23.4 | 22.4
22.5
23.6
23.4
21.6 | 23.0
23.4
24.2
24.2
22.4 | 17.0
18.0
19.5
19.0
18.3 | 15.9
16.3
17.8
18.0
17.1 | 16.5
17.1
18.7
18.5
17.8 | 14.6
16.3
15.4
14.1
14.0 | 13.6
14.6
14.0
13.2
13.0 | 14.1
15.4
14.9
13.7 | 14.1
15.0
17.0
16.8
11.7 | 12.3
13.2
14.9
11.0
10.6 | 13.2
14.0
16.0
13.7
11.1 | | 26
27
28
29
30
31 | 21.9
21.4
21.1
20.4
20.5
20.5 | 20.5
20.1
19.7
19.3
18.7
19.3 | 21.2
20.6
20.3
19.9
19.7
20.0 | 19.0
18.3
15.2
13.0
12.5 | 17.4
15.2
11.8
11.1
10.9 | 18.1
16.7
13.2
12.2
11.5 | 13.5
13.5
14.3
14.0
12.9
12.1 | 12.5
12.1
12.9
12.9
11.9 | 12.9
12.8
13.6
13.5
12.4
11.6 | 12.2
13.5
15.8
18.0
18.1
16.6 | 9.7
11.8
13.3
15.4
16.6
8.9 | 11.0
12.7
14.6
16.9
17.7 | | MONTH | | | | 23.7 | 10.9 | 19.1 | 21.2 | 11.2 | 14.9 | 18.1 | 8.9 | 13.1 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 10.1
11.0
12.1
12.6 | 8.9
10.1
10.7 | 9.4
10.6 | 13.9
13.9 | 13.1 | 13.5 | 18 7 | 17.1 | 17.9 | 27 0 | 25.2 | 26.5
25.8 | | 6 | 12.4 | 11.6 | | | | | 18.7
19.8
18.9
17.6
17.0 | | | | | 24.3 | | 7
8
9
10 | | 11.6
8.8
7.9
8.5
10.1
11.2
11.4 | | 11.8
12.4
13.9
15.6
17.2
17.6
17.5
16.6 | | | 19.8
18.9
17.6
17.0
16.5
16.0
17.2
18.1
19.0 | | 19.0
18.3
17.2
16.2
16.3
15.6
16.4
17.5
18.3 | | | 24.3 | | | 8.8
10.4
12.0
13.2
12.7 | 7.9
8.5
10.1
11.2
11.4 | 8.2
9.5
11.1
12.2
12.1 | 15.6
17.2
17.6
17.5
16.6 | 12.9
15.0
16.6
15.4
14.5 | 14.2
16.1
17.1
16.6
15.5 | | 15.8
15.3
15.8
17.2
17.8 | 16.3
15.6
16.4
17.5
18.3 | 24.0
25.1
25.3
24.9
24.2 | 21.8
24.0
24.4
24.2
21.2 | 24.3
22.2
23.0
24.5
24.7
24.6
22.6 | | 11
12
13
14 | 8.8
10.4
12.0
13.2
12.7
12.3
12.9
13.5
13.4 | 7.9
8.5
10.1
11.2
11.4
10.6
11.0
12.0
12.1 | 8.2
9.5
11.1
12.2
12.1
11.6
12.0
12.8
12.9 | 15.6
17.2
17.6
17.5
16.6
15.5
17.7
18.6
20.2 | 12.9
15.0
16.6
15.4
14.5
14.9
15.0
16.0
17.5 | 14.2
16.1
17.1
16.6
15.5
15.2
16.1
17.2
18.7 | 16.5
16.0
17.2
18.1
19.0
19.7
20.1
20.0
19.5 | 15.8
15.3
15.8
17.2
17.8
18.5
19.4
19.1
19.0 | 16.3
15.6
16.4
17.5
18.3
19.1
19.8
19.6
19.2 | 24.0
25.1
25.3
24.9
24.2
25.5
24.9
24.1
23.7 | 21.8
24.0
24.4
24.2
21.2
23.7
24.1
22.8
22.5 | 24.3
22.2
23.0
24.5
24.7
24.6
22.6
24.7
24.7
23.5
23.1 | | 11
12
13
14
15
16
17
18
19 | 8.8
10.4
12.0
13.2
12.7
12.3
12.9
13.5
14.2
14.5
14.7
14.9
17.1 | 7.9
8.5
10.1
11.2
11.4
10.6
11.0
12.0
12.1
13.0
12.8
13.2
14.9 | 8.2
9.5
11.1
12.2
12.1
11.6
12.0
12.8
12.9
13.6
13.7
14.0
14.5
16.1 | 15.6
17.2
17.6
17.5
16.6
15.5
17.7
18.6
20.2
19.9
18.0
18.7
18.3
17.8 | 12.9
15.0
16.6
15.4
14.5
14.9
15.0
16.0
17.5
18.0
16.9
17.0
15.6
15.8 | 14.2
16.1
17.1
16.6
15.5
15.2
16.1
17.2
18.7
19.3
17.4
17.7
17.4
16.4 | 16.5
16.0
17.2
18.1
19.0
19.7
20.1
20.0
19.5
20.4
20.9
22.0
22.5
22.3 | 15.8
15.3
15.8
17.2
17.8
18.5
19.4
19.1
19.0
19.1
20.1
20.4
21.9
21.8 | 16.3
15.6
16.4
17.5
18.3
19.1
19.8
19.6
19.2
19.8
20.5
21.3
22.2
22.1 | 24.0
25.1
25.3
24.9
24.2
25.5
24.9
24.1
23.7
24.4
24.9
24.6
23.6
24.1 | 21.8 24.0 24.4 24.2 21.2 23.7 24.1 22.8 22.5 22.7 23.2 22.5 21.6 22.2 | 24.3
22.2
23.0
24.5
24.6
22.6
24.7
23.5
23.1
23.4
24.0
23.5
22.6
23.0 | | 11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.8
10.4
12.0
13.2
12.7
12.3
12.9
13.5
13.4
14.2
14.5
14.7
14.9
17.1
17.5 | 7.9
8.5
10.1
11.2
11.4
10.6
11.0
12.0
12.1
13.0
12.8
13.2
14.9
15.7
15.6
14.7
14.5 | 8.2
9.5
11.1
12.2
12.1
11.6
12.0
12.8
12.9
13.6
13.7
14.0
14.5
16.1
16.5
16.2
15.6
15.6
15.6
16.1 | 15.6
17.2
17.6
17.5
16.6
15.5
17.7
18.6
20.2
19.9
18.0
18.3
17.8
16.1
15.6
15.5
14.7 | 12.9
15.0
16.6
15.4
14.5
14.9
15.0
16.0
17.5
18.0
16.9
17.6
15.8
15.4
15.4 | 14.2
16.1
17.1
16.6
15.5
15.2
16.1
17.2
18.7
19.3
17.4
17.4
16.4
15.7 | 16.5
16.0
17.2
18.1
19.0
19.7
20.1
20.0
19.5
20.4
20.9
22.5
22.3
22.8
22.3
22.4
23.9
25.1 | 15.8
15.3
15.8
17.2
17.8
18.5
19.4
19.1
19.0
19.1
20.1
20.4
21.9
21.8
21.8
21.6
21.0
22.7 | 16.3
15.6
16.4
17.5
18.3
19.1
19.8
19.6
19.2
19.8
20.5
21.3
22.2
22.1
22.2
22.1
21.6
22.5
23.8 | 24.0
25.1
25.3
24.9
24.2
25.5
24.9
24.1
23.7
24.4
24.9
24.6
23.6
24.1
24.4 | 21.8 24.0 24.4 24.2 21.2 23.7 24.1 22.8 22.5 22.7 23.2 22.5 21.6 22.2 22.2 22.7 23.1 23.4 | 24.3
22.2
23.0
24.5
24.7
24.6
22.6
24.7
23.5
23.1
23.4
24.0
23.5
22.6
23.0
23.2
23.6
23.7
23.9 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08049500 West Fork Trinity River at Grand Prairie, TX--Continued WATER TEMPERATURE, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------
--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 28.6
29.4
29.1
28.9
28.4 | 26.1
26.6
27.0
26.9
26.4 | 27.4
28.0
28.1
28.0
27.2 | 26.5
26.7
26.6
27.4
28.9 | 25.8
25.9
25.7
25.4
26.6 | 26.3
26.2
26.2
26.4
27.6 | 31.6
32.4
32.6
32.6
32.3 | 28.9
29.7
30.3
30.7
30.5 | 30.2
31.0
31.3
31.5
31.4 | 31.1
31.6
31.3
31.2
31.1 | 28.9
29.3
29.5
29.7
29.2 | 29.9
30.3
30.3
30.4
30.1 | | 6
7
8
9
10 | 27.7
28.8
28.9
29.8
29.1 | 26.0
26.1
27.3
27.4
27.6 | 26.9
27.4
28.1
28.4
28.3 | 29.0
30.5
31.2
31.7
31.8 | 27.8
28.0
28.8
28.7
29.2 | 28.3
29.1
29.9
30.1
30.5 | 32.3
32.2
31.7
31.5
30.7 | 30.2
29.9
30.1
29.3
25.7 | 31.2
31.0
30.9
30.4
28.3 | 31.0

29.2
28.1
29.0 | 29.3

27.2
27.2
27.2 | 30.0

28.0
27.5
28.2 | | 11
12
13
14
15 | 29.7
30.3
 | 27.9
27.9

 | 28.7
28.8

 | 32.1
30.9
31.2
31.4
29.4 | 25.7
25.7
28.7
28.9
26.9 | 30.4
28.5
29.9
30.1
28.7 | 27.6
29.4
30.6
29.9
28.8 | 26.1
26.7
28.1
28.3
27.2 | 26.9
27.9
29.3
29.1
28.1 | 29.7
29.1
29.7
30.1
29.5 | 27.4
28.1
28.0
28.2
28.3 | 28.4
28.6
28.8
29.1
28.9 | | 16
17
18
19
20 | 28.4
29.3
29.8
30.4 | 26.5
27.3
27.8 | 27.8
28.5
29.0 | 29.1
28.7
30.0
31.2
31.9 | 28.1
27.3
27.9
28.4
29.0 | 28.6
28.0
29.0
29.8
30.3 | 30.0
30.7
31.2
31.4
31.7 | 27.5
28.5
29.0
29.3
29.5 | 28.6
29.6
30.1
30.3
30.5 | 28.9
29.2
29.3
28.7
28.1 | 27.7
27.3
27.7
27.5
26.6 | 28.3
28.3
28.5
28.1
27.3 | | 21
22
23
24
25 | 30.2
30.8
30.8
30.8
30.9 | 28.5
28.4
28.2
28.6
28.1 | 29.2
29.4
29.6
29.7
29.7 | 32.0
32.2
32.7
32.6
32.9 | 29.7
30.0
30.4
30.7
30.9 | 30.8
30.9
31.3
31.5
31.7 | 31.6
31.8
32.3
32.4
32.3 | 29.7
29.8
30.1
30.3
30.4 | 30.5
30.7
31.0
31.2
31.2 | 27.5
27.3
26.8
26.3
26.6 | 25.4
25.5
24.9
24.4
24.4 | 26.5
26.4
25.8
25.3
25.4 | | 26
27
28
29
30
31 | 30.2
30.6
30.2
29.2
28.1 | 28.5
28.0
28.3
26.6
26.5 | 29.1
29.1
29.2
28.1
27.7 | 32.6
31.7
31.2
30.1
30.2
30.9 | 30.6
29.9
29.3
29.1
28.0
28.5 | 31.4
30.8
30.1
29.4
29.2
29.6 | 30.9
30.1
29.9
30.0
30.2
30.5 | 28.5
27.3
28.1
28.2
28.2
28.2 | 29.9
28.8
28.8
29.0
29.1
29.3 | 27.4
27.9
28.3
28.7
28.8 | 25.0
25.2
26.0
26.4
26.8 | 26.0
26.4
27.0
27.4
27.6 | | MONTH | | | | 32.9 | 25.4 | 29.4 | 32.6 | 25.7 | 29.9 | | | | TRINITY RIVER BASIN # 08049500 West Fork Trinity River at Grand Prairie, TX--Continued 105 OXYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|---|--|---|--|---|--|---|---|--| | | | OCTOBER | | | NOVEMBER | | Ι | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.3
8.5
8.5
8.2
7.5 | 7.1
7.3
7.2
7.1
6.9 | 7.7
7.8
7.8
7.6
7.1 | 9.6
9.1
8.6
8.3
8.1 | 8.2
8.1
7.4
7.1
7.0 | 8.8
8.5
7.9
7.6
7.5 | 8.8
8.4
 | 7.7 | 8.5
8.0
 | 11.2
11.2
11.7
11.8
11.0 | 10.2
10.4
10.4
9.9
9.4 | 10.5
10.7
10.9
10.8
10.1 | | 7 | 8.3
8.7
8.7
8.2
8.0 | 7.0
7.6
7.7
7.5
7.0 | 7.5
8.1
8.1
7.8
7.4 | 8.4
8.5
8.5
8.4
7.6 | 7.2
7.4
7.4
7.4
6.9 | 7.7
7.9
7.9
7.8
7.4 | 8.7
9.6
9.8
9.9 | 7.8
8.5
8.8
9.3 | 8.3
9.0
9.3
9.5 | 10.3
10.7
10.7
10.4
10.5 | 9.2
9.4
9.7
9.3
9.1 | 9.7
10
10.2
9.9
9.8 | | 11
12
13
14
15 | 8.8 | | | 7.8
7.7
7.4
6.8
7.4 | | | 9.6
9.3
9.5
9.5 | | | | | | | 16
17
18
19
20 | 9.0
8.8
8.8
8.7 | 8.1
8.2
7.9
7.6 | | 7.5
8.0
7.8 | | 7.3
7.6
7.6 | 9.3

 | 8.8 | | 11.1
10.3
9.9
11.0
11.2 | | | | 22
23
24 | 8.6
8.8
8.7
8.7 | 7.4
7.6
7.4
7.2
7.5 | 7.9
8.1
8.0
7.9
8.0 | 7.9
8.0
7.8
7.6
8.2 | 7.1
7.5
7.3
6.9
7.2 | 7.5
7.7
7.5
7.2
7.6 | 9.3
9.0
9.1
9.3
9.5 | 8.9
8.5
8.4
8.7
9.0 | | | | | | 26
27
28
29
30
31 | 9.1
9.2
9.4
9.5
9.9 | 7.7
8.1
8.2
8.4
8.5
8.6 | 8.3
8.6
8.7
8.9
9.1
9.2 | 8.7
8.3
9.0
9.2
9.4 | | | 9.6
9.9
9.7
9.8
10.1
10.8 | | | | | | | MONTH | | | | | | | | | | 11.8 | 8.3 | 10.0 | | 11011111 | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | MIN
FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | 10.6
10.5 | FEBRUARY
10.0
10.1
9.9 | | | MARCH | | 7.9
7.8
8.1
9.0
9.1 | APRIL | | 9.6
8.9
8.5
9.0
9.0 | MAY | | | DAY 1 2 3 4 5 6 7 8 9 | 10.6
10.5
10.5
10.2
10.9 | 10.0
10.1
9.9
9.8
9.7 | 10.3
10.4
10.2
10.0
10.4 | 13.8
12.3
13.3
14.2
14.0 | MARCH
10.4
9.3
10.5
11.0
10.8 | 11.6
10.7
11.8
12.5
12.5 | | 7.8
7.6
7.7
8.1
9.0 | 7.8
7.7
7.8
8.3
9.0 | 9.6
8.9
8.5
9.0
9.0 | MAY 7.2 7.0 7.3 7.2 6.1 | 8.2
7.8
7.9
8.0
7.4 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | 10.6
10.5
10.5
10.9
11.3
11.2
11.0
10.7
10.6 | 10.0
10.1
9.9
9.8
9.7 | 10.3
10.4
10.2
10.0
10.4
11.0
10.9
10.7
10.5 | | MARCH 10.4 9.3 10.5 11.0 10.8 10.4 9.8 9.4 8.4 9.5 | 11.6
10.7
11.8
12.5
12.5
12.1
11.6
10.3
9.9
11.6 | 7.9
7.8
8.1
9.0
9.1 | 7.8
7.6
7.7
8.1
9.0
8.8
8.2
7.7
7.6
7.8 | 7.8
7.7
7.8
8.3
9.0
8.8
8.6
8.0
7.7
7.8 | 9.6
8.9
8.5
9.0
9.0
6.7
7.1
7.3
7.2
7.6 | MAY 7.2 7.0 7.3 7.2 6.1 6.2 6.7 7.1 6.9 6.6 | 8.2
7.8
7.9
8.0
7.4
6.3
7.0
7.2
7.0
6.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 10.6
10.5
10.5
10.2
10.9
11.3
11.2
11.0
10.7
10.6 | FEBRUARY 10.0 10.1 9.9 9.8 9.7 10.8 10.6 10.4 10.3 10.3 10.5 10.5 10.1 10.1 | 10.3
10.4
10.2
10.0
10.4
11.0
10.9
10.7
10.5
10.5 | 13.8
12.3
13.3
14.2
14.0
13.8
13.4
11.7
11.9
14.5 | MARCH 10.4 9.8 10.4 9.8 9.4 8.4 9.5 10.0 9.4 9.7 9.1 | 11.6
10.7
11.8
12.5
12.5
12.1
11.6
10.3
9.9
11.6
11.3
11.5
11.8 | 7.9
7.8
8.1
9.0
9.1
9.0
8.9
7.9
7.9
8.0
8.3
8.3 | 7.8
7.6
7.7
8.1
9.0
8.8
8.2
7.7
7.6
7.8
7.8 | 7.8
7.7
7.8
8.3
9.0
8.8
8.6
8.0
7.7
7.8
7.9
8.0
8.2 | 9.6
8.9
8.5
9.0
9.0
6.7
7.1
7.3
7.2
7.6
7.4
7.6
8.0
8.5 | MAY 7.2 7.0 7.3 7.2 6.1 6.2 6.7 7.1 6.9 6.6 6.9 7.2 7.6 8.0 | 8.2
7.8
7.9
8.0
7.4
6.3
7.0
7.2
7.0
6.9
7.2
7.3
7.8 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 10.6
10.5
10.5
10.2
10.9
11.3
11.2
11.0
10.7
10.6
11.0
10.8
10.6
10.4
10.4
10.3
10.1 | FEBRUARY 10.0 10.1 9.9 9.8 9.7 10.8 10.6 10.4 10.3 10.5 10.5 10.1 10.1 9.9 9.6 9.4 9.2 | 10.3
10.4
10.2
10.0
10.4
11.0
10.9
10.7
10.5
10.5
10.7
10.6
10.4
10.2
10.1
10
9.7
9.6 | 13.8
12.3
13.3
14.2
14.0
13.8
13.4
11.7
11.9
14.5
12.6
14.6
14.4
13.8
11.2
11.9
11.5
10.0
8.2 | MARCH 10.4 9.8 10.4 9.8 9.4 8.4 9.5 10.0 9.4 9.7 9.1 8.3 8.2 8.4 7.1 6.6 | 11.6
10.7
11.8
12.5
12.5
12.1
11.6
10.3
9.9
11.6
11.3
11.5
11.8
11.2
9.8
9.9
8.8
4.7.6 | 7.9
7.8
8.1
9.0
9.1
9.0
8.9
7.9
7.9
8.0
8.3
8.2
8.2
7.9
7.8 |
7.8
7.6
7.7
8.1
9.0
8.8
8.2
7.7
7.6
7.8
7.8
7.9
7.9
6.7
7.1 | 7.8
7.7
7.8
8.3
9.0
8.8
8.6
8.0
7.7
7.8
7.9
8.0
8.1
8.1
7.2
7.4
7.9 | 9.6
8.9
8.5
9.0
9.0
6.7
7.1
7.3
7.2
7.6
7.4
7.6
8.0
8.5
9.3 | MAY 7.2 7.0 7.3 7.2 6.1 6.2 6.7 7.1 6.9 6.6 6.9 7.2 7.6 8.0 8.0 8.0 7.1 6.8 7.7 | 8.2
7.8
8.0
7.4
6.3
7.0
7.2
7.0
6.9
7.2
7.3
8.5
8.6
7.7
7.3
8.4 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 10.6
10.5
10.5
10.2
10.9
11.3
11.2
11.0
10.7
10.6
11.0
10.6
10.4
10.4
10.3
10.1
10.1
10.1 | FEBRUARY 10.0 10.1 9.9 9.8 9.7 10.8 10.6 10.4 10.3 10.5 10.5 10.1 10.1 9.9 9.6 9.4 9.2 9.1 9.2 10.1 10.3 10.3 | 10.3
10.4
10.2
10.0
10.4
11.0
10.7
10.5
10.7
10.6
10.4
10.2
10.1
10
9.6
9.6 | 13.8
12.3
13.3
14.2
14.0
13.8
11.7
11.9
14.5
12.6
14.6
14.4
13.8
11.2
11.9
11.5
10.8
2.8
8.0 | MARCH 10.4 9.3 10.5 11.0 10.8 10.4 9.8 9.4 8.4 9.5 10.0 9.4 9.7 9.1 8.3 8.2 8.4 7.1 6.6 6.9 7.1 7.4 8.3 8.3 | 11.6
10.7
11.8
12.5
12.5
12.1
11.6
10.3
9.9
11.6
11.3
11.5
11.8
11.2
9.8
9.9
9.8
8.4
7.2
7.3
8.0
8.6 | 7.9
7.8
8.1
9.0
9.1
9.0
8.9
7.9
7.9
8.0
8.3
8.2
8.2
7.9
7.8
8.1
8.1
8.1 | 7.8
7.6
7.7
8.1
9.0
8.8
8.2
7.7
7.6
7.8
7.8
7.9
7.9
6.7
7.1
7.8
7.9 | 7.8
7.7
7.8
8.3
9.0
8.8
8.6
8.0
7.7
7.8
7.9
8.0
8.1
8.1
7.2
7.4
7.9
8.0 | 9.6
8.9
8.5
9.0
9.0
6.7
7.1
7.3
7.2
7.6
7.4
7.6
8.0
8.5
9.3
9.5
8.6
7.9
9.9 | MAY 7.2 7.0 7.3 7.2 6.1 6.2 6.7 7.1 6.9 6.6 6.9 7.2 7.6 8.0 8.0 8.0 8.1 6.8 7.7 8.0 8.3 8.2 7.7 | 8.2
7.8
8.0
7.4
6.3
7.0
7.2
7.0
6.9
7.2
8.5
8.6
7.7
7.3
8.8
9.4
9.2
8.8 | 08049500 West Fork Trinity River at Grand Prairie, TX--Continued O XYGEN DISSOLVED, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|----------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | P | AUGUST | | ٤ | SEPTEMBE: | R | | 1
2
3
4
5 | 6.1
5.5
5.0
8.2
7.5 | 4.6
2.8
2.9
2.2
6.1 | 5.4
4.0
3.5
5.3
6.7 | 7.6
7.4
7.5
7.1
7.7 | 6.1
6.5
6.5
6.8 | 6.6
6.6
7.1
6.9
7.2 | 9.4
9.7
9.2
8.7
8.3 | 6.2
6.8
6.8
6.8 | 7.5
8.1
7.9
7.7
7.5 | 9.7
9.4
9.1
8.5
8.5 | 7.0
6.8
6.4
6.3
6.2 | 8.2
7.9
7.7
7.3
7.2 | | 6
7
8
9
10 | 8.0
9.6
9.2
9.3
8.2 | 6.6
6.9
7.0
6.9
6.7 | 7.2
8.0
8.0
8.0
7.4 | 7.3
7.4
8.9
9.2
10.8 | 6.6
6.4
6.7
6.9
7.0 | 6.9
6.8
7.5
7.8
8.6 | 8.2
8.5
8.6
8.8
8.3 | 6.8
7.0
6.9
7.4
5.3 | 7.4
7.5
7.6
8.0
7.5 | 7.9

6.4
5.9
6.4 | 5.9
5.9
5.5
5.2
5.4 | 6.9

5.9
5.4
5.9 | | 11
12
13
14
15 | 9.4 | 6.5

 | 7.6

 | 9.5
8.1
8.2
7.5
7.0 | 6.9
5.3
6.0
6.3
5.4 | 8.1
6.4
6.9
6.9 | 5.7
7.0
8.0
8.6
7.9 | 2.6
5.7
6.9
7.3
6.5 | 4.6
6.5
7.3
7.8
7.0 | 8.2
7.7
8.1
8.0
7.7 | 5.7
5.8
5.9
5.8
5.8 | 6.6
6.8
6.9
6.8
6.7 | | 16
17
18
19
20 |
7.7
9.1
9.5 |
6.0
6.3
6.7 |
6.6
7.4
7.9 | 7.4
7.4
8.5
8.8
10.4 | 5.5
5.9
6.7
6.5
6.5 | 6.4
6.6
7.5
7.4
8.0 | 9.6
9.5
10.7
9.9
9.8 | 6.8
7.8
8.1
7.5
7.4 | 7.9
8.6
9.2
8.6
8.6 | 7.1
8.4
9.5
7.9
7.0 | 5.8
6.1
6.3
5.9
5.6 | 6.4
7.0
7.6
6.5
6.1 | | 21
22
23
24
25 | 8.2
9.6
10.0
9.8
8.6 | 6.5
6.0
6.7
6.6
4.4 | 7.1
7.5
8.1
8.1
7.1 | 9.6
9.0
8.8
8.7
9.1 | 6.4
6.5
6.3
6.3 | 7.9
7.6
7.4
7.4
7.6 | 8.9
8.7
9.0
8.9
8.1 | 7.0
6.9
7.2
7.2
6.7 | 8.0
7.9
8.0
8.0
7.4 | 8.0
9.3
9.4
8.8
8.0 | 6.1
6.5
6.6
6.9
6.7 | 6.8
7.6
7.8
7.8
7.3 | | 26
27
28
29
30
31 | 7.7
6.4
6.9
6.0
7.4 | 4.1
5.7
5.5
5.2
5.5 | 6.0
6.1
6.0
5.7
6.3 | 9.5
9.1
8.7
7.4
7.1
7.1 | 6.6
6.6
6.5
5.0 | 7.8
7.7
7.5
7.0
6.4
6.3 | 8.1
7.1
6.6
8.1
9.4
9.9 | 7.0
4.9
5.9
6.5
6.9
7.2 | 7.3
5.8
6.2
7.2
8.1
8.3 | 7.3
7.4
7.3
7.3
7.4 | 6.3
6.1
6.0
6.1
6.0 | 6.8
6.7
6.6
6.6
6.6 | | MONTH | | | | 10.8 | 5.0 | 7.2 | 10.7 | 2.6 | 7.6 | | 5.2 | | DAILY MEAN DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER #### 08049580 Mountain Creek near Venus, TX LOCATION.--Lat 32°29'27", long 97°07'22", Johnson County, Hydrologic Unit 12030102, on right bank on upstream side of highway embankment near right end of bridge on Farm Road 157, 3.0 mi upstream from Grassy Creek, 3.2 mi upstream from Reece Branch, and 3.9 mi north of Venus. DRAINAGE AREA.--25.5 mi². PERIOD OF RECORD.--Oct. 1985 to Sept. 1987, Oct. 1987 to Sept. 2001 (peaks above base discharge), Oct. 2001 to current year. Water-quality records.--Chemical data: Dec. 1985 to Sept. 1993. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 580.49 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow at times. | | | DISCHA | ARGE, CUB | IC FEET PI | | , WATER YI
LY MEAN VA | | ER 2001 TO | SEPTEMB | ER 2002 | | | |---|---------------------------------------|--|--|---|---|---|--|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0 00 | 0.00
0.00
0.00
0.00
0.00 | 2.8
0.07
0.00
0.00 | 0.53
0.45
66
17
366 | 0.66
0.29
0.13
0.08
0.05 | 0.00
0.00
46
23
2.4 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 189
122
24
1.1
0.03
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.03
148
365
16
4.5 | 27
4.6
1.9
1.4
137 | 0.03
0.0
0.00
0.00
0.00 | 0.52
0.11
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 0.00
0.00
45
0.16
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0 00 | 0.00
0.00
0.00
0.00 | 2.8
2.0
1.7
5.2
3.0 | 12
2.5
2.3
1.9
1.3 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 654
75
1.3
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
127
333 | 20
95
7.0
2.7
1.6 | 0.93
0.94
0.93
0.75
0.58 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.03
0.03 | 0.00
0.00
0.00
0.00 | 9.4
0.12
0.00
0.00
0.00 | 1.2
0.94
0.81
0.70
0.50 | 0.49
0.38
0.35
0.31
0.27 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00
711 | 0.00
0.00
0.00
 | 0.00
0.00
0.00
0.00
382
92 | 0.92
1.5
1.1
0.81
0.65 | 0.22
0.21
0.38
3.6
3.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 45.16
1.457
45
0.00
90 | 0.00
0.000
0.00
0.00
0.00 | 730.30
23.56
654
0.00
1450 |
711.06
22.94
711
0.00
1410 | 347.22
12.40
189
0.00
689 | | 686.53
22.88
365
0.00
1360 | 656.52
21.18
366
0.21
1300 | 1.24
0.041
0.66
0.00
2.5 | 72.05
2.324
46
0.00
143 | 0.00
0.000
0.00
0.00
0.00 | 0.00
0.000
0.00
0.00
0.00 | | STATIS | rics of M | ONTHLY ME | EAN DATA | FOR WATER | YEARS 198 | 36 - 20021 | n, BY WAT | ER YEAR (V | VY) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.51
140
1992
0.000
1991 | 1999 | | 1992 | | 21.07
66.8
1995
0.032
1996 | 23.92
80.7
1997
0.010
1994 | 23.16
71.8
1995
0.041
1998 | 15.80
54.0
1995
0.000
1996 | 1.084
8.77
1991
0.000
1993 | 3.083
24.0
1991
0.000
1986 | 3.525
29.8
1991
0.000
1987 | | SUMMAR | Y STATIST | ICS | | | FOR 2 | 2002 WATER | R YEAR | | | WATER YEA | RS 1986 - | 2002h | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL 10 PERO 50 PERO | | EAN EAN AN Y MINIMUN OW AGE AC-FT) EDS EDS | 4 | | 24 | 0.00 0
0.00 0 | Jan 31
Oct 1
Oct 1
Mar 4
Mar 4 | | | 15.8
43.1
1.8
3340
0.0
0.0
11470
19
0.0 | May 17
00 Oct 1
00 Oct 1 | 1985 | h See PERIOD OF RECORD paragraph. # 08049580 Mountain Creek near Venus, TX--Continued #### 08049700 Walnut Creek near Mansfield, TX LOCATION.--Lat 32°34'51", long 97°06'06", Tarrant County, Hydrologic Unit 12030102, on right bank at downstream side of bridge on county road, 2.6 mi northeast of Mansfield, 3.3 mi downstream from Texas and New Orleans Railroad Co. bridge, and 10.2 mi upstream from mouth. DRAINAGE AREA.--62.8 mi². PERIOD OF RECORD. -- Oct. 1960 to current year. Water-quality records.--Chemical data: Dec. 1985 to Sept. 1993. Biochemical data: Dec. 1985 to Sept. 1993. GAGE.--Water-stage recorder. Datum of gage is 531.08 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. No flow at times. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 0.00 2.2 0.97 0.64 98 0.63 50 3.3 7.5 201 0.30 0.00 2 1.1 3.0 0.00 1.9 0.97 0.56 24 22 5.7 47 0.29 0.00 8.9 3 0.00 1.8 0.98 0.48 11 4.5 264 0.29 0.00 0.00 1.8 1.0 0.41 3.2 0.40 9.8 6.2 84 0.16 0.00 5 0.48 2.0 1.2 0.89 379 0.39 7.6 835 5.3 46 0.06 0.00 6 7 0.03 2.0 1.9 0.39 314 0.25 14 148 4.2 36 0.12 0.00 2.0 1.4 0.32 91 31 0.24 62 42 3.7 2.9 0.13 520 0.00 20 8 1160 1.0 0.16 10 13 0.03 0.42 1.7 10 0.38 1.0 0.29 4 2 0.00 35 1290 2.3 0.85 140 0.69 21 1.7 2.0 0.00 159 2.2 0.68 0.25 11 106 38 15 2.2 3.1 10 0.00 1.7 1.5 0.01 84 75 2.2 0.00 12 83 26 15 1.4 13 226 29 30 0.17 1.2 33 17 1.6 15 2 0 4.4 4.0 1.6 1.4 0.10 16 42 1.4 1.5 0.02 0.00 5.0 726 0.27 0.94 0.00 9.8 47 2.6 0.00 0.00 16 1.5 1.5 1.8 0.87 3.6 1.9 1.4 0.02 0.00 17 189 0.02 0.02 17 139 18 38 0.00 9.5 11 89 19 13 4.2 905 6.5 0.54 0.00 20 1 7 1.1 6.5 1 4 0.86 1250 5.8 30 1 0 0.30 0.00 1 4 21 1.7 1.1 5.8 1.7 0.82 79 5.6 21 1.1 0.25 0.00 0.57 1.8 1.1 1.7 1.9 0.46 5.5 5.4 0.22 22 5.5 15 17 0.73 0.00 0 08 23 4.0 14 0.60 0.00 0.00 11 5.1 24 1.8 1.3 2.1 0.38 12 0.51 0.27 0.00 0.00 10 25 1 9 1 3 15 0.38 3 8 4 3 13 0 43 0 24 0 00 0 0 26 1.5 1.3 1.3 4.1 0.09 2.5 36 55 142 0.47 23 0.56 1.5 1.5 0.30 1.9 27 1.3 1.2 3.0 0.05 2.1 11 16 18 0.10 28 11 1.1 2.1 0.25 2.2 8.8 30 0.08 0.0 ⊥⊥ 2.7 29 1.6 1.0 0.97 1.8 6.6 31 7.8 0.27 0.00 0.00 ---0.82 1880 89 30 1.6 1.1 1.0 3.6 24 1.5 0.07 0.00 1620 317 0.48 TOTAL 461.83 105.0 1031.45 1736.25 981.62 3509.3 744.72 207.14 30.81 4490.45 2199.4 399.67 24.02 6.682 1.027 14.90 3.500 33.27 56.01 35.06 73.31 113.2 13.32 MEAN 144.9 726 0.71 MAX 226 21 1620 379 1880 1160 1290 142 264 140 20 1.1 0.05 0.22 0.00 0.00 0.00 0.43 0.00 0.00 3.0 MIN 3.6 3440 1950 916 8910 1480 411 AC-FT 2050 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1961 - 2002, BY WATER YEAR (WY) 17.65 10.15 19.87 31.21 38.27 51.12 MEAN 9.144 25.32 29.93 5.000 3.640 6.221 272 164 2001 326 64.5 174 378 1989 300 57.1 67.4 1973 173 184 MAX 55.9 1992 1997 1990 1986 1992 1977 (WY) 1992 1975 2001 MTN 0.000 0.000 0.000 0.000 0.014 0.13 0.40 0.074 0.030 0.000 0.000 0.000 1964 1961 1964 1981 1981 1963 1978 1962 1963 1964 1961 1971 (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1961 - 2002 ANNUAL TOTAL 12246 85 15897 64 ANNUAL MEAN 20.59 33.55 43.56 HIGHEST ANNUAL MEAN 82.2 1992 LOWEST ANNUAL MEAN 1.34 1978 0.00 May 17 1989 0.00 Oct 1 1960 HIGHEST DATLY MEAN 2010 1880 7900 Feb 16 Mar 30 LOWEST DAILY MEAN 0.00 Jan 1 0.00 Oct 0.00 Oct 1 1960 0.00 Oct 15 1960 ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW 0.00 Aug 18 0.00 Jan 1 22800 3480 Mar 30 May 17 1989 MAXIMUM PEAK STAGE May 17 1989 23.23 33.77 Mar 30 31530 14910 ANNUAL RUNOFF (AC-FT) 24290 10 PERCENT EXCEEDS 28 15 54 50 PERCENT EXCEEDS 0.29 90 PERCENT EXCEEDS 0 00 0.00 0.00 # 08049700 Walnut Creek near Mansfield, TX--Continued #### 08049800 Joe Pool Lake near Duncanville, TX LOCATION.--Lat 32°38'36", long 97°00'03", Dallas County, Hydrologic Unit 12030102, in control room of outlet works tower located 285 ft upstream from centerline of Joe Pool Dam on Mountain Creek, 0.7 mi downstream from Walnut Creek, 0.7 mi upstream from bridge over Mountain Creek on Camp Wisdom Road, 1.0 mi downstream from John Penn Branch, 5.5 mi west of water towers in downtown Duncanville, 7.1 mi upstream from Mountain Creek Dam on Mountain Creek, and 11.2 mi upstream from mouth. DRAINAGE AREA. -- 232 mi². PERIOD OF RECORD.--Jan. 1986 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Water-quality records.--Chemical data: Jan. 1986 to Sept. 1993. Biochemical data: Jan. 1986 to Sept. 1993. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (U.S. Army Corps of Engineers benchmark). Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 22,360 ft long, including a 50-foot uncontrolled broad-crested concrete spillway. Impoundment of water began Jan. 7, 1986, after closure of the dam was completed in Dec. 1985. The flood-control outlet works consist of a 10.5-foot diameter conduit that is controlled by two 4.75- by 10.5-foot slide gates. Above an elevation of 541 ft, water will flow over a 50-foot-long uncontrolled broad-crested concrete spillway located 0.5 mi to left of the outlet works tower. The low-flow outlet works consist of four 3- by 5-foot slide gates having invert elevations at 486.0, 495.0, 504.0, and 513.0 ft that open to a wet-well. Discharge from the wet-well to the 10.5-foot-diameter conduit is controlled by a 2- by 4-foot gate with invert at elevation 483.0 ft. A low flow bypass system consisting of a turbine pump and 10-inch-diameter piping is also available for use if needed. The lake was built for water supply, conservation, and flood control. Conservation pool storage is 176,900 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |--------------------------|-----------| | | (feet) | | Top of dam | 564.5 | | Crest of spillway | 541.0 | | Top of conservation pool | 522.0 | | Lowest gated outlet | | COOPERATION.--Capacity Table No. 2 furnished by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 274,600 acre-ft, May 20, 1990, elevation 533.21 ft; minimum contents after initial filling, 75,910 acre-ft, Jan. 24, 1989, elevation, 507.84 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 191,200 acre-ft, May 10, elevation, 523.86 ft; minimum contents, 170,100 acre-ft, Sept. 30, elevation, 521.08 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1 | 177600 | 176600 | 174700 | 178900 | 187800 | 177300 | 190300 | 180500 | 180300 | 179500 | 178200 | 174300 | | 2 | 177400 | 176500 | 174600 | 178900 | 188400 | 177200 | 189300 | 180400 | 180200 | 180200 | 178100 | 174100 | | 3 | 177300 | 176500 | 174600 | 178800 | 188300 | 177200 | 186800 | 180900 | 180100 | 180600 | 178000 | 174000 | | 4 | 177100 | 176300 | 174600 | 178600 | 186500 | 177100 | 184700 | 181300 | 179900 | 181000 | 177800 | 173900 | | 5 | 177100 | 176300 | 174500 | 178600 | 184800 | 177000 | 182500 | 183900 | 179800 | 181100 | 177700 | 173700 | | 6 | 177000 | 176200 | 174500 | 178500 | 185400 | 177000 | 181300 | 186500 | 179800 | 181500 | 177400 | 173500 | | 7 | 176800 | 176100 | 174500 | 178400 | 183900 | 177000 | 181200 | 186700 | 179700 | 181500 | 177200 | 173300 | | 8 | 176600 | 176000 | 174400 | 178400 | 181600 | 177000 | 186700 | 186600 | 179700 | 181500 | 177100 | 173300 | | 9 | 176600 | 175900 | 174300 | 178300 | 180500 | 176800 | 188200 | 186300 | 179500 | 181400 | 177000 | 173400 | | 10 | 176500 | 175900 | 174200 | 178100 | 179300 | 176800 | 188500 | 190000 | 179400 | 181300 | 177300 | 173300 | | 11
12
13
14
15 | 177000
177400
178900
179200
179100 | 176100
176400
176400
176300
176300 | 174200
174200
174300
174400
174400 | 178000
178000
177900
177700 | 178600
178200
178000
178100
178000 |
176800
176800
176800
176800
176800 | 188000
187200
186500
185800
185200 | 190600
189200
187900
186500
184900 | 179200
179200
179100
179100
179000 | 181200
181000
180900
e180800
e180800 | 177900
177800
177700
177400
177200 | 173200
173200
173000
172900
172800 | | 16 | 178800 | 176300 | 179400 | 177600 | 178000 | 176700 | 184400 | 183400 | 179200 | e180800 | 177000 | 172600 | | 17 | 178600 | 176200 | 184200 | 177500 | 178000 | 176700 | 184200 | 182500 | 179200 | 180800 | 176800 | 172400 | | 18 | 178500 | 176200 | 184900 | 177300 | 178000 | 176700 | 183800 | 182300 | 179100 | 180800 | 176600 | 172300 | | 19 | 178200 | 176200 | 185100 | 177300 | 178100 | 177900 | 183000 | 181900 | 178900 | 180800 | 176500 | 172200 | | 20 | 178200 | 176100 | 185000 | 177200 | 178000 | 185200 | 182200 | 181500 | 178800 | 180700 | 176200 | 172100 | | 21 | 178100 | 175900 | 184200 | 177100 | 177900 | 186800 | 181400 | 181100 | 178700 | 180500 | 176100 | 171900 | | 22 | 178000 | 175700 | 183500 | 177000 | 178000 | 186800 | 180500 | 180700 | 178600 | 180400 | 175900 | 171700 | | 23 | 177900 | 175700 | 182800 | 177000 | 178000 | 185500 | 180200 | 180500 | 178400 | 180200 | 175700 | 171400 | | 24 | 177800 | 175600 | 182000 | 177400 | 177900 | 183700 | 180000 | 180400 | 178300 | 179900 | 175500 | 171100 | | 25 | 177700 | 175400 | 181200 | 177800 | 177800 | 181800 | 179600 | 180400 | 178100 | 179700 | 175200 | 171000 | | 26
27
28
29
30
31 | 177500
177300
177100
176900
176800
176600 | 175200
175000
174800
174900
174800 | 180400
179900
179600
179300
179300
179200 | 177700
177700
177600
177600
177700
183700 | 177400
177400
177300
 | 180000
179000
178500
178400
184200
189500 | 179800
180100
180200
180300
180400 | 180300
180200
180200
180400
180400
180400 | 178100
178600
178500
178500
178600 | 179600
179300
179000
178800
178700
178500 | 175100
175100
175000
174900
174700
174400 | 170800
170700
170500
170300
170200 | | MEAN | 177600 | 175900 | 178300 | 178100 | 180300 | 179400 | 183700 | 183200 | 179100 | 180400 | 176600 | 172400 | | MAX | 179200 | 176600 | 185100 | 183700 | 188400 | 189500 | 190300 | 190600 | 180300 | 181500 | 178200 | 174300 | | MIN | 176500 | 174800 | 174200 | 177000 | 177300 | 176700 | 179600 | 180200 | 178100 | 178500 | 174400 | 170200 | | (+) | 521.96 | 521.72 | 522.30 | 522.89 | 522.06 | 523.65 | 522.46 | 522.46 | 522.22 | 522.21 | 521.66 | 521.09 | | (@) | 0 | -1800 | +4400 | +4500 | -6400 | +12200 | -9100 | 0 | -1800 | -100 | -4100 | -4200 | CAL YR 2001 MAX 208100 MIN 172100 (@) +4000 WTR YR 2002 MAX 190600 MIN 170200 (@) -6400 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08049800 Joe Pool Lake near Duncanville, TX--Continued #### 08050050 Mountain Creek Lake near Grand Prairie, TX LOCATION.--Lat 32°43'55", long 96°56'35", Dallas County, Hydrologic Unit 12030102, at right end of spillway in Mountain Creek Dam on Mountain Creek, 2.5 mi upstream from Texas and Pacific Railway Co. bridge, and 3.7 mi southeast of Grand Prairie. DRAINAGE AREA. -- 295 mi². PERIOD OF RECORD.--Oct. 1960 to current year. Water-quality records.--Chemical data: Oct. 1969 to Sept. 1985. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to Oct. 21, 1960, nonrecording gage at powerplant at same datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The lake is formed by a rolled earthfill dam 5,800 ft long, including a controlled spillway with six 34 x 27 ft tainter gates. The dam was completed in Dec. 1936 and deliberate impoundment began on Mar. 24, 1937. The lake was built and is operated by Dallas Power and Light Co. to supply cooling water for their generating plant. Dry weather conservation pool storage is 20,776 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |---|-----------| | | (feet) | | Top of dam | 467.0 | | Top of gates | | | Top of dry weather conservation pool | 457.0 | | Top of wet weather conservation pool | 456.0 | | Crest of spillway (sill of tainter gates) | 431.0 | COOPERATION.--Capacity Table No. 1 was provided by the Dallas Power and Light Co., and was replaced by Capacity Table No. 2, furnished by TXU Electric of Dallas, and put into effect Oct. 1, 2000. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 28,430 acre-ft, Mar. 13, 1995, elevation 458.82 ft; minimum contents, 14,120 acre-ft, Oct. 18, 1972, elevation, 453.25 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 22,870 acre-ft, Jan. 31, elevation, 457.78 ft; minimum contents, 19,000 acre-ft, Sept. 18, elevation, 456.28 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | DAILY MEAN VALUES | | | | | | | | | | | | | |------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 20220 | 21290 | 21560 | 21710 | 21730 | 21440 | 21630 | 21470 | 21450 | 21490 | 20480 | 20450 | | | 2 | 20200 | 21400 | 21560 | 21740 | 21910 | 21410 | 21870 | 21440 | 21390 | 21560 | 20440 | 20410 | | | 3 | 20160 | 21420 | 21590 | 21800 | 21770 | 21470 | 21050 | 21500 | 21300 | 21620 | 20390 | 20360 | | | 4 | 20120 | 21400 | 21600 | 21810 | 21450 | 21460 | 21890 | 21610 | 21220 | 21790 | 20310 | 20320 | | | 5 | 20130 | 21390 | 21580 | 21940 | 22080 | 21390 | 22100 | 22060 | 21190 | 21800 | 20250 | 20260 | | | 6 | 20100 | 21390 | 21700 | 22030 | 21260 | 21410 | 21360 | 21180 | 21160 | 21900 | 20190 | 20210 | | | 7 | 20080 | 21360 | 21730 | 22060 | 21690 | 21400 | 21050 | 21110 | 21140 | 21950 | 20120 | 20130 | | | 8 | 20040 | 21330 | 21630 | 22110 | 21990 | 21460 | 21130 | 21300 | 21070 | 21900 | 20040 | 20140 | | | 9 | 20020 | 21320 | 21640 | 22130 | 21380 | 21460 | 21000 | 21500 | 21050 | 21870 | 19980 | 20290 | | | 10 | 20040 | 21390 | 21630 | 22190 | 21510 | 21490 | 21210 | 22170 | 20970 | 21850 | 20470 | 20300 | | | 11 | 20410 | 21430 | 21630 | 22220 | 21220 | 21460 | 21790 | 22020 | 20870 | 21810 | 21330 | 20280 | | | 12 | 20820 | 21520 | 21730 | 21940 | 21460 | 21500 | 21680 | 22180 | 20910 | 22050 | 21330 | 20260 | | | 13 | 21600 | 21560 | 21790 | 21530 | 21590 | 21430 | 20970 | 21340 | 20900 | 21760 | 21260 | 20240 | | | 14 | 21890 | 21550 | 21900 | 21640 | 21590 | 21410 | 21740 | 22120 | 20820 | 21730 | 21210 | 20200 | | | 15 | 21840 | 21560 | 21880 | 21640 | 21620 | 21460 | 21280 | 22010 | 20800 | 22050 | 21140 | 20130 | | | 16 | 21820 | 21580 | 22180 | 21660 | 21660 | 21430 | 20850 | 21500 | 20980 | 21620 | 21080 | 20100 | | | 17 | 21810 | 21630 | 21440 | 21720 | 21680 | 21450 | 21710 | 21000 | 20950 | 21550 | 21000 | 20050 | | | 18 | 21690 | 21650 | 21650 | 21750 | 21670 | 21590 | 21660 | 20540 | 20830 | 21530 | 20930 | 19840 | | | 19 | 21740 | 21600 | 21680 | 21800 | 21690 | 21790 | 20850 | 20750 | 20780 | 21460 | 20900 | 20000 | | | 20 | 21750 | 21590 | 21760 | 21790 | 21730 | 21170 | 20340 | 20960 | 20780 | 21420 | 20840 | 20070 | | | 21 | 21740 | 21580 | 21820 | 21880 | 21710 | 21160 | 20950 | 21150 | 20780 | 21330 | 20730 | 20040 | | | 22 | 21720 | 21520 | 21450 | 21920 | 21710 | 21230 | 21730 | 21220 | 20750 | 21290 | 20720 | 19970 | | | 23 | 21710 | 21480 | 21760 | 22000 | 21680 | 21760 | 21980 | 21190 | 20710 | 21220 | 20670 | 19920 | | | 24 | 21610 | 21520 | 21440 | 22060 | 21540 | 20750 | 20980 | 21280 | 20700 | 21140 | 20610 | 19850 | | | 25 | 21660 | 21470 | 22020 | 22030 | 21600 | 20430 | 21000 | 21280 | 20680 | 21070 | 20550 | 19820 | | | 26 | 21610 | 21460 | 21330 | 21830 | 21470 | 21650 | 21340 | 21270 | 20670 | 20900 | 20530 | 19790 | | | 27 | 21570 | 21340 | 21310 | 21830 | 21530 | 21610 | 21460 | 21230 | 20780 | 20770 | 20590 | 19780 | | | 28 | 21530 | 21360 | 21590 | 21900 | 21490 | 21920 | 21530 | 21260 | 20920 | 20650 | 20570 | 19740 | | | 29 | 21490 | 21500 | 21630 | 22000 | | 21810 | 21560 | 21440 | 21320 | 20620 | 20540 | 19710 | | | 30 | 21470 | 21540 | 21650 | 22040 | | 21330 | 21470 | 21470 | 21390 | 20620 | 20500 | 19650 | | | 31 | 21390 | | 21680 | 22090 | | 21980 | | 21460 | | 20550 | 20470 | | | | MEAN | 21100 | 21470 | 21660 | 21900 | 21620 | 21440 | 21370 | 21420 | 20980 | 21450 | 20650 | 20080 | | | MAX | 21890 | 21650 | 22180 | 22220 | 22080 | 21980 | 22100 | 22180 | 21450 | 22050 | 21330 | 20450 | | | MIN | 20020 | 21290 | 21310 | 21530 | 21220 | 20430 | 20340 | 20540 | 20670 | 20550 | 19980 | 19650 | | | (+) | 457.23 | 457.28 | 457.34 | 457.49 | 457.26 | 457.45 | 457.26 | 457.26 | 457.23 | 456.91 | 456.88 | 456.54 | | | (@) | +1160 | +150 | +140 | +410 | -600 | +490 | -510 | -10 | -70 | -840 | -80 | -820 | | CAL YR 2001 MAX 22380 MIN 17850 (@) +580 WTR YR 2002 MAX 22220 MIN 19650 (@) -580 ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08050050 Mountain Creek Lake near Grand Prairie, TX--Continued #### 08050100 Mountain Creek at Grand Prairie, TX LOCATION.--Lat 32°44′51", long 96°55′32", Dallas County, Hydrologic Unit 12030102, on roadway embankment at upstream right end of downstream bridge on Jefferson Street, 1,000 ft upstream from bridge on U.S. Highway 80, 1.2 mi upstream from Texas and Pacific Railroad Company. bridge, 1.5 mi downstream from Mountain Creek Lake Dam, and 4.4 mi east of Grand Prairie. DRAINAGE AREA. -- 298 mi². PERIOD OF RECORD. -- Oct. 1960 to current year. 90 PERCENT EXCEEDS GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 404.31 ft above NGVD of 1929. Prior to Dec. 19, 1984, at datum 3.0 ft higher. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Oct. 1960, at least 10% of contributing drainage
area has been regulated. No known diversions. DISCHARGE FROM DCP. CUBIC FEET PER SECOND. WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.9 1.2 1.2 4.4 1.8 1.4 1460 2.2 158 1.8 233 2 1.2 1.4 2.5 998 1.6 1.6 1.4 15 400 3.8 3.7 1.1 0.95 1.1 1.4 2.4 1230 1.6 23 1.1 0.61 1.2 1.1 0.95 1.8 674 2.3 293 1.6 6.3 1.1 0.61 2.8 1760 5 1.2 1.3 1950 1050 1.6 1.2 1.6 3.0 3.5 0.72 1.3 1.2 6 7 1 6 1.6 1 5 1810 3.6 275 1420 1.6 2.6 0.78 1.6 2.1 1.7 1.5 1.3 7.3 950 3.8 1290 0.79 1.3 1.3 947 4.0 1.2 1.8 8 1.4 2.1 3.0 5010 1.5 1.3 2.2 0.92 2 3 784 3.8 2050 3.3 17 1 2 1.8 1.5 1.6 10 1.3 4.4 1.4 74 209 61 1.1 1.2 11 36 2 3 1 3 1.3 484 1 8 7 9 683 1.3 4.6 20 1 2 12 12 1.9 3.2 5.5 1.9 801 1.1 518 4.5 615 1.1 4.0 6.4 3.9 1.9 362 899 1.8 13 86 31 1.1 1.5 1.7 2.4 6.8 9.2 14 9 5 5.5 4 0 4 9 168 195 2 0 1 1 5.4 223 4.0 710 1.9 1.1 15 2.8 694 165 707 2.2 2590 2 2 3 1 9 6 261 1 5 16 3 1 1 6 270 1 3 4.7 17 2.6 1.8 891 1.4 2.8 1.6 282 713 4.0 1.8 1.3 18 3.3 1.8 14 1.2 2.6 2.3 662 217 1.8 3.4 19 3 1 1.9 7 4 1.3 3.2 1530 687 4.3 1 2 2.6 1 3 2 5 2.0 5.0 2.5 2.6 2.9 1.0 20 1.9 2.1 5410 0.87 1.6 384 3.7 2.3 642 2 0 0.81 21 1 7 2 1 2 0 3060 1 1 1 0 1 8 22 2.4 2.0 2.1 0.94 126 1.1 470 1.8 0.96 0.90 23 3.9 3.7 452 1.8 2.4 614 355 2.6 0.96 1.5 0.93 1.3 313 2 0 24 5 3 4.8 138 7 1 1200 320 0 93 1 3 0.88 1 2 1.0 1.5 25 139 26 1.2 2.1 692 6.8 2.1 102 13 1.4 1.3 1.5 1.0 0.61 27 1.4 1.2 3.3 2.3 612 6.7 1.4 5.2 28 1.2 3.3 2.0 3.5 2.1 4.8 3.8 1.9 106 1.9 1.5 0.35 535 1.2 2.2 20 29 3.6 1.6 2.8 83 2.1 1.3 0.32 30 1.3 2.7 1.6 2.8 ___ 3500 2.1 5.4 1.5 1.2 31 1.6 1.6 5090 956 2.4 1.2 1.0 TOTAL 198.3 64.25 5958.27 6080.3 9893.7 18643.0 18044.2 8013.3 344.73 1694.6 134.96 30.63 MEAN 6.397 2.142 192.2 196.1 353.3 601.4 601.5 258.5 11.49 54.66 4.354 1.021 5410 4.8 2590 5090 5010 86 1950 1760 106 518 74 MAX 2.5 1.0 1.2 0.81 0.95 0.92 1.1 2.0 0.93 0.26 MIN 2.1 AC-FT 393 127 11820 12060 19620 36980 35790 15890 684 3360 268 61 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1961 - 2002, BY WATER YEAR (WY) MEAN 67.75 66.99 105.7 103.3 171.3 233.2 217.1 285.5 145.8 32.98 9.008 23.00 88.6 MAX 785 1286 1102 1483 976 1104 1170 1941 1028 511 214 2001 1974 (WY) 1992 1972 1992 1977 1966 1969 1990 1989 1962 2001 0.17 0.22 0.30 0.26 0.11 0.30 0.91 0.68 0.50 0.21 0.16 0.36 MIN 1989 1964 1976 1976 1964 1976 1987 1984 1971 1972 1972 1972 (WY) FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR SUMMARY STATISTICS WATER YEARS 1961 - 2002 69100.24 ANNUAL TOTAL 80611.96 ANNUAL MEAN 220.9 189.3 121.5 HIGHEST ANNUAL MEAN 506 1992 LOWEST ANNUAL MEAN 4.39 1988 24700 HIGHEST DAILY MEAN 8570 Feb 16 5410 Mar 20 May 0.15 May 25 0.26 Sep 30 LOWEST DAILY MEAN 0.00 Jan 25 1964 ANNUAL SEVEN-DAY MINIMUM 0.02 Dec 23 1983 0.49 Jul 17 0.59 Sep 24 MAXIMUM PEAK FLOW 8430 Jan 31 38100 Apr 19 25.12 Dec 20 1991 19 93 Jan 31 MAXIMUM PEAK STAGE 159900 88040 137100 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 626 2 0 50 PERCENT EXCEEDS 2 2 1 3 0.58 1.1 0.34 # 08050100 Mountain Creek at Grand Prairie, TX--Continued ## 08050400 Elm Fork Trinity River at Gainesville, TX LOCATION.--Lat 33°37'27", long 97°09'22", Cooke County, Hydrologic Unit 12030103, on downstream right bank at end of bridge on Farm Road 51, 31 ft downstream from centerline of road, 0.6 mi west of Cooke County courthouse in Gainesville, 1.0 mi upstream from Interstate Highway 35, and 1.2 mi downstream from Dozier Creek. DRAINAGE AREA. -- 174 mi². PERIOD OF RECORD. -- Oct. 1985 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 700.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Oct. 1981 reached a peak stage of 28.1 ft, from information furnished by an employee of the Gainesville Department of Public Works. | | | DISCHARGE | FROM DCP, | CUBIC FEE | | COND, WA
Y MEAN V | | OCTOBER 20 | 01 TO SE | PTEMBER 20 | 02 | | |---|--|---|---|--|--------------------------------------|---|---|---------------------------------------|--------------------------------------|--|---|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.55
0.59
0.44
0.47
0.52 | 0.35
0.30
0.25
0.39
0.39 | 0.99
1.0
1.1
1.2 | 0.94
0.99
0.99
0.99
2.5 | 1.4
1.2
1.3
1.3 | 2.4
2.9
2.8
2.5
2.2 | 189
137
93
67
55 | 27
20
16
12
11 | 4.5
3.7
3.0
2.7
914 | 19
22
52
51
28 | 1.9
1.5
1.3
1.1
0.87 | 0.20
0.23
0.20
0.18
0.20 | | 6
7
8
9 | 0.44
0.45
0.48
0.47
0.56 | 0.36
0.34
0.33
0.34
0.27 | 1.0
0.96
0.87
0.77
0.82 | 1.6
1.8
1.5
1.5 | 18
8.1
3.7
3.2
2.7 | 2.2
2.0
2.1
1.9
1.7 | 51
3190
1870
669
497 | 9.4
8.3
7.0
5.6
5.2 | 259
137
90
64
45 | 17
11
7.2
79
25 | 0.77
0.69
0.59
0.56
0.56 | 0.29
0.38
0.62
6.4
0.57 | | 11
12
13
14
15 | 54
5.9
3.7
1.1
0.72 | 0.17
0.13
0.06
0.04
0.05 | 1.00
1.3
1.2
1.2 | 1.6
1.5
1.5
1.4 | 2.2
2.0
1.9
1.7 | 1.7
1.7
1.7
1.6
1.5 | 328
256
383
359
224 | 4.8
6.9
8.7
5.2
4.1 | 35
26
34
45
31 | 10
224
73
121
128 | 0.53
0.43
0.36
0.52
0.42 | 0.31
0.22
0.19
0.80
1.2 | | 16
17
18
19
20 | 0.47
0.44
0.46
0.58
0.52 | 0.04
0.23
0.34
0.46
0.42 | 299
182
33
7.9
3.6 | 1.4
1.4
1.4
1.5 | 1.5
1.4
1.4
156
74 | 1.4
1.4
557
2760
2720 | 201
265
171
145
128 | 3.5
82
50
21
13 | 63
38
28
19
13 | 145
48
28
17
11 | 0.43
0.38
0.27
0.19
0.15 | 0.37
0.29
0.23
1.8
0.39 | | | | | | | | | | 9.7
6.7
5.4
4.9
4.6 | | | | 0.37
0.25
0.18
0.19
0.18 | | 26
27
28
29
30
31 | 0.46
0.47
0.46
0.53
0.60
0.48 | 0.42
0.51
1.5
1.1 | 1.1
1.0
1.0
0.98
0.92
0.91 | 1.2
1.2
1.3
1.3 | 3.8
3.1
2.5
 | 148
126
112
99
96
323 | 63
64
53
43
37 | 4.3
7.5
8.1
10
7.0
5.4 | 3.6
3.4
3.1
2.9
5.0 | 2.0
1.9
1.8
2.0
12 | 0.17
1.0
0.35
0.27
0.20
0.17 | 0.22
0.16
0.13
0.12
0.08 | | TOTAL
MEAN
MAX
MIN
AC-FT | 78.31
2.526
54
0.43
155 | 1.5 | 556.22
17.94
299
0.77
1100 | 49.41
1.594
5.4
0.94
98 | 370.2
13.22
156
1.2
734 | 8830.7
284.9
2760
1.4
17520 | 9939
331.3
3190
37
19710 | 12.72
82 | | 1169.5
37.73
224
1.8
2320 | 16.42
0.530
1.9
0.10
33 | 16.95
0.565
6.4
0.08
34 | | STATIST | | | | | | | • | ER YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 52.15
310
1994
0.098
2000 | 78.09
372
2001
0.28
2000 | 130.3
743
1992
2.25
2000 | 85.95
316
1992
0.46
2000 | 177.2
828
2001
0.52
2000 | 191.1
565
1990
6.54
1986 | 157.6
1063
1990
2.76
2000 | 271.8
1359
1990
0.73
2000 | 129.6
659
1989
2.61
1996 | 16.76
91.1
1987
0.61
1998 | 3.618
13.2
1996
0.000
2000 | 29.70
123
1996
0.031
2000 | | SUMMARY | Y STATIS | STICS | FOR | 2001 CALENI | DAR YEAR | 1 | FOR 2002 | WATER YEAR | | WATER YEAR | RS 1986 - | 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
ANNUAL
10 PERC
50 PERC | MEAN F ANNUAL F DAILY DAILY SEVEN-I M PEAK F | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | M | 47454.13
130.0
4450
0.04
0.10
94130
266
3.9
0.44 | Feb 16
Nov 14
Nov 11 | | 23334. 63. 3190 0. 0. 9130 17. 46280 123. | | | 109.9
277
3.1:
12500
0.00
0.00
24000
25.3:
79650
215
8.9
0.60 | | 1990
1988
1988
1989 | 08050400 Elm Fork Trinity River at Gainesville, TX--Continued ## 08050800 Timber Creek near Collinsville, TX LOCATION.--Lat 33°33′16", long 96°56′49", Cooke County, Hydrologic Unit 12030103, on left bank 13 ft to the left of bridge on Farm Road 902 and 19 ft downstream from the centerline of the road, 2.1 mi west of Collinsville, and 3.0 mi upstream from DRAINAGE AREA.--38.8 mi². PERIOD OF RECORD.--Oct. 1985 to current year. Water-quality records.--Chemical data: Apr. 1993 to Sept. 1993. Biochemical data: Apr. 1993 to Sept. 1993. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 640.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records poor. No known regulation or diversions. No flow many days most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Oct. 1981 reached a peak stage of 15.0 ft, from information by local resident. | DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |---|--
--|--|---|--|--|--
---|---|--|--| | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.03
0.0
0.02
0.03
0.96 | 18
5.1
3.1
2.6
15 | 0.79
1.0
1.1
1.1 | 31
15
9.6
7.7
7.1 | 6.7
5.6
3.6
3.1
3.9 | 0.90
0.93
0.19
0.15
269 | 1.9
0.55
2.5
4.2
1.2 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.0
0.00
0.00 | 2.2
1.4
1.2
1.2 | 53
32
13
7.1
4.3 | 0.96
0.94
1.00
0.64
0.38 | 7.2
821
715
69
30 | 3.6
3.8
2.9
3.0
1.8 | 70
16
7.1
5.6
3.8 | 3.6
3.2
2.0
0.53
0.12 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
17
11 | | 46
6.8
1.4
0.02
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.4
1.2
0.96
1.0
0.89 | 2.6
2.2
1.8
1.6
2.1 | 0.25
0.34
0.40
0.41
0.36 | 20
45
148
120
31 | 4.8
1.8
4.4
4.6
2.8 | 2.8
2.3
3.3
6.4
2.8 | 0.01
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.44
0.00
0.00
0.00
0.00 | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 74
118
18
5.4
2.5 | 0.64
0.50
0.59
0.41
0.68 | 2.2
2.2
2.3
3.6
7.9 | 0.27
0.18
56
832
687 | 32
171
26
14
11 | 1.7
227
58
12
6.6 | 4.7
3.8
2.5
2.4
2.1 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.6
1.1
0.86
0.59
0.40 | 0.51
1.0
0.91
20
19 | 2.9
1.9
1.4
1.3 | 66
26
18
14
11 | 8.6
7.3
6.3
6.0
4.9 | 4.5
3.0
1.9
1.6
1.4 | 2.1
2.2
2.1
2.0
2.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.33
0.22
0.20
0.18
0.09 | 6.2
3.3
2.5
2.2
2.3 | 0.68
0.48
0.47
 | 8.4
7.9
7.6
7.3
9.6 | 7.6
9.3
6.5
5.1
5.8 | 1.0
1.2
1.6
1.2
1.5 | 2.1
1.9
1.0
1.6
1.9 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 54.22
1.749
46
0.00
108 | 0.00
0.000
0.00
0.00
0.00 | 223.52
7.210
118
0.00
443 | 86.23
2.782
20
0.00
171 | 6.855
53
0.47
381 | 59.42
832
0.18
3650 | 79.93
821
4.9
4760 | 382.1
12.33
227
1.0
758 | 425.67
14.19
269
0.15
844 | 19.81
0.639
4.2
0.00 | 0.00
0.000
0.00
0.00
0.00 | 28.44
0.948
17
0.00
56 | | 20.79
135
1992
0.000
1988 | 15.66
66.3
1997
0.000
1990 | 37.83
326
1992
0.000
1999 | 18.74
73.1
1992
0.10
2000 | 33.70
121
2001
0.000
1999 | 38.46
107
1998
0.67
1999 | 42.54
259
1990
0.000
1999 | 53.88
168
1989
0.059
1996 | 27.62
193
1989
0.000
1996 | 20.83
293
1994
0.000
1988 | 0.964
6.76
1996
0.000
1986 | 5.766
32.0
1992
0.000
1995 | | Y STATIST | rics | FOR | 2001 CALE | ENDAR YEA | R : | FOR 2002 1 | WATER YEAR | ! | WATER YEA | RS 1986 - | 2002 | | MEAN T ANNUAL ANNUAL T DAILY ME SEVEN-DA M PEAK FI M PEAK ST RUNOFF (CENT EXCE | MEAN MEAN MAN MY MINIMUM MAGE AC-FT) MEDS MEDS | ī | 937
0.0
0.0
14520
34
0.0 | Feb 2
00 Apr 1
00 May 1 | 4
8
2 | 832
0.0
3260
13.4
11210 | Mar 19 00 Oct 1 00 Oct 1 Apr 7 44 Apr 7 | | 72.7
1.7
5410
0.0
13300
14.9
19110
26
1.2 | 7
Jul 11
0 Oct 1
0 Oct 1
Jul 10
4 Jul 10 | 1985
1985
1994 | | | OCT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0 | OCT NOV 0.00
0.00 0. | OCT NOV DEC 0.00 18 0.00 0.00 18 0.00 0.00 18 0.00 0.00 18 0.00 0.00 18 0.00 0.00 18 0.00 0.00 16 0.00 0.00 18 0.00 0.00 16 0.00 0.00 0.00 0.00 0.00 16 0.00 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.33 0.00 0.00 0.59 0.00 0.00 0.33 0.00 0.00 0.22 0.00 0.00 0.33 0.00 0.00 0.22 1.749 0.000 0.23 0.00 0.00 0.22 1.749 0.000 0.23 1.749 0.000 0.00 1.8 0.00 0.00 0.00 | OCT NOV DEC JAN 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.0 | OCT NOV DEC JAN FEB 0.00 0.00 0.00 0.00 0.03 18 0.00 0.00 0.00 0.00 0.02 3.1 0.00 0.00 0.00 0.00 0.03 2.6 0.00 0.00 0.00 0.00 0.03 2.6 0.00 0.00 0.00 0.00 0.96 15 0.00 0.00 0.00 0.00 1.4 32 0.00 0.00 0.00 1.4 32 0.00 0.00 0.00 1.2 13 0.00 0.00 0.00 1.2 7.1 0.00 0.00 0.00 1.2 7.1 0.00 0.00 0.00 1.2 7.1 0.00 0.00 0.00 1.2 7.1 0.00 0.00 0.00 1.2 7.1 0.00 0.00 0.00 1.0 1.2 7.1 0.00 0.00 0.00 1.0 1.2 7.1 0.00 0.00 0.00 1.0 1.2 7.1 0.00 0.00 0.00 1.0 1.2 7.1 0.00 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.2 2.2 1.4 0.00 0.00 1.0 1.6 0.00 0.00 1.8 0.59 2.3 0.00 0.00 1.8 0.59 2.3 0.00 0.00 1.8 0.59 2.3 0.00 0.00 1.8 0.59 2.3 0.00 0.00 1.6 0.51 2.9 0.00 0.00 1.6 0.51 2.9 0.00 0.00 1.6 0.51 2.9 0.00 0.00 0.00 1.1 1.0 1.9 0.00 0.00 0.00 1.1 1.0 1.9 0.00 0.00 0.00 1.1 1.0 1.9 0.00 0.00 0.00 1.1 1.0 1.9 0.00 0.00 0.00 1.8 0.59 1.3 0.00 0.00 0.00 1.9 1.1 0.00 0.00 0.00 1.8 0.50 1.3 0.00 0.00 0.00 1.5 2.0 6.8 7.9 0.00 0.00 0.00 1.8 0.50 1.3 0.00 0.00 0.00 1.8 0.50 1.3 0.00 0.00 0.00 0.59 20 1.3 0.00 0.00 0.00 0.40 19 1.1 0.00 0.00 0.00 0.22 3.3 0.48 0.00 0.00 0.00 0.22 3.3 0.48 0.00 0.00 0.00 0.22 3.3 0.48 0.00 0.00 0.00 0.22 3.3 0.48 0.00 0.00 0.00 0.22 3.3 0.48 0.00 0.00 0.00 0.22 3.3 0.48 0.00 0.00 0.00 0.20 2.5 0.68 7.9 20.79 15.66 37.83 18.74 33.70 135 66.3 326 73.1 121 1992 1997 1992 1992 2001 0.000 0.000 0.000 0.00 0.00 0.47 108 0.00 0.00 0.00 0.00 0.00 0.00 1988 1990 1999 2000 1999 Y STATISTICS FOR 2001 CALENDAR YEAR TOTAL 7318.65 TEXTENDAR MINIMUM 0.00 May 1 W PEAK STAGE RUNOFF (AC-FT) 14520 2ENT EXCEEDS 34 UNDOFF (AC-FT) 14520 2ENT EXCEEDS 34 UNDOFF (AC-FT) 14520 2ENT EXCEEDS 34 2ENT EXCEEDS 34 2ENT EXCEEDS 34 | OCT NOV DEC JAN FEB MAR 0.00 0.00 0.00 0.00 0.03 18 0.79 0.00 0.00 0.00 0.00 0.02 3.1 1.1 0.00 0.00 0.00 0.00 0.03 2.6 1.1 0.00 0.00 0.00 0.00 0.33 2.6 1.1 0.00 0.00 0.00 0.00 0.96 15 1.0 0.00 0.00 0.00 0.00 1.2 3.1 1.0 0.00 0.00 0.00 0.00 1.4 32 0.94 0.00 0.00 0.00 0.00 1.2 7.1 0.64 0.00 0.00 0.00 0.00 1.2 7.1 0.64 0.00 0.00 0.00 0.00 1.2 7.1 0.64 0.00 0.00 0.00 0.00 1.2 13 1.00 46 0.00 0.00 0.00 1.2 7.1 0.64 0.00 0.00 0.00 0.00 1.2 2.2 0.34 46 0.00 0.00 0.00 1.2 2.2 0.34 46 0.00 0.00 0.00 1.4 2.6 0.25 6.8 0.00 0.00 1.0 4.3 0.38 46 0.00 0.00 0.00 1.2 2.2 0.34 1.4 0.00 0.00 0.96 1.8 0.40 0.02 0.00 0.00 1.2 2.2 0.34 0.00 0.00 0.00 1.3 1.0 1.6 0.41 0.00 0.00 0.00 1.0 1.6 0.41 0.00 0.00 0.00 18 0.59 2.3 56 0.00 0.00 18 0.59 2.3 56 0.00 0.00 18 0.59 2.3 56 0.00 0.00 18 0.59 2.3 56 0.00 0.00 0.54 0.41 3.6 832 0.00 0.00 1.5 0.68 7.9 687 0.00 0.00 1.6 0.51 2.9 66 0.00 0.00 1.1 1.0 1.9 26 0.00 0.00 1.1 1.0 1.9 26 0.00 0.00 1.1 1.0 1.9 26 0.00 0.00 0.54 0.41 3.6 832 0.00 0.00 0.00 1.1 1.0 1.9 26 0.00 0.00 0.59 20 1.3 14 0.00 0.00 0.59 20 1.3 14 0.00 0.00 0.59 20 1.3 14 0.00 0.00 0.59 20 1.3 14 0.00 0.00 0.00 1.8 2.2 0.68 8.4 0.00 0.00 0.00 0.59 20 1.3 14 0.00 0.00 0.00 0.22 3.3 0.48 7.9 0.00 0.00 0.00 1.8 2.2 0.68 8.4 0.00 0.00 0.00 0.22 3.3 0.48 7.9 0.00 0.00 0.00 0.20 2.5 0.47 7.6 0.00 0.00 0.00 0.20 2.5 0.47 7.6 0.00 0.00 0.00 0.20 2.5 0.47 7.6 0.00 0.00 0.00 0.20 2.5 0.47 7.6 0.00 0.00 0.00 0.20 2.5 0.47 7.6 0.00 0.00 0.00 0.20 2.5 0.47 7.6 0.00 0.00 0.00 0.00 0.00 0.47 0.18 0.00 0.00 0.00 0.00 0.00 0.47 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.99 1.999 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | OCT NOV DEC JAN FEB MAR APR 0.00 0.00 0.00 0.00 0.03 18 0.79 31 0.00 0.00 0.00 0.00 0.03 18 0.79 31 0.00 0.00 0.00 0.00 0.03 18 0.79 31 0.00 0.00 0.00 0.00 0.02 3.1 1.1 9.6 0.00 0.00 0.00 0.00 0.03 2.6 1.1 7.7 0.00 0.00 0.00 0.00 0.96 15 1.0 7.1 0.00 0.00 0.00 0.00 1.2 15 1.0 7.1 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 13 1.00 715 0.00 0.00 0.00 0.00 1.2 2.2 0.34 45 1.4 0.00 0.00 0.96 1.8 0.40 148 0.02 0.00 0.00 1.2 2.2 0.34 45 1.4 0.00 0.00 0.96 1.8 0.40 148 0.02 0.00 0.00 0.00 1.0 4.3 0.38 30 0.00 0.00 0.00 1.0 1.6 0.41 120 0.00 0.00 0.00 0.89 2.1 0.36 31 0.00 0.00 0.00 1.8 0.50 2.2 0.18 171 0.00 0.00 0.18 0.50 2.2 0.18 171 0.00 0.00 18 0.59 2.3 56 26 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.54 0.41 3.6 832 14 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.55 20 1.3 14 6.0 0.00 0.00 0.00 2.2 3.3 0.48 7.9 9.3 0.00 0.00 0.00 2.2 3.3 0.48 7.9 9.3 0.00 0.00 0.00 2.5 86.23 191.93 1841.92 2398.0 0.00 0.00 0.00 2.50 20 2.3 2.3 0.48 7.9 9.3 0.00 0.00 0.00 0.22 3.3 3 0.48 7.9 9.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. | OCT NOV DEC JAN FEB MAR APR MAY 0.00 0.00 0.00 0.00 0.03 18 0.79 31 6.7 0.00 0.00 0.00 0.00 0.03 1.1 1.0 15 5.6 0.00 0.00 0.00 0.00 0.03 2.1 1.0 9.6 3.6 0.00 0.00 0.00 0.00 0.92 3.1 1.1 9.6 3.6 0.00 0.00 0.00 0.00 0.96 15 1.0 7.1 3.9 0.00 0.00 0.00 0.00 1.2 2.3 0.96 7.2 3.6 0.00 0.00 0.00 1.2 13 1.00 715 2.9 0.00 0.00 0.00 1.2 13 1.00 715 2.9 0.00 0.00 0.00 1.2 7.1 0.64 6.9 3.0 0.00 0.00 0.00 1.2 7.1 0.64 6.9 3.0 0.00 0.00 0.00 1.2 13 1.00 715 2.9 6.8 0.00 0.00 1.0 4.3 0.38 30 1.8 46 0.00 0.00 1.4 2.6 0.25 20 4.8 6.8 0.00 0.00 1.0 1.2 2.2 0.34 45 1.8 1.4 0.00 0.00 0.96 1.8 0.40 148 4.4 0.00 0.00 0.00 1.9 1.2 1.2 0.36 31 2.8 0.00 0.00 0.00 1.8 0.50 2.2 0.18 171 227 0.00 0.00 0.00 1.8 0.50 2.2 0.18 171 227 0.00 0.00 18 0.59 2.3 56 26 58 0.00 0.00
1.1 1.2 9.9 66 8.6 4.5 0.00 0.00 2.5 0.68 7.9 687 11 6.6 0.00 0.00 1.1 1.4 1.8 6.3 1.9 0.00 0.00 1.5 1.8 0.40 1.4 14.2 0.00 0.00 1.1 3.0 1.5 0.4 1 3.6 832 14 12 0.00 0.00 1.1 3.0 1.5 0.4 1 3.6 832 14 12 0.00 0.00 1.1 3.0 1.5 0.4 1 3.6 832 14 12 0.00 0.00 1.8 0.59 2.3 56 26 58 0.00 0.00 1.1 1.4 1.9 2.9 66 8.6 4.5 0.00 0.00 1.1 1.9 2.9 66 8.6 1.8 0.9 0.00 0.00 1.1 1.1 1 4.9 1.4 0.00 0.00 1.1 1.9 2.9 66 8.6 1.8 0.00 0.00 1.1 1.9 2.9 66 8.6 1.8 0.00 0.00 1.1 1.9 2.9 66 8.6 1.8 0.00 0.00 0.2 2 3.3 0.48 7.9 9.3 1.2 0.00 0.00 0.8 0.9 1.1 1.1 1 4.9 1.4 0.00 0.00 0.2 2.5 0.8 8 7.9 687 11 6.6 0.00 0.00 0.2 2.5 0.8 8 0.9 1 1.4 18 6.3 1.9 0.00 0.00 0.2 2.5 0.8 8 0.9 1 1.4 18 6.3 1.9 0.00 0.00 0.2 2.5 0.8 8 0.9 1 1.4 18 6.3 1.9 0.00 0.00 0.2 2.5 0.8 8 0.9 1 1.4 19 6.5 1.2 0.00 0.00 0.00 0.2 2.5 0.8 8 0.9 1 1.4 19 6.5 1.2 0.00 0.00 0.00 0.2 2.5 0.8 8 0.9 1 1.1 11 4.9 1.4 0.00 0.00 0.00 0.2 2.5 5.0 6.8 7.9 687 11 6.6 0.00 0.00 0.00 0.2 2.5 5.0 6.8 7.9 687 11 6.6 0.00 0.00 0.00 0.2 2.5 5.0 6.8 7.9 687 11 6.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | OCT NOV DEC JAN FEB MAR APR MAY JUN 0.00 0.00 0.00 0.00 0.03 18 0.79 31 6.7 0.90 0.00 0.00 0.00 0.00 5.1 1.0 15 5.6 0.93 0.00 0.00 0.00 0.00 0.02 3.1 1.1 9.6 3.6 0.19 0.00 0.00 0.00 0.00 0.96 15 1.0 7.1 3.9 269 0.00 0.00 0.00 0.00 0.96 15 1.0 7.1 3.9 269 0.00 0.00 0.00 1.00 1.2 2 53 0.96 7.2 3.6 70 0.00 0.00 0.00 1.4 32 0.94 821 3.8 16 0.00 0.00 0.00 1.4 32 0.94 821 3.8 16 0.00 0.00 0.00 1.2 13 1.0 0.715 2.9 76 0.00 0.00 0.00 1.2 13 1.0 0.715 2.9 56 0.00 0.00 0.00 1.2 13 1.0 0.715 2.9 56 0.00 0.00 0.00 1.2 13 1.0 0.715 2.9 56 0.00 0.00 0.00 1.0 1.2 12 1.0 0.94 821 3.8 16 0.00 0.00 0.00 1.2 13 1.0 0.715 2.9 56 0.00 0.00 0.00 1.0 1.2 1.3 1.0 0.715 2.9 76 0.00 0.00 0.00 1.0 1.2 1.3 1.0 0.715 2.9 76 0.00 0.00 0.00 1.0 1.2 1.3 1.0 0.715 2.9 76 0.00 0.00 0.00 1.0 1.2 1.3 1.0 0.715 2.9 76 0.00 0.00 0.00 1.0 1.2 1.2 1.0 1.0 715 2.9 78 466 8 0.00 0.00 1.0 1.2 2.2 0.34 45 1.8 2.3 1.4 0.00 0.00 0.90 1.2 2.2 0.34 45 1.8 2.3 1.4 0.00 0.00 0.90 1.2 2.2 0.34 45 1.8 2.3 0.02 0.00 0.00 0.00 1.0 1.0 1.6 0.41 120 4.6 6.4 0.00 0.00 0.00 1.8 0.50 2.2 0.18 171 227 3.8 0.00 0.00 0.00 1.8 0.59 2.3 56 26 58 2.5 0.00 0.00 0.00 18 0.59 2.3 56 26 58 2.5 0.00 0.00 1.8 0.59 2.3 56 26 58 2.5 0.00 0.00 0.00 5.4 0.41 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 1.8 0.59 2.3 56 26 58 2.5 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 1.1 1.0 1.9 26 7.3 3.0 2.2 0.00 0.00 0.00 0.1 1.0 1.0 1.0 1.0 1.0 1 | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 0.00 0.00 0.00 0.00 0.03 18 0.79 31 6.7 0.90 1.9 0.00 0.00 0.00 0.00 0.03 51 1.0 15 5.6 0.93 0.55 0.00 0.00 0.00 0.00 0.03 2.5 1.1 0 15 5.6 0.19 2.5 0.00 0.00 0.00 0.00 0.03 2.5 1.1 1 7.7 3.1 0.15 4.2 0.00 0.00 0.00 0.00 0.03 2.5 1.1 1 7.7 3.1 0.15 4.2 0.00 0.00 0.00 0.00 0.00 1.5 1.0 7.7 3.1 0.15 4.2 0.00 0.00 0.00 0.00 0.00 1.5 1.0 7.1 3.9 269 1.2 0.00 0.00 0.00 0.00 1.4 32 0.94 821 3.8 16 3.2 0.00 0.00 0.00 1.0 1.2 13 1.00 715 2.9 7.1 2.0 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 1.4 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 1.4 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.0 1.3 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 1.8 3.8 0.12 46 0.00 0.00 0.00 1.4 2.6 0.25 20 4.8 2.2 8 0.01 1.4 0.00 0.00 0.00 1.2 7.1 0.64 69 3.0 5.6 0.53 0.00 0.00 0.00 0.00 1.4 2.2 0.2 0.34 45 1.8 2.3 0.00 0.02 0.00 0.00 0.00 1.6 1.8 0.40 148 4.4 3.3 0.00 0.02 0.00 0.00 0.00 1.6 1.6 0.50 2.2 0.34 45 1.8 2.3 0.00 0.00 0.00 0.00 0.89 2.1 0.36 31 2.8 2.8 0.00 0.00 0.00 0.00 0.89 2.1 0.36 31 2.8 2.8 0.00 0.00 0.00 0.00 0.89 2.1 0.36 31 2.8 2.8 0.00 0.00 0.00 0.00 0.89 2.1 0.36 31 2.8 2.8 0.00 0.00 0.00 0.00 0.89 2.1 0.36 31 2.8 2.8 0.00 0.00 0.00 0.00 1.8 0.59 2.2 0.18 171 227 3.8 0.00 0.00 0.00 0.00 1.8 0.59 2.2 0.18 171 227 3.8 0.00 0.00 0.00 0.00 1.8 0.59 2.2 0.18 171 227 3.8 0.00 0.00 0.00 0.00 1.8 0.59 2.7 0.8 52 14 1 1.0 6.6 2.1 0.00 0.00 0.00 0.00 1.8 0.59 2.7 0.8 52 14 1 1.0 6.6 2.1 0.00 0.00 0.00 0.00 1.8 0.59 2.7 0.8 52 14 1 1.0 6.6 2.1 0.00 0.00 0.00 0.00 0.8 0.8 0.9 1.3 14 4.0 0.00 0.00 0.00 0.00 0.00 0.00 0.8 0.8 0 | Cot | # 08050800 Timber Creek near Collinsville, TX--Continued ## 08050840 Range Creek near Collinsville, TX LOCATION.--Lat 33°31'34", long 96°48'25", Grayson County, Hydrologic Unit 12030103, on downstream left bank at bridge on Farm Road 902, 1.8 mi upstream from Case Creek, 2.5 mi downstream from Little Elm Creek, and 6.5 mi southeast from Post Office in Collinsville. DRAINAGE AREA.--29.2 mi². PERIOD OF RECORD.--Oct. 1992 to current year. Water-quality records.--Chemical data: Oct. 1992 to Sept. 1995. Biochemical data: Oct. 1992 to Sept. 1995. GAGE.--Water-stage recorder. Datum of gage is 621.08 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation or diversions. No flow many days most years. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---|---------------------------------------|---|---------------------------------------|---|---|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | 5.1
e5.4
e5.1
e4.9
5.9 | | 1.5
e1.6
e1.8
e1.9
e1.7 | | 0.47
0.40
0.35
0.28
0.25 | 0.02
0.01
0.0
0.00
1.3 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | | | | 7.4
e8.4
8.3
7.2
6.7 | | | 397
644
25
8.5 | 0.26
0.27
0.25
0.27
0.25 | 3.6
0.99
0.47
0.34
0.21 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 166
23
320
2.0
0.06 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 6.3
e5.9
e6.2
e5.9
e6.1 | e4.8
e4.2
e3.8
e3.5
e3.1 | 1.4
1.2
1.2
1.2 | 4.7
3.2
37
68
10 | 0.26
0.23
0.21
0.15
0.07 | 0.15
0.08
0.02
0.41
0.53 | 0.00
0.00
16
2.1
0.47 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 123
156
23
12
8.7 | 6.0
5.6
5.3
e5.3
e4.0 | e3.1
e2.9
2.8
192
e32 | 1.2
1.1
116
1400
e1260 | 15
693
22
7.4
4.0 | 0.01
227
28
3.6
1.3 | 0.70
1.4
0.45
0.27
0.12 | 14
197
30
3.5
0.85 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 23
24
25 | | | | | | | | | | 0.34
0.14
0.07
0.03
0.02 | | | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 5.4
5.6
5.2
5.5
5.5 | e13
e9.8
8.6
8.1
8.5
e369 | e1.9
e1.7
e1.5
 | e2.5
e2.0
1.8
1.7
15
574 | 0.55
0.97
0.95
0.70
0.56 | 0.13
0.13
0.18
0.13
0.08 | 0.00
0.00
0.00
0.00
0.00 | 0.0
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 511.06
16.49
320
0.00
1010 | 0.00
0.000
0.00
0.00 | 385.80
12.45
156
0.00
765 | 594.4
19.17
369
3.3
1180 | 192
1.5 | 3443.3
111.1
1400
1.1
6830 | 1996.22
66.54
693
0.55
3960 | 8 594 | 0 371 | 264.52
8.533
197
0.00
525 | 0.000 | 0 000 | | | | | | | | 93 - 2002 | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 17.30
107
1994
0.000
1993 | 39.23
204
1997
0.000
1996 | 23.47
66.0
1998
0.40
2000 | 18.01
108
1998
0.000
2000 | 33.10
118
2001
0.000
1996 | 41.87
111
2002
1.25
1999 | 25.78
66.5
2002
0.15
1998
FOR 2002 W | 20.90
86.5
1995
0.000
1996 | 5.626
28.3
1993
0.000
1996 | 4.534
36.7
1994
0.000
1993 | 0.615
4.72
1994
0.000
1993 | 0.000 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALEN | DAR YEAF | 3 | FOR 2002 W | ATER YEAR | | WATER YEAR | RS 1993 - | 2002 | | ANNUAL ANNUAL HIGHES' LOWEST HIGHES' LOWEST ANNUAL MAXIMU MAXIMU ANNUAL 10 PER 50 PER 90 PER | MEAN | MEAN EAN EAN AN Y MINIMUM DW AGE AC-FT) EDS EDS EDS | ſ |
7811.41
21.40
1180
0.00
0.00
15490
16
0.00
0.00 | | | 7936.25
21.7 | 4 | | 19.27
38.3
1.88
2580
0.00
7640
23.32
13960
0.03
0.03 | | 1997
1996
1993
1992
1992
1993
1993 | e Estimated # 08050840 Range Creek near Collinsville, TX--Continued ## 08051100 Ray Roberts Lake near Pilot Point, TX LOCATION.--Lat 33°21'19", long 97°02'59", Denton County, Hydrologic Unit 12030103, in control room of outlet works tower located 336 ft upstream from centerline of Ray Roberts Dam (and Farm Road 455 which is located on top of dam) on Elm Fork Trinity River, 3.7 mi upstream from Bray Branch, 5.7 mi southwest of Pilot Point, and at river mile 60.0. DRAINAGE AREA. -- 692 mi². PERIOD OF RECORD.--July 1987 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Water-quality records.--Chemical data: Feb. 1989 to Sept. 1998. GAGE. -- Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. Lake is formed by a rolled earthfill dam 15,250 ft long. There is an uncontrolled, broad-crested spillway excavated in natural ground about 5,000 ft right of right end of dam. A reinforced concrete tower houses the flood-control and low-flow gates and operating equipment. Construction started Sept. 16, 1980, and closure was made in May 1986. The dam was built and is owned by the U.S. Army Corps of Engineers. Deliberate impoundment started June 30, 1987. The lake was built for water supply, flood control, and recreation purposes. Conservation pool storage is 799,750 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |-------------------------------|-----------| | | (feet) | | Top of dam | 665.0 | | Spillway crest (uncontrolled) | 645.5 | | Top of flood-control pool | 640.5 | | Top of conservation pool | 632.5 | | Invert, lowest gated outlet | 551.0 | COOPERATION. -- Capacity tables provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,219,000 acre-ft, May 3, 1990, elevation, 644.48 ft; minimum contents after initial filling, 405,700 acre-ft, Oct. 13, 2001, elevation, 615.33 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 890,800 acre-ft, Apr. 10, elevation, 635.46 ft; minimum contents, 747,000 acre-ft, Dec. 11, 14, elevation, 630.65 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1 | 761500 | 756000 | 748700 | 753000 | 756900 | 762700 | 837500 | 834900 | 811300 | 806200 | 796600 | 779500 | | 2 | 760400 | 756200 | 748400 | 752400 | 757200 | 764100 | 838200 | 832400 | 810500 | 806200 | 796100 | 778900 | | 3 | 759500 | 756300 | 748400 | 752100 | 757100 | 763000 | 838100 | 829200 | 809700 | 807600 | 795700 | 778500 | | 4 | 758800 | 756100 | 748400 | 751300 | 757200 | 762400 | 834900 | 826100 | 809000 | 807900 | 795200 | 778100 | | 5 | 758800 | 756000 | 748300 | 752600 | 758700 | 762100 | 831600 | 822700 | 818900 | 807300 | 794600 | 777500 | | 6 | 758000 | 755800 | 748400 | 752700 | 761000 | 762000 | 828600 | 819400 | 824700 | 806900 | 794000 | 777300 | | 7 | 757100 | 755200 | 748400 | 752400 | 762100 | 761900 | 836100 | 816400 | 824900 | 806600 | 793300 | 776800 | | 8 | 756100 | 755000 | 748500 | 752300 | 762300 | 762100 | 878200 | 816000 | 824200 | 805900 | 792800 | 777100 | | 9 | 755400 | 754700 | 748000 | 752100 | 762300 | 763100 | 888600 | 816900 | 822800 | 805600 | 792000 | 777700 | | 10 | 755600 | 754300 | 747400 | 752200 | 762600 | 762300 | 890100 | 819600 | 821400 | 805100 | 791300 | 777500 | | 11 | 759800 | 754200 | 747200 | 752200 | 761900 | 761900 | 886800 | 817100 | 820000 | 804500 | 790900 | 776800 | | 12 | 760800 | 754200 | 747500 | 751900 | 761800 | 761900 | 882700 | 814100 | 818700 | 804300 | 789900 | 776200 | | 13 | 764400 | 753900 | 747500 | 751300 | 761800 | 761400 | 879500 | 811800 | 818200 | 804100 | 789000 | 775900 | | 14 | 765300 | 753600 | 747100 | 751400 | 761200 | 761100 | 877800 | 810500 | 817900 | 803500 | 788700 | 775400 | | 15 | 764900 | 753600 | 747100 | 751100 | 761400 | 761800 | 873400 | 809400 | 816000 | 802900 | 787700 | 775100 | | 16 | 764200 | 753400 | 750800 | 750600 | 761100 | 761600 | 869000 | 808500 | 816400 | 802400 | 786900 | 774500 | | 17 | 763300 | 753500 | 755700 | 750700 | 760900 | 761300 | 871600 | 812200 | 814900 | 802100 | 786100 | 773700 | | 18 | 762500 | 753200 | 756900 | 750500 | 760500 | 764600 | 872900 | 815600 | 813900 | 802800 | 785300 | 772600 | | 19 | 762300 | 753700 | 757000 | 750400 | 762700 | 798200 | 871000 | 815000 | 813100 | 802300 | 784800 | 773400 | | 20 | 761800 | 753000 | 756600 | 749700 | 764900 | 849900 | 868300 | 814100 | 812400 | 801600 | 784000 | 773200 | | 21
22
23
24
25 | 761600
761200
760900
760900
760600 | 752200
751400
751000
750900
750300 | 756100
756000
756000
755900
755400 | 749700
749800
750100
751400
751400 | 765600
765200
764900
764300
765000 | 862700
861300
856800
852000
848200 | 865700
862900
859400
856700
854000 | 813400
812500
811500
811100 | 811700
811000
810200
809400
808600 | 800700
800000
799500
799000
799900 | 783100
782500
782000
781400
781500 | 772500
772100
771100
770300
769200 | | 26
27
28
29
30
31 | 759900
759400
758300
757800
757300
756500 | 750000
750000
750500
749600
748700 | 754800
754600
754500
754500
754000
753300 | 751200
751000
751000
751200
751900
754800 | 764600
763500
762900
 | 842700
837100
831700
826900
825600
834300 | 850500
846400
843800
840700
837500 | 811400
812000
813300
813200
812800
812000 | 807800
807400
806600
806100
805600 | 799100
798200
797000
796500
797500
797100 | 781800
782500
781600
781000
780600
780000 | 768600
767900
767400
766800
766300 | | MEAN | 760200 | 753200 | 751700 | 751500 | 761800 | 795100 | 859100 | 816000 | 814100 | 802600 | 787500 | 773900 | | MAX | 765300 | 756300 | 757000 | 754800 | 765600 | 862700 | 890100 | 834900 | 824900 | 807900 | 796600 | 779500 | | MIN | 755400 | 748700 | 747100 | 749700 | 756900 | 761100 | 828600 | 808500 | 805600 | 796500 | 780000 | 766300 | | (+) | 630.99 | 630.71 | 630.88 | 630.93 | 631.22 | 633.65 | 633.76 | 632.91 | 632.70 | 632.41 | 631.82 | 631.34 | | (@) | -6900 | -7800 | +4600 | +1500 | +8100 | +71400 | +3200 | -25500 | -6400 | -8500 | -17100 | -13700 | CAL YR 2001 MAX 868900 MIN 552200 (@) +201800 WTR YR 2002 MAX 890100 MIN 747100 (@) +2900 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08051100 Ray Roberts Lake near Pilot Point, TX--Continued #### 08051500 Clear Creek near Sanger, TX LOCATION.--Lat 33°20′10", long 97°10′45", Denton County, Hydrologic Unit 12030103, at the downstream side near right end of bridge on county road, 1,350 ft downstream from Duck Creek, 1.1 mi upstream from Gulf, Colorado, and Santa Fe Railway Company bridge, and 1.8 mi south of Sanger. DRAINAGE AREA. -- 295 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Mar. 1949 to current year. REVISED RECORDS.--WSP 1512: 1950, 1955. WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 582.23 ft above NGVD of 1929. Prior to Apr. 18, 1975, water-stage recorder at datum 5.00 ft higher. Apr. 18, 1975 to June 9, 1988, at site 950 ft upstream at same datum. Satellite telemeter at station. REMARKS.--Records fair. Since 1980, at least 10% of contributing drainage area has been affected at times by discharge from the flood-detention pools of 51 floodwater-retarding structure. These structures control runoff from 149 mi² in the Clear Creek watershed. There are no known diversions above station. No flow at times. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--31 years (water years 1950-80), 74.3 ft³/s (53,830 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1950-80).--Maximum discharge, $18,200 \text{ ft}^3/\text{s}$, Sept. 13, 1950, gage height, 29.80 ft, at site and datum then in use; no flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1880, 36.5 ft in May 1908, from information by Gulf, Colorado, and Santa Fe Railway Company. Flood in May 1935 reached a stage of 34.0 ft, from information by Texas Department of Transportation. Both peaks referenced to present site and datum. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY .TTTN JUL AUG SEP 8.3 0.17 e0.13 e0.13 e0.12 3.3 5.2 5.1 5.7 5.3 7.3 7.2 8.9 9.1 6.7 5.2 0.15 0.12 2 300 40 19 39 3 51 140 18 35 7.4 87 5 e0.11 3.7 5 9 9 2 15 8.3 66 31 1050 41 3.9 0.10 6 e0.11 10 19 8.3 58 31 30 0.12 e0.12 e0.12 3.8 3.8 5.7 5.5 8.5 7.3 19 8 2 634 29 165 23 3 1 0.13 0.24 8 8.0 30 19 2.9 15 3780 81 0.16 12 7.8 28 51 16 2 7 10 0 30 3 7 4 9 7 3 10 7 0 936 246 37 14 0 33 9.2 11 e16 3.6 5.4 6.7 6.9 709 71 29 12 2.6 0.31 6.4 7.2 8.8 7.3 7.5 2.2 12 e12 4.1 6.4 451 39 24 12 0.23 13
e9.0 4.3 6.5 25 15 0.19 33 8.5 14 e6.0 4.6 6.8 7.6 679 30 46 30 1.9 0.16 7.7 15 2.9 5.7 6.6 5.5 8.4 325 27 35 48 1.8 0.20 16 10 e44 5.4 8.4 7.2 199 28 28 26 1.4 0.20 0.86 5.4 5.7 7.2 17 17 e90 8.4 388 88 28 26 1.2 0.20 18 0.64 7.4 24 8.6 8.2 328 23 19 0.18 19 0.64 6.6 12 5.9 12 1760 175 35 19 16 0 92 0.30 20 8.9 0.69 5.5 6.3 42 3440 129 27 16 13 0.83 0.25 1.2 7.5 21 5.2 6.5 18 1330 105 2.4 15 12 0.65 0.20 5.0 6.9 22 22 14 7.1 12 926 85 11 0.52 0.18 23 1.5 4.8 6.6 7.3 10 739 72 21 13 9.2 0.42 0.16 4.5 4.2 24 1.7 6.1 13 9.6 468 66 21 12 10 0.30 0.15 25 1.9 6.0 9.7 8.9 21 305 56 11 13 0.26 0.15 26 1.7 4.4 6.1 8.4 7.6 164 49 33 11 7.1 0.36 0.15 6.2 6.9 27 1.5 3.8 49 6.5 7.6 81 32 11 1.6 0.15 28 1.4 4.6 6.4 7.3 7.1 58 51 36 10 5.6 0.80 0.13 1.7 7.4 29 5.8 6.3 49 45 34 10 5.6 0.40 0.12 30 2.1 6.0 5.8 7.6 52 28 11 14 0.30 0.12 53 2 5 5.7 10 1100 24 12 0 21 TOTAL 69.95 152.7 335.4 222.0 323.0 10614.5 12312 1278 2299 622.0 65.17 5.79 2.102 MEAN 2.256 5 090 10 82 7 161 11 54 342 4 410 4 41.23 76.63 20 06 0.193 MAX 16 17 90 13 42 3440 3780 246 1050 51 8.3 0.59 0.11 6.9 5.6 45 0.21 0.10 MIN 6.9 10 AC-FT 139 303 665 440 641 21050 24420 2530 4560 1230 129 11 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1981 - 2002z, BY WATER YEAR (WY) 179.7 89.40 129.6 87.83 226.1 199.9 213.3 29.53 8.133 MEAN 203.6 25.29 MAX 1112 1811 1307 1995 1,990 1982 1986 (WY) 1982 1992 1992 2001 1990 1990 1989 1995 0.000 0.000 0.30 0.022 14.8 10.1 4.60 0.11 0.002 0.000 0.000 MTN 1.64 2000 2000 2000 (WY) 2000 # 08051500 Clear Creek near Sanger, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1981 - 2002z | |--|---------------------------|---------------------|---------------------------------------| | ANNUAL TOTAL | 67749.98 | 28299.51 | 143.7 | | ANNUAL MEAN | 185.6 | 77.53 | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | | 476 1982
2.64 2000 | | HIGHEST DAILY MEAN | 6460 Feb 16 | 3780 Apr 8 | 39700 Oct 13 1981 | | LOWEST DAILY MEAN | 0.11 Aug 25 | 0.10 Sep 5 | 0.00 Oct 12 1980 | | ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW | 0.11 Aug 25
0.12 Oct 2 | 0.12 Oct 2 | 0.00 Aug 2 1981
104000 Oct 13 1981 | | MAXIMUM PEAK STAGE | 124400 | 21.36 Apr 8 | 35.70 Oct 13 1981 | | ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | 134400 | 56130 | 104100 | | | 355 | 81 | 254 | | 50 PERCENT EXCEEDS | 14 | 7.6 | 22 | | 90 PERCENT EXCEEDS | 0.45 | 0.26 | 0.01 | Estimated Period of regulated streamflow. #### 08051500 Clear Creek near Sanger, TX--Continued (National Water-Quality Assessment Program) ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- CHEMICAL DATA: Apr. 1959, Jan. 1966, Oct. 1984 to Sept. 1996, Oct. 1997 to current year. PESTICIDE DATA: May 1997 to current year. SEDIMENT DATA: Feb. 1966 to May 1977, Oct. 1997 to Sept. 1999. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Oct. 1969 to Aug. 1977. WATER TEMPERATURE: May 1968 to Aug. 1977. SUSPENDED SEDIMENT DISCHARGE: May 1968 to Aug. 1977. EXTREMES FOR PERIOD OF DAILY RECORD.— SPECIFIC CONDUCTANCE: Maximum daily, 1,920 microsiemens/cm, Oct. 12, 1976; minimum daily, 182 microsiemens/cm, July 29, 1973. WATER TEMPERATURE: Maximum daily, 39.0°C, June 8, 1969; minimum daily, 0.0°C, Jan. 9, 1970. SEDIMENT CONCENTRATION: Maximum daily mean, 7,370 mg/L, May 12, 1972; minimum daily mean, no flow on many days. SEDIMENT LOADS: Maximum daily, 79,000 tons May 7, 1969; minimum daily, 0 tons on many days. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | |---|--|---|---|---|---|--|--|---|---|---|---|---|--| | NOV | 1000 | 2.5 | F1.0 | | 16.6 | 5 0 | 0.1 | 000 | 60.4 | 50.1 | | 222 | - 00 | | 06
DEC | 1030 | 3.5 | 718 | 7.9 | 16.6 | 7.8 | 81 | 232 | 63.4 | 59.1 | | <.008 | E.03 | | 06
JAN | 1015 | 6.0 | 700 | 8.1 | 15.1 | 8.2 | 82 | 244 | 64.7 | 41.4 | | <.008 | E.02 | | 08
FEB | 1130 | 7.3 | 639 | 8.3 | 4.4 | 13.4 | 105 | 218 | 63.3 | 35.7 | | <.008 | .16 | | 14
MAR | 1030 | 8.4 | 639 | 8.6 | 6.1 | 12.9 | 105 | 210 | | 36.2 | | <.008 | E.04 | | 14
APR | 1000 | 7.3 | 606 | 8.1 | 14.8 | 10.5 | 107 | 225 | 64.0 | 40.5 | | <.008 | <.05 | | 11 | 1430 | 691 | 270 | 8.0 | 17.5 | 9.4 | 99 | 116 | 11.4 | 5.57 | .51 | .026 | .53 | | MAY
16 | 0900 | 25 | 615 | 8.1 | 21.9 | 8.4 | 98 | 221 | 48.8 | 34.2 | | <.008 | .11 | | JUN
13 | 1000 | 21 | 583 | 7.7 | 27.5 | 7.6 | 99 | 199 | 42.1 | 32.5 | | <.008 | .11 | | JUL
11 | 1030 | 13 | 564 | 7.9 | 28.8 | 7.6 | 99 | 184 | 43.0 | 35.7 | | <.008 | .08 | | AUG
07 | 1030 | 3.3 | 657 | 7.6 | 27.7 | 6.8 | 89 | 182 | 53.5 | 57.9 | | E.006 | E.04 | | | | | | | | | | | | | | | | | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | NOV | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | NOV
06
DEC | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | NOV
06 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | NOV
06
DEC
06
JAN
08 |
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | | NOV
06
DEC
06
JAN
08
FEB
14 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.5 | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)
<.004 | | NOV
06
DEC
06
JAN
08
FEB
14
MAR
14 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.022
.020 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) <.02 <.02 <.02 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.5
2.9 | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689)
1.0
1.1 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)
<.002
<.002 | CHLOR, WATER FLIRD REC (UG/L) (49260) <.004 <.004 <.006 | | NOV
06
DEC
06
JAN
08
FEB
14
MAR
14
APR
11 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.022
.020
.013 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
<.02
<.02 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.5
2.9 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.0 1.1 .5 .6 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.12
.41
.57 | MENT,
SUS-
PENDED
(MG/L)
(80154)
13
25
29
14 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) < .002 < .002 < .006 < .006 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.004 <.006 | | NOV
06
DEC
06
JAN
08
FEB
14
MAR
14
APR
11
MAY
16 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN,
TOTAL
(MG/L
AS N)
(00600) | GEN, ORGANIC TOTAL (MG/L AS N) (00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .37 .24 .15 .23 .22 | PHORUS TOTAL (MG/L AS P) (00665) .022 .020 .013 .014 .019 | PHOS-
PHATE,
DIS-
SOLVED (MG/L
AS P)
(00671)
<.02
<.02
<.02
<.02 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.5
2.9
1.8
2.9 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.0 1.1 .5 .6 .9 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.12
.41
.57
.32 | MENT,
SUS-
PENDED
(MG/L)
(80154)
13
25
29
14
63 | ETHYL ANILINE WAT FIT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.006 <.006 <.006 | CHLOR, WATER FLIRD REC (UG/L) (49260) <.004 <.004 <.006 <.006 | | NOV 06 DEC 06 JAN 08 FEB 14 MAR 14 APR 11 MAY 16 JUN 13 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 <.05 | GEN,
TOTAL
(MG/L
AS N)
(00600)

.31

 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .37 .24 .15 .23 .22 .86 | PHORUS TOTAL (MG/L AS P) (00665) .022 .020 .013 .014 .019 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
<.02
<.02
<.02
<.02 | PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.5
2.9
1.8
2.9
2.3
7.0 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.0 1.1 .5 .6 .9 6.9 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.12
.41
.57
.32
1.2 | MENT,
SUS-
PENDED
(MG/L)
(80154)
13
25
29
14
63
328 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.006 <.006 <.006 | CHLOR, WATER FITRD REC (UG/L) (49260) <.004 <.004 <.006 <.006 <.006 | | NOV
06
DEC
06
JAN
08
FEB
14
MAR
14
APR
11
MAY
16 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN,
TOTAL
(MG/L
AS N)
(00600)

.31

1.4 | GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .37 .24 .15 .23 .22 .86 .27 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.022
.020
.013
.014
.019
.19 | PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.02
<.02
<.02
<.02
<.02
<.02 | PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) 147 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.5
2.9
1.8
2.9
2.3
7.0
2.9 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.0 1.1 .5 .6 .9 6.9 .7 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)
.12
.41
.57
.32
1.2
612
3.8 | MENT,
SUS-
PENDED
(MG/L)
(80154)
13
25
29
14
63
328
57 | ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (UG/L) (49260) <.004 <.006 <.006 <.006 <.006 | # 08051500 Clear Creek near Sanger, TX--Continued (National Water-Quality Assessment Program) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | |------------------|---|--|--|--|---|---|--|--|---|--|--|---|--| | NOV
06 | <.002 | <.005 | .008 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.002 | | DEC
06 | <.002 | <.005 | <.007 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | <.006 | | JAN
08 | <.004 | <.005 | .009 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | <.006 | | FEB 14 | <.004 | <.005 | 1.05 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.072 | | MAR
14 | <.004 | <.005 | .194 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.013 | | APR
11 | .008 | <.005 | .094 | <.050 | <.010 | <.002 | <.041 | <.020 | E.003n | <.006 | <.018 | <.003 | E.007 | | MAY
16
JUN | <.004 | <.005 | .047 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.009 | | 13
JUL | <.004 | <.005 | .078 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | E.014 | | 11
AUG | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | Date | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF,
REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | | NOV
06 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | | DEC
06 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | | JAN
08 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | | FEB 14 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | <.013 | <.006 | <.002 | | MAR
14 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.002n | <.006 | <.002 | | APR
11
MAY | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.009n | <.006 | <.002 | | 16
JUN | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.012n | <.006 | <.002 | | 13
JUL | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .024 | <.006 | <.002 | | 11
AUG | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | Date | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | | NOV
06 | <.007 | <.003 | <.007 | <.006 | <.002 | <.010 | <.011 | .02 | <.010 | <.011 | <.02 | <.004 | <.011 | | DEC
06 | <.007 | <.003 | <.007 | <.006 | <.002 | <.010 | <.011 | <.01 | <.010 | <.011 | <.02 | <.004 | <.011 | | JAN
08 | <.007 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.01 | <.010 | <.011 | <.02 | <.004 | <.005 | | FEB 14 | <.007 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.01 | <.010 | <.011 | <.02 | <.004 | <.005 | | MAR
14 | <.007 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.01 | <.010 | <.011 | <.02 | <.004 | <.005 | | APR
11 | <.007 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.01 | <.010 | <.011 | <.02 | <.004 | <.005 | | MAY
16 | <.007 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | .02 | <.010 | <.011 | <.02 | <.004 | <.005 | | JUN
13
JUL | <.007 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.01 | <.010 | <.011 | <.02 | <.004 | <.005 | | 11
AUG | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | # 08051500 Clear Creek near Sanger, TX--Continued (National Water-Quality Assessment Program) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | |-----------|---|--|--|---|---|---| | NOV | | | | | | | | 06
DEC | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 06
JAN | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 08 | .13 | <.034 | <.02 | <.005 | <.002 | <.009 | | FEB 14 | .05 | <.034 | <.02 | <.005 | <.002 | <.009 | | MAR
14 | E.07 | <.034 | <.02 | <.005 | <.002 | <.009 | | APR 11 | .02 | <.034 | <.02 | <.005 | <.002 | <.009 | | MAY
16 | E.05 | <.034 | <.02 | <.005 | <.002 | <.009 | | JUN
13 | .05 | <.034 | <.02 | <.005 | <.002 | <.009 | | JUL
11 | | | | | | | | AUG
07 | | | | | | | Remark codes used in this report: <-- Less than E -- Estimated value Value qualifier codes used in this report: $\ensuremath{\text{n}}$ -- Below the NDV THIS PAGE IS INTENTIONALLY BLANK ## 08052700 Little Elm Creek near Aubrey, TX LOCATION.--Lat 33°17′00", long 96°53′33", Denton County, Hydrologic Unit 12030103, on left bank at downstream side of bridge on Farm Road 1385, 1.5 mi upstream from Mustang Creek, 5.5 mi east of Aubrey, and 18 mi upstream from Lewisville Dam on the Elm Fork Trinity River. DRAINAGE AREA.--75.5 mi². PERIOD OF RECORD.--June 1956 to Sept. 1976, Oct. 1979 to current year. Water-quality records.--Chemical data: Feb. 1966 to Sept. 1975. Specific conductance: Dec. 1966 to Sept. 1975. Water temperature: Feb. 1966 to Sept. 1975. Sediment data: Feb. 1966 to Sept. 1975. REVISED RECORDS. -- WRD TX-70-1: 1969. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 534.76 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. There are several small diversions above station for irrigation. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1900, 18.2 ft in May 1941, from information by local residents. | | DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | |--|--|--|--|--|---------------------------------------|--|---|---|---------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.03
0.04
0.07
0.11
0.14 | 0.34
0.40 | 0.38
0.51
0.55
0.40
0.36 | 0.13
0.06
0.06
0.08
0.29 | 634
247
174
100
164 | 4.6
5.9
5.0
3.9
2.8 | 487
241
182
118
82 | 2.1
1.9
2.0
2.8
2.4 | 0.67
0.40
0.34
0.23
2.2 | 0.94
1.2
1.3
1.5
0.83 | 0.09
0.05
0.00
0.03
0.00 | 0.31
0.50
0.05
0.11
0.35 | | 6
7
8
9
10 | 0.06
0.05
0.23
0.02
0.68 | 0.35
0.39
0.26
0.25
0.26 | 0.31
0.30
0.43
0.46
0.55 | 0.45
0.56
0.58
0.40
0.42 | 367
208
107
61
31 | 1.4
0.61
0.44
0.55
0.82 | 55
557
1690
539
349 | 2.8
2.4
2.1
1.9
200 | 32
12
4.7
2.3
1.2 | 0.45
0.23
0.08
0.07
0.12 | 0.00
0.0
0.02
0.04
0.00 | 0.21
0.07
0.58
1.4
1.9 | | 11
12
13
14
15 | 27
e73
e1300
e372
e161 | 0.12
0.11
0.06
0.06
0.03 | 0.88
1.4
1.8
1.8
2.0 | 0.64
0.52
0.48
0.33
0.46 | 17
12
10
8.6
7.4 | 0.89
0.73
0.64
0.65
1.1 | 214
140
129
180
96 | 91
35
20
15
11 | 0.71
0.44
0.26
0.43
0.35 | 0.10
0.0
0.21
0.48
27 | 0.00
0.00
0.03
0.02
0.05 | 1.5
1.1
0.83
0.77
0.61 | | 16
17
18
19
20 | | | | | | | 50
25
15
12
9.6 | 9.8
157
150
65
35 | | 8.7
4.1
2.2
2.0
1.9 | | 0.46
0.49
0.23
0.27
0.33 | | 22
23
24
25 | | 0.03
0.05
0.07
0.07 | | | | | 8.2
7.0
6.2
5.1
2.6 | 20
15
13
11
10 | 0.20
0.11
0.04
0.03
0.04 | 0.53
0.19
0.15
0.08
0.04 | 0.02 | 0.23
0.13
0.04
0.0
0.00 | | 26
27
28
29
30
31 | 0.46
0.05
0.00
0.13
0.43
0.42 | 0.01
0.02
0.23
0.46
0.52 | 4.2
2.1
0.63
0.30
0.26
0.21 | 30
15
11
8.5
7.3
1130 | 5.7
5.0
3.6
 | 314
186
146
122
1380
1500 | 2.2
2.1
1.8
1.6
2.2 | 9.2
6.9
3.1
2.3
1.6
1.2 | 0.12
0.23
0.25
0.27
0.40 | | 0.26
0.39
1.1
0.95
0.54
0.48 | 0.0
0.00
0.00
0.00
0.04 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2105.12
67.91
1300
0.00
4180 | 5.16
0.172
0.52
0.00
10 | 346.93
11.19
138
0.21
688 | 1404.90
45.32
1130
0.06
2790 |
2228.8
79.60
634
1.4
4420 | 11221.33
362.0
3180
0.44
22260 | 5209.6
173.7
1690
1.6
10330 | 29.11 | 2.167 | 54.61
1.762
27
0.00
108 | 4.52
0.146
1.1
0.00
9.0 | 12.51
0.417
1.9
0.00
25 | | STATI | STICS OF | MONTHLY ME | AN DATA F | OR WATER | YEARS 19 | 56 - 2002 | h, BY WATE | R YEAR (WY | • | | | | | MEAN
MAX
(WY)
MIN
(WY) | 55.86
641
1982
0.000
1957 | 61.89
530
1997
0.000
1959 | 51.27
398
1992
0.000
1959 | 26.66
208
1998
0.000
1959 | 67.00
400
2001
0.000
1959 | 61.57
362
2002
0.026
1963 | 69.22
677
1957
0.10
1959 | 115.7
897
1982
0.000
1959 | 46.80
286
1989
0.000
1956 | 17.85
540
1994
0.000
1956 | 2.133
28.5
1966
0.000
1956 | 28.76
258
1964
0.000
1956 | | SUMMA | RY STATIS | TICS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 W | ATER YEAR | | WATER YEAR | S 1956 - | 2002h | | ANNUAL HIGHES LOWES ANNUAL MAXIM MAXIM ANNUAL 10 PEI | JM PEAK F | MEAN MEAN IEAN IEAN IAY MINIMUM TLOW TTAGE (AC-FT) IEEDS TEEDS | | 23662.:
64.8
2500
0.0
0.0
46930
169
0.1 | Feb 1
000 May
000 Jun | 6
1
5 | 23560.9
64.5
3180
0.0
0.0
8000
17.4
46730
133
0.7
0.0 | Mar 20
00 Oct 28
11 Sep 23
Mar 20
10 Mar 20 | | 50.44
178
2.24
11600
0.00
0.00
36200
18.27
36540
83
0.61 | Jul 11
Jun 1
Jun 1
Jul 11
Jul 11 | 1982
1959
1954
1956
1956
1994
1994 | h See PERIOD OF RECORD paragraph. # 08052700 Little Elm Creek near Aubrey, TX--Continued ## 08052800 Lewisville Lake near Lewisville, TX LOCATION.--Lat 33°04'09", long 96°57'51", Denton County, Hydrologic Unit 12030103, in intake structure of Lewisville Dam on Elm Fork Trinity River, 2.0 mi upstream from bridge on State Highway 121, 2.4 mi northeast of Lewisville, 12.0 mi upstream from Denton Creek, and 30.0 mi upstream from mouth. DRAINAGE AREA. -- 1,660 mi2 PERIOD OF RECORD.--Nov. 1954 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Garza-Little Elm Reservoir near Lewisville". REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to May 17, 1955, nonrecording gage at site 4,000 ft upstream at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 32,888 ft long, including a 560-ft uncontrolled off-channel concrete-gravity spillway with ogee weir section. Deliberate impoundment began Nov. 1, 1954, and the dam was completed in Aug. 1955. The controlled low-flow outlet works consist of a 16.0-ft-diameter conduit that is controlled by three 6.5- by 13.0-ft broome-type gates and two 60-in steel pipes with service valves. The dam is owned by the U.S. Army Corps of Engineers. The lake was built for flood control and water conservation. The city of Dallas obtains most of its municipal water supply from this lake. Inflow is affected at times by discharge from the flood-detention pools of 118 floodwater-retarding structures with a combined detention capacity of 81,670 acre-ft. These structures control runoff from 298 mi in the Elm Fork Trinity River, Clear, Little Elm, and Hickory Creeks watersheds. An unknown amount of water was diverted for municipal and industrial uses. Conservation pool storage is 640,990 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |--------------------------------------|-----------| | | (feet) | | Top of dam | 560.0 | | Crest of spillway | | | Top of conservation pool | | | Lowest intakes to wet wells (invert) | | | Invert of three broome-type gates | 448.0 | | | | COOPERATION.--Capacity Table No. 1, furnished by the U.S. Army Corps of Engineers, from 1965 survey, and put into effect on Oct. 1, 1995. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,181,000 acre-ft, May 4, 1990, elevation, 536.73 ft; minimum since initial filling in 1957, 184,700 acre-ft, Sept. 28, 1980, elevation, 498.65 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 749,300 acre-ft, Apr. 14, 15, 16, elevation, 525.51 ft; minimum contents, 488,600 acre-ft, Jan. 22, elevation, 516.30 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 535100 | 524700 | 508100 | e504000 | 518800 | 521000 | 703600 | 679300 | 648900 | 643700 | 625300 | 583500 | | 2 | 533800 | 524600 | 507400 | e504000 | 519800 | 523900 | 701600 | 675100 | 647700 | 644100 | 624200 | 582300 | | 3 | 532600 | 524400 | 506900 | e501800 | 520200 | 521300 | 696400 | 671000 | 646400 | 646500 | 622900 | 581100 | | 4 | 531500 | 523800 | 506500 | e500100 | 520400 | 519900 | 690100 | 666000 | 645700 | 647000 | 621300 | 579900 | | 5 | 532200 | 523200 | 506000 | e499600 | 522400 | 519000 | 684800 | 661100 | 647600 | 646900 | 619900 | 578700 | | 6 | 531600 | 522400 | 506300 | e499100 | 526700 | 518600 | 679700 | 657300 | 653100 | 646800 | 618300 | 577500 | | 7 | 530100 | 521500 | 505900 | e498400 | 528500 | 518100 | 683300 | 653800 | 653900 | 646300 | 617300 | 576100 | | 8 | 528800 | 521100 | 506100 | 497900 | 528600 | 518100 | 724500 | 651600 | 653100 | 645800 | 616500 | 575600 | | 9 | 527700 | 520400 | 504300 | 497300 | 529300 | 519500 | 743500 | 652100 | 652300 | 645000 | 614900 | 575800 | | 10 | 527400 | 519400 | 503200 | 497200 | 530400 | 517900 | 745600 | 663400 | 650900 | 644200 | 613300 | 574900 | | 11 | 528900 | 518900 | 502500 | 496600 | 529000 | 517100 | 744600 | 672800 | 649800 | 643600 | 612200 | 573800 | | 12 | 529000 | 518600 | 502700 | 495900 | 528400 | 517200 | 744200 | 673400 | 649400 | 643000 | 610700 | 572800 | | 13 | 537400 | 518000 | 502600 | 494300 | 528500 | 515800 | 744400 | 673400 | 650300 | 643700 | 608900 | 571600 | | 14 | 540600 | 517200 | 501800 | 494400 | 527600 | 515100 | 748100 | 670400 | 652200 | 643300 | 607900 | 570600 | | 15 | 540900 | 516700 | 501500 | 493300 | 528000 | 516000 | 748600 | 666500 | 651800 | 642500 | 606200 | 570000 | | 16 | 539900 | 516300 | 506300 | 492700 | 527400 | 515100 | 748200 | 663400 | 653800 | 642900 | 604800 | 568500 | | 17 | 538600 | 516000 | 509800 | 492400 | 527100 | 514400 | 747600 | 666200 | 653800 | 642700 | 603100 | 567000 | | 18 | 537000 | 515300 | 510100 | 491500 | 526500 | 515500 | 745200 | 667400 | 653000 | 643000 | 601600 | 565100 | | 19 | 536700 | 515900 | 510700 | 491300 | 526100 | 534500 | 742100 | 664500 | 652200 | 642300 | 600100 | 565700 | | 20 | 536200 | 514500 | 509600 | 489700 | 526300 | 615100 | 738100 | 661300 | 651400 | 641400 | 598700 | 565000 | | 21 | 535500 | 513400 | 509000 | 489500 | 526700 | 643100 | 734500 | 657800 | 650900 | 640400 | 596900 | 563800 | | 22 | 534800 | 512400 | 509000 | 489000 | 526200 | 648600 | 730000 | 654000 | 650100 | 639400 | 595500 | 562900 | | 23 | 534200 | 511700 | e509000 | 489500 | 525200 | 651700 | 724100 | 652600 | 649400 | 638500 | 594000 | 561200 | | 24 | 534000 | 512000 | e509000 | 492900 | 524000 | 655200 | 718600 | 652400 | 648600 | 637400 | 592500 | 559800 | | 25 | 533100 | e511300 | e515500 | 493500 | 525400 | 660500 | 712700 | 652200 | 647600 | 636200 | 591300 | 558400 | | 26
27
28
29
30
31 | 532000
531000
529400
528600
527700
525900 | e511200
e511100
511400
509700
508200 | e518300
e518500
e506000
e505200
e504500
e504000 | 493400
493100
493000
493000
493500
508100 | 525500
522700
521700
 | 661200
661600
662500
663400
672700
694900 | 705500
699200
695000
689700
684500 | 651800
651500
651700
651300
650600
649800 | 646700
645800
644700
643100
642700 | 634600
632600
630500
629200
628000
626900 | 590200
589500
588500
587400
586000
584800 | 557400
556100
554700
553900
553000 | | MEAN | 533000 | 516800 | 507300 | 495500 | 525600 | 572500 | 719900 | 660800 | 649600 | 640600 | 604700 | 568600 | | MAX | 540900 | 524700 | 518500 | 508100 | 530400 | 694900 | 748600 | 679300 | 653900 | 647000 | 625300 | 583500 | | MIN | 525900 | 508200 | 501500 | 489000 | 518800 | 514400 | 679700 | 649800 | 642700 | 626900 | 584800 | 553000 | | (+) | 517.80 | 517.10 | 516.93 | 517.09 | 517.64 | 523.78 | 523.44 | 522.29 | 522.06 | 521.52 | 520.05 | 518.86 | | (@) | -11000 | -17700 | -4200 | +4100 | +13600 | +173200 | -10400 | -34700 | -7100 | -15800 | -42100 | -31800 | CAL YR 2001 MAX 793500 MIN 447900 (@) +57600 WTR YR 2002 MAX 748600 MIN 489000 (@) +16100 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08052800 Lewisville Lake near Lewisville, TX--Continued ## 08053000 Elm Fork Trinity River near Lewisville, TX LOCATION.--Lat 33°02′44", long 96°57′39", Denton County, Hydrologic Unit 12030103, on left bank at downstream edge of highway right-of-way, 90 ft to left of left end of bridge on State Highway 121, 1.8 mi east of Lewisville, 1.9 mi downstream from Lewisville Lake, 8.3 mi upstream from Denton Creek,
and 28.2 mi upstream from mouth. DRAINAGE AREA. -- 1,673 mi². PERIOD OF RECORD. -- Mar. 1949 to current year. REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 432.39 ft above NGVD of 1929 (U.S. Army Corps of Engineers benchmark). Prior to Jan. 6, 1950, nonrecording gage 0.6 mi upstream at datum 3.26 ft lower. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since Nov. 1954, at least 10% of contributing drainage area has been regulated. Most of low flow is used by the city of Dallas for municipal supply (see Elm Fork Trinity River near Carrollton (station 08055500). AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--5 years (water years 1950-54) prior to regulation, $402 \text{ ft}^3/\text{s}$ (291,200 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1950-54).--Maximum discharge, 21,700 ft³/s, Sept. 15, 1950, gage height, 30.75 ft; no flow June 14, 1954. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1907, 33.8 ft in 1908, present site and datum, from information by local resident. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT DEC FEB MAR JUN JUL AUG SEP NOV JAN APR MAY 7 ___ ------TOTAL. MEAN 251.8 225.2 233.1 259.3 195.9 977.6 414.8 329.0 351.1 295.8 MAX MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1955 - 2002z, BY WATER YEAR (WY) MEAN 409.3 625.6 642.5 512.2 613.2 905.3 878.6 805.6 480.4 339.7 MAX (WY) MIN (WY) # 08053000 Elm Fork Trinity River near Lewisville, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | DAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1955 - 2002z | |--------------------------|----------------|----------|--------------|---------|-------------|--------------| | ANNUAL TOTAL | 282847 | | 279925 | | | | | ANNUAL MEAN | 774.9 | | 766.9 | | 737.3 | | | HIGHEST ANNUAL MEAN | | | | | 3062 | 1982 | | LOWEST ANNUAL MEAN | | | | | 94.2 | 1955 | | HIGHEST DAILY MEAN | 4200 | Apr 22 | 4960 | Apr 7 | 19000 | May 4 1990 | | LOWEST DAILY MEAN | 27 | Feb 10 | 86 | Sep 30 | 0.00 | Oct 20 1993 | | ANNUAL SEVEN-DAY MINIMUM | 34 | Feb 6 | 157 | Jan 24 | 0.29 | Nov 3 1983 | | MAXIMUM PEAK FLOW | | | 5120 | Apr 7 | 19600 | May 4 1990 | | MAXIMUM PEAK STAGE | | | 21.66 | Apr 7 | 30.15 | May 4 1990 | | ANNUAL RUNOFF (AC-FT) | 561000 | | 555200 | | 534100 | | | 10 PERCENT EXCEEDS | 2620 | | 2700 | | 3040 | | | 50 PERCENT EXCEEDS | 329 | | 300 | | 226 | | | 90 PERCENT EXCEEDS | 131 | | 184 | | 80 | | z Period of regulated streamflow. ## 08053500 Denton Creek near Justin, TX LOCATION.--Lat 33°07′08", long 97°17′25", Denton County, Hydrologic Unit 12030104, on right bank at downstream side of bridge on Farm Road 156, 100 ft upstream from Gulf, Colorado, and Santa Fe Railway Co. bridge, 2.2 mi north of Justin, 3.0 mi upstream from Olivers Creek, 12.9 mi upstream from Harriet Creek, and 32.9 mi upstream from Grapevine Dam. DRAINAGE AREA.--400 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1949 to current year. REVISED RECORDS. -- WSP 1732: 1950(M). WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 606.66 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since installation of gage, at least 10% of contributing drainage has been affected at times by discharge from the flood detention pools of 84 floodwater-retarding structures. These structures control runoff from 197 mi² in the Denton Creek watershed. No known diversions. No flow at times most years. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1935 was the highest since 1908 and reached a stage of 20.6 ft at site about 1,500 ft upstream, from information by local resident. Flood in May 1908 reached a stage about 1.0 ft higher than flood in May 1935, from information by local residents. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | Д | ISCHARGE I | FROM DCP, | COBIC FE | | ECOND, WA
LY MEAN V | | CTOBER 200 | I TO SE | PTEMBER 20 | JU2 | | |---|---|--|--|---------------------------------------|--|--|--|---------------------------------------|--|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e0.0
e0.0
e0.0
0.0 | 0.0
0.0
0.0
0.0 | 3.8
3.4
3.2
3.3
3.5 | 8.5
8.5
8.5
8.5 | 13
11
10
9.7
23 | 9.6
10
11
12 | 520
259
150
91
71 | 78
53
48
52
51 | 39
36
34
33
651 | 28
47
71
230
138 | e14
e13
e12
e11
e10.5 | e0.02
e0.02
e0.01
e0.01
e0.01 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 3.5
3.4
3.1
2.6
2.5 | 12
14
12
11
10 | 35
23
18
14
12 | 11
11
11
10
9.9 | 63 | 47
41 | 1030
362
202
129
84 | 82
48
34
25
22 | e8.3
e6.6
e6.1
e5.6
e7.6 | e0.0
e0.16
e0.25
e0.33
e0.31 | | 11
12
13
14
15 | 0.0
2.5
3.3
1.5
0.60 | 0.0
0.0
0.0
0.0 | 2.7
3.6
4.1
5.2
4.8 | 10
10
10
10
10 | 11
10
10
10 | 9.8
9.4
9.6
9.9
9.9 | 413
300
242
561
383 | 661
293
180
124
91 | 57
43
37
48
41 | 21
23
46
37
21 | e6.8
e5.9
e4.5
e3.5
e2.9 | e0.26
e0.19
e0.11
e0.10
e0.08 | | 16
17
18
19
20 | 0.25
0.02
0.0
0.0
0.0 | 0.0
1.5
1.7
1.7 | 114
156
71
22
12 | 10
9.8
9.6
10 | 10
10
10
28
40 | | | 71
287
315
140
100 | | e21
e20 | e1.4
e0.97
e0.60
e0.32
e0.18 | e0.05
e0.04
e0.04
e3.0
e2.8 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0 | 0.83
0.76
0.84
0.92
1.0 | 9.8
9.4
8.8 | | 16 | 1070
523
310
232
169 | 102
87
74
67
58 | 68
53
46
42
40 | | | e0.09
e0.03
0.01
e0.01
e0.01 | e2.5
e2.4
e2.2
e2.0
e1.7 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0
0.0 | 1.2
1.4
2.0
2.0
3.4 | 8.8
9.0
9.0
8.8
8.6 | 14
12
11
11
10
18 | 9.4
9.2
9.3
 | 113
82
68
60
82
646 | 53
53
53
50
60 | 80
92
70
65
53
45 | 20
20
20
20
20
20 | e15
e14
e13
e12
e11
e15 | e0.08
e0.20
e0.16
e0.11
e0.08
e0.04 | e1.3
e0.80
e0.40
e0.20
e0.08 | | TOTAL
MEAN
MAX
MIN
AC-FT | 8.17
0.264
3.3
0.00
16 | 20.35
0.678
3.4
0.00
40 | 529.7
17.09
156
2.5
1050 | 338.4
10.92
18
8.5
671 | 423.6
15.13
40
9.2
840 | 10467.6
337.7
4200
9.4
20760 | 10340
344.7
3380
50
20510 | 5268
169.9
1900
40
10450 | 3215
107.2
1030
20
6380 | 1149
37.06
230
11
2280 | 122.59
3.955
14
0.01
243 | 21.37
0.712
3.0
0.00
42 | | STATIST | | | | | | | | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 116.8
2828
1982
0.000
1952 | 85.07
817
1965
0.000
1952 | 74.59
1321
1992
0.000
1952 | 54.46
437
1992
0.000
1953 | 120.8
1236
2001
0.000
1953 | 144.1
598
1998
0.000
1953 | 172.9
2095
1990
0.000
1955 | 299.9
2036
1982
2.00
1959 | 160.8
1815
1989
0.000
1953 | 36.20
438
1950
0.000
1952 | 8.860
91.5
1973
0.000
1952 | 44.45
714
1962
0.000
1952 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEA | R I | FOR 2002 W | ATER YEAR | | WATER YE | ARS 1950 - | 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | MEAN F ANNUAL ME F DAILY ME SEVEN-DA M PEAK FL M DEAK ST | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | 0.00 | Feb 2
) Aug
) Aug | 4
1
1 | 31903.7
87.4
4200
0.0
0.0
8250
15.5
63280
144
10
0.0 | | | 109.1
577
2.2
18600
0.1
0.3
34700
18.0
79520
160
12 | | 1949
1949
1981 | e Estimated # 08053500 Denton Creek near Justin, TX--Continued # 08053500 Denton Creek near Justin, TX--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1997 to current year. BIOCHEMICAL DATA: Oct. 1997 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |------------------|--
--|--|--|--|--|---|--|---|--|---|--|--| | MAR
06 | 1000 | 10 | 813 | 7.7 | 7.7 | 11.7 | 101 | | 260 | 60 | 78.6 | 16.0 | 58.1 | | APR
11 | 1050 | 418 | 375 | 8.0 | 18.0 | 7.8 | 84 | 2.5 | 160 | 23 | 54.1 | 5.00 | 11.2 | | MAY
15 | 0915 | 94 | 482 | 8.0 | 19.5 | 7.7 | 85 | <2.0 | 200 | 19 | 69.2 | 6.26 | 17.6 | | AUG
13 | 1230 | 3.5 | 693 | 7.5 | 28.0 | 5.5 | 71 | <2.0 | 240 | 62 | 67.7 | 16.1 | 46.0 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | MAR
06 | 2 | 32 | 3.01 | 2 | 242 | 203 | 82.1 | 84.7 | .3 | 2.19 | 470 | 447 | <10 | | APR
11 | . 4 | 13 | 3.89 | 1 | 159 | 132 | 22.4 | 17.0 | .2 | 10.5 | 224 | 205 | 165 | | MAY
15 | .5 | 16 | 3.52 | 2 | 215 | 179 | 33.8 | 21.2 | .2 | 10.3 | 284 | 271 | 36 | | AUG
13 | 1 | 29 | 3.81 | 1 | 210 | 173 | 94.0 | 49.1 | .3 | 10.3 | 424 | 391 | 11 | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | | MAR
06
APR | | <.008 | E.04 | <.04 | .24 | .016 | <.02 | | 63.0r | <1 | .14 | <2 | 85 | | 11
MAY | | E.007 | .24 | <.04 | .45 | .043 | .03 | .098 | 9.6 | 1 | .14 | 2 | 70 | | 15
AUG | .37 | .015 | .39 | E.02 | .46 | .043 | E.01 | | 6.3 | 1 | .15 | 2 | 81 | | 13 | | <.008 | <.05 | <.04 | .42 | .012 | <.02 | | 5.1 | <1 | E.04 | 3 | 107 | | Date | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | | MAR
06 | <.06 | <.04 | <.8 | .30 | 1.0 | <10 | <.08 | 9.6 | <.01 | 2.3 | 1.36 | <2 | <1 | | APR
11 | <.06 | <.04 | <.8 | .25 | 1.5 | E7 | <.08 | 2.1 | | 1.3 | 1.90 | <2 | <1 | | MAY
15 | <.06 | <.04 | <.8 | .33 | 1.5 | <10 | <.08 | 9.8 | <.01 | 1.8 | 2.12 | <2 | <1 | | AUG
13 | <.06 | <.04 | <.8 | .20 | 1.2 | <10 | <.08 | 4.7 | <.01 | 2.8 | 1.05 | <2 | <1 | # 08053500 Denton Creek near Justin, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |-----------|---|---| | MAR
06 | 1 | 4.22 | | APR
11 | <1 | 1.95 | | MAY
15 | 1 | 2.21 | | AUG
13 | 1 | 1.90 | Remark codes used in this report: <-- Less than E -- Estimated value Value qualifier codes used in this report: r -- Value verified by rerun, same method ## 08053800 Elizabeth Creek at State Highway 114 near Roanoke, TX LOCATION.--Lat 33°01'12", long 97°14'52", Denton County, Hydrologic Unit 12030104, over center of channel at downstream side of bridge on State Highway 114 1.5 mi east of Interstate Highway 35W and 1.9 mi northwest of courthouse in downtown Roanoke. DRAINAGE AREA.--75 mi². PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1997 to current year. BIOCHEMICAL DATA: Oct. 1997 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | WAILER | QUALITI L | MIN, WALL | ik IBAK OC | TODER 200 | I TO DEFT | EMDER 200 | 2 | | | | |------------------|--|--|--|--|--|--|---|--|--|--|---|--|--| | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | MAR | 1200 | 2.2 | F70 | 7 7 | 10 5 | 11 2 | 104 | | 21.0 | 11 | 74.4 | F 21 | 22.0 | | 06
APR | 1200 | 2.3 | 570 | 7.7 | 10.5 | 11.3 | 104 | | 210 | 11 | 74.4 | 5.31 | 32.9 | | 16
MAY | 1045 | 40 | 485 | 7.9 | 21.5 | 7.0 | 81 | <2.0 | 200 | 29 | 75.1 | 4.06 | 19.4 | | 15
AUG | 1145 | 15 | 481 | 7.9 | 20.5 | 7.8 | 88 | <2.0 | 190 | 11 | 67.5 | 4.24 | 22.3 | | 13 | 1020 | 4.7 | 340 | 7.2 | 27.0 | 7.3 | 93 | 2.3 | 110 | 13 | 41.1 | 2.81 | 20.5 | | Date | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | MAR
06 | 1 | 25 | 2.44 | 2 | 236 | 197 | 48.1 | 30.9 | .3 | 2.37 | 326 | 316 | <10 | | APR
16 | .6 | 17 | 2.92 | 2 | 210 | 175 | 31.1 | 16.4 | .3 | 7.97 | 299 | 264 | 12 | | MAY
15 | .7 | 20 | 2.53 | <1 | 213 | 176 | 32.3 | 21.5 | .4 | 5.55 | 277 | 262 | 19 | | AUG | .8 | 27 | | | | | | | .3 | | 198 | 185 | 28 | | 13 | .0 | 21 | 4.13 | 1 | 122 | 100 | 22.8 | 22.8 | . 3 | 7.83 | 190 | 103 | 20 | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS
N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | | MAR
06
APR | | <.008 | . 25 | <.04 | .20 | .005 | <.02 | 5.2 | 1 | .14 | <2 | 79 | <.06 | | 16 | | E.006 | .39 | <.04 | .44 | .012 | <.02 | 6.5 | 2 | .26 | M | 82 | <.06 | | MAY
15 | | E.005 | .21 | <.04 | .28 | .009 | <.02 | 3.9 | 2 | .14 | E1 | 79 | <.06 | | AUG
13 | .47 | .025 | .49 | <.04 | .37 | .024 | E.01 | 6.6 | 3 | .10 | E2 | 57 | <.06 | | Date | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | MAR
06
APR | <.04 | <.8 | . 25 | 1.2 | <10 | E.07 | 16.2 | <.01 | 1.7 | 1.12 | <2 | <1 | 1r | | 16
MAY | <.04 | <.8 | .30 | 1.6 | <10 | <.08 | 3.0 | | .9 | .56 | <2 | <1 | 2 | | 15 | <.04 | <.8 | .28 | 1.0 | <10 | E.05 | 9.2 | <.01 | 1.1 | 1.70 | <2 | <1 | <1 | | AUG
13 | <.04 | <.8 | .18 | 1.6 | <10 | <.08 | 6.2 | <.01 | 1.8 | 1.06 | <2 | <1 | <1 | 08053800 Elizabeth Creek at State Highway 114 near Roanoke, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |------------------|---| | MAR
06
APR | 1.02 | | 16
MAY
15 | .95
.79 | | AUG
13 | .28 | Remark codes used in this report: <--- Less than E -- Estimated value M --- Presence verified, not quantified Value qualifier codes used in this report: $\ensuremath{\text{r}}$ -- Value verified by rerum, same method ## 08054500 Grapevine Lake near Grapevine, TX LOCATION.--Lat 32°58'21", long 97°03'22", Tarrant County, Hydrologic Unit 12030104, in intake structure of Grapevine Dam on Denton Creek, 2.7 mi northeast of Grapevine, 4.3 mi upstream from bridge on State Highway 121, and 11.7 mi upstream from mouth. DRAINAGE AREA. -- 695 mi². #### WATER-CONTENT RECORDS PERIOD OF RECORD.--July 1952 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Grapevine Reservoir". REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to May 16, 1953, nonrecording gage at site 1,000 ft upstream at present datum. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily contents, which are poor. The lake is formed by a rolled earthfill dam 12,850 ft long, including a 500-foot uncontrolled off-channel concrete-gravity spillway with an ogee weir section. The dam was completed in June 1952, and deliberate impoundment began July 3, 1952. The controlled outlet works consist of a 13.0-ft-diameter concrete conduit that is controlled by two 6.5- by 13.0-ft broome-type gates and two 30-in steel pipes with service valves. The capacity table, used since Apr. 1972, is based on a survey made in Oct. 1966. The lake was built for flood control, navigation, and water conservation. The dam is owned by the U.S. Army Corps of Engineers. The city of Dallas uses part of this water for their municipal supply. An unknown amount of water is diverted for industrial and municipal uses. Inflow is affected at times by discharge from the flood-detention pools of 87 floodwater-retarding structures with a combined detention capacity of 57,850 acre-ft. These structures control runoff from 217 mi² in the Denton Creek watershed. Conservation pool storage is 181,100 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |-------------------------------------|-----------| | | (feet) | | Top of dam | 588.0 | | Crest of spillway | 560.0 | | Top of conservation pool | | | Lowest intake to wet wells (invert) | 500.5 | | Invert of two broome-type gates | 475.0 | COOPERATION. -- Capacity table furnished by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 471,200 acre-ft, Nov. 1, 1981, elevation, 563.29 ft; minimum since lake first filled in 1957, 94,480 acre-ft, Feb. 26, 1979, elevation, 520.67 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 215,600 acre-ft, May 12, elevation, 539.50 ft; minimum contents, 139,100 acre-ft, Jan. 21, elevation, 528.79 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 152300 | 146600 | 141400 | 141900 | 144500 | 144100 | 192300 | 209800 | 186600 | 182700 | 178900 | 169800 | | 2 | 152000 | 146400 | 141300 | 141800 | 144500 | 144500 | 192700 | 209800 | 186400 | 182800 | 178600 | 169600 | | 3 | 151800 | 146300 | 141200 | 141500 | 144500 | 144100 | 192400 | 210100 | 186100 | 183500 | 178300 | 169200 | | 4 | 151500 | 146200 | 141000 | 141300 | 144400 | 143900 | 191900 | 210300 | 185900 | 184200 | 178000 | 168900 | | 5 | 151400 | 146000 | 140900 | 141300 | 144900 | 143700 | 191300 | 211000 | 185800 | 184600 | 177600 | 168600 | | 6 | 151000 | 145800 | 140900 | 141300 | 145800 | 143500 | 190900 | 211600 | 187400 | 184700 | 177400 | 168300 | | 7 | 150600 | 145600 | 140900 | 141100 | e146200 | 143500 | 192900 | 211300 | 188200 | 184700 | 177100 | 167900 | | 8 | 150300 | 145400 | 140800 | 140900 | e146300 | 143500 | 204700 | 211000 | 188100 | 184700 | 176700 | 167700 | | 9 | 150100 | 145200 | 140400 | 140800 | 146500 | 143500 | 211500 | 210800 | 187700 | 184600 | 176400 | 167800 | | 10 | 150000 | 145000 | 140200 | 140700 | 146400 | 143200 | 213500 | 211800 | 187100 | 184400 | 176200 | 167600 | | 11 | 150200 | 144800 | 140100 | 140700 | 146200 | 143100 | 213200 | 214900 | 186400 | 184200 | 176200 | 167300 | | 12 | 150200 | 144700 | 140100 | 140600 | 146100 | 143000 | 212500 | 215300 | 185700 | 183900 | 175800 | 167100 | | 13 | 150800 | 144500 | 140100 | 140400 | 146100 | 142800 | 212400 | 214300 | 185200 | 183900 | 175600 | 166700 | | 14 | 150600 | 144400 | 140000 | 140300 | 145900 | 142700 | 213800 | 211600 | 185400 | 183800 | 175200 | 166400 | | 15 | 150500 | 144200 | 139900 | 140100 | 145900 | 142700 | 214500 | 208700 | 185200 | 183500 | 174900 | 166200 | | 16 | 150100 | 144100 | 141200 | 140000 | 145700 | 142500 | 214700 | 205900 | 185600 | 183300 | 174500 | 165900 | | 17 | 149900 | 144000 | 142900 | 139900 | 145600 | 142300 | 214900 | 203900 | 185600 | 183200 | 174200 | 165500 | | 18 | 149600 | 144000 | 143500 | 139700 | 145500 | 142500 | 215100 | 202300 | 185400 | 183100 | 173900 | 165100 | | 19 | 149400 | 143900 | 143700 | 139700 | 145500 | 146600 | 215000 | 199800 | 185100 | 182900 | 173500 | 165000 | | 20 | 149200 | 143600 | 143700 | 139400 | 145400 | 177100 | 214700 | 197000 | 184900 | 182600 | 173200 | 164800 | | 21 | 149100 | 143400 | 143500 | 139300 | 145500 | 190200 | 214400 | 194100 | 184700 | 182300 | 172900 | 164500 | | 22 | 148900 | 143100 | 143500 | 139200 | 145400 | 192500 | 213900 | 191200 | 184400 | 182000 | 172500 | 164200 | | 23 | 148700 | 143000 | 143300 | 139400 | 145200 | 193300 | 213400 | 188300 | 184200 | 181800 | 172200 | 163700 | | 24 | 148600 | 142800 | 143200 | 140000 | 145100 | 193800 | 213000 | 186600 | 183900 | 181400 | 171900 | 163300 | | 25 | 148300 | 142500 | 143100 | 140100 | 145100 | 194300 | 212300 | 186000 | 183700 | 181200 | 171500 | 163000 | | 26
27
28
29
30
31 | 148000
147800
147400
147200
147000
146800 | 142300
142100
142100
141800
141600 | 142900
142700
142600
142500
142300
142100 | 140000
139900
139900
139800
139900
143100 | 145000
144500
144300
 | 193000
191500
190200
189000
189300
190900 | 211600
211000
210700
210200
209900 | 186200
186200
186500
186800
186800
186700 | 183400
183100
182800
182500
182400 | 180800
180400
180000
179600
179600
179300 | 171200
171300
171100
170800
170500
170100 | 162800
162300
162000
161200
160300 | # 08054500 Grapevine Lake near Grapevine, TX--Continued | | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|--------|--------|--------|--------|--------|--------|--------|--------|--------
--------|--------|--------| | MEAN | 149700 | 144200 | 141800 | 140500 | 145400 | 161600 | 207800 | 201500 | 185300 | 182700 | 174500 | 165800 | | MAX | 152300 | 146600 | 143700 | 143100 | 146500 | 194300 | 215100 | 215300 | 188200 | 184700 | 178900 | 169800 | | MIN | 146800 | 141600 | 139900 | 139200 | 144300 | 142300 | 190900 | 186000 | 182400 | 179300 | 170100 | 160300 | | (+) | 530.03 | 529.18 | 529.26 | 529.42 | 529.61 | 536.33 | 538.79 | 535.76 | 535.17 | 534.75 | 533.47 | 532.05 | | (@) | -5700 | -5200 | +500 | +1000 | +1200 | +46600 | +19000 | -23200 | -4300 | -3100 | -9200 | -9800 | CAL YR 2001 WTR YR 2002 MAX 305300 MIN 139900 (@) -9100 MAX 215300 MIN 139200 (@) +7800 # e Estimated - (+) Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. ## 08054500 Grapevine Lake near Grapevine, TX--Continued #### PRECIPITATION RECORDS PERIOD OF RECORD. -- Oct. 2001 to Sept. 2002 (discontinued). GAGE.--Tipping-bucket rain gage (no wind shields used) with satellite telemetry. Datum of gage is NGVD of 1929. REMARKS.--Records fair. EXTREMES FOR CURRENT YEAR. -- Maximum daily rainfall, 2.43 inches, Jan. 31. 2.52 PRECIPITATION from dcp, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 0.00 0.00 0.00 0.00 0.00 e0.00 0.00 0.00 0.27 0.00 0.00 1 2 0.00 0.00 0.00 0.00 0.00 --e0.00 0.00 0.00 0.11 0.00 0.00 3 0.00 0.00 0.00 0.00 0.00 e0.00 0.91 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.02 0.02 e0.00 0.01 0.00 0.00 0.00 0.20 5 0.00 0.00 0.00 0.10 0.68 e0.00 0.01 1.02 0.30 0.03 0.00 0.00 0.00 6 7 0.00 0.00 0.06 0.00 0.32 e0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 e0.00 2.25 0.00 0.00 0.00 0.03 e0.00 0.00 8 0.00 ---0.00 0.00 0.00 0.00 e0.00 e0.00 0.64 0.00 0.00 0.00 0.41 10 0.09 0.00 0.00 0.00 e0.00 ___ e0.00 0.07 0.00 0.00 0.14 0.00 11 0.00 0.22 0.00 e0.00 e0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.53 12 0.80 0.00 0.00 0.00 e0.00 e0.00 e0.00 e0.00 0.00 0.22 0.00 0.00 0.00 0.00 13 0.00 0.00 e0.00 0.00 0.00 0.00 0.02 0.00 14 0.00 0.00 e0.00 0.00 15 0.00 0.07 0.57 0.00 e0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.00 16 0.00 0.00 1.39 0.00 e0.00 e0.00 0.05 0.00 0.80 0.00 0.00 0.00 0.00 0.08 0.11 0.00 e0.00 e0.00 ---0.00 0.53 0.00 0.11 0.00 0.00 17 18 0.00 0.00 e0.00 4.34 0.00 0.00 0.00 0.00 0.00 0.58 19 20 0.00 0.00 0.00 0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21 0.00 0.00 0.00 0.00 e0.00 0.00 0.00 0.06 0.00 0.00 0.00 22 23 0.00 0.00 0.00 0.00 0.35 e0.00 e0.00 e0 00 0.00 0.00 0.00 0.00 0.00 0.00 e0.00 24 0.00 0.00 0.00 0.48 e0.00 0.00 0.00 0.00 0.15 0.00 0.00 ___ 25 0.00 0.00 0.00 0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.00 26 0.00 0.00 0.00 0.00 e0.00 0.03 0.79 0.00 0.00 0.43 0.00 0.00 0.30 0.25 0.00 e0.00 e0.00 e0 00 0.00 0.31 0.00 0.00 0.52 0.00 27 0.00 28 0.00 e0.00 29 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 ---0.00 30 0.00 0.00 0.00 0.59 0.02 0.63 0.05 0.00 0.00 31 0.00 0.00 2.43 ___ 0.00 0.00 0.00 0.00 --- 2.93 5.01 2.46 1.78 1.11 1.35 1.02 4.04 1.50 0.71 TOTAL e Estimated 08054500 Grapevine Lake near Grapevine, TX--Continued ## 08054500 Grapevine Lake near Grapevine, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1969 to Aug. 1986, Oct. 1997 to current year. BIOCHEMICAL DATA: Oct. 1969 to Aug. 1986, Oct. 1997 to current year. PESTICIDE DATA: Sept. 1999 to current year. REMARKS.--Pesticide samples are composited from discrete samples collected at the surface, middle, and bottom of the reservoir. # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 # 325822097030401 -- Grapevine Lk Site AC | | | | | 3230 | 220970304 | 01 GI a | DCATIC TIV | DICE AC | | | | | | |--|--|---|--|--|--|--|---|--|---|---|---|--|--| | Date | Time | RESER-
VOIR
STORAGE
(AC-FT)
(00054) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | | MAR
06
MAR | 1153 | 144000 | .61 | 1.00 | 365 | 8.4 | 9.0 | 11.0 | 97 | 1 | E1k | 130 | 19 | | 06-06 | 1153 | | | | | | | | | | | | | | 06 | 1157 | | | 10.0 | 365 | 8.3 | 9.0 | 10.9 | 97 | | | | | | 06
06 | 1202
1206 | | | 20.0
30.0 | 366
366 | 8.4
8.4 | 8.5
8.5 | 11.0
11.0 | 96
96 | | | | | | 06 | 1210 | | | 40.0 | 366 | 8.4 | 8.5 | 11.0 | 96 | | | | | | 06 | 1215 | | | 49.0 | 367 | 8.3 | 8.5 | 10.8 | 94 | | | 130 | 15 | | MAY
15 | 1015 | 209000 | .76 | 1.00 | 344 | 8.0 | 22.0 | 7.3 | 85 | E2k | E2k | 130 | 20 | | MAY
15-15 | 1015 | | | | | | | | | | | | | | 15 | 1019 | | | 10.0 | 345 | 8.0 | 22.0 | 7.3 | 85 | | | | | | 15 | 1024 | | | 20.0 | 345 | 8.0 | 22.0 | 7.3 | 85 | | | | | | 15 | 1029 | | | 30.0 | 345 | 8.0 | 22.0 | 7.3 | 85 | | | | | | 15 | 1033 | | | 40.0 | 345 | 8.0 | 22.0 | 7.2 | 84
55 | | | | | | 15
15 | 1037
1042 | | | 50.0
57.0 | 346
344 | 7.6
7.4 | 20.5
19.5 | 4.9
3.9 | 43 | | | 130 | 20 | | AUG
14 | 1152 | 175000 | 1.22 | 1.00 | 340 | 7.5 | 28.0 | 3.9 | 51 | | | 120 | 13 | | AUG | | | | | | | | | | | | | | | 14-14 | 1152
1156 | | | 10.0 | 340 |
7.5 | 28.0 | 3.8 |
50 | | | | | | 14
14 | 1200 | | | 20.0 | 343 | 7.3 | 27.5 | 3.2 | 42 | | | | | | 14 | 1204 | | | 30.0 | 346 | 7.2 | 27.5 | 1.9 | 25 | | | | | | 14 | 1209 | | | 40.0 | 371 | 7.1 | 25.0 | . 2 | 2 | | | | | | 14 | 1214 | | | 52.0 | 374 | 7.0 | 24.5 | .2 | 2 | | | 130 | 2 | | | | | | | | | | | | | | | | | D. L. | CALCIUM
DIS-
SOLVED | MAGNE -
SIUM,
DIS-
SOLVED | SODIUM,
DIS-
SOLVED | SODIUM
AD-
SORP-
TION | 220970304 | 01 Gra POTAS- SIUM, DIS- SOLVED | CAR-
BONATE
WATER
DIS IT
FIELD | BICAR-
BONATE
WATER
DIS IT
FIELD | ALKA-
LINITY
WAT DIS
TOT IT
FIELD | SULFATE
DIS-
SOLVED | CHLO-
RIDE,
DIS-
SOLVED | FLUO-
RIDE,
DIS-
SOLVED | SILICA,
DIS-
SOLVED
(MG/L | | Date | DIS- | SIUM,
DIS- | DIS- | SODIUM
AD-
SORP- | SODIUM
PERCENT
(00932) | 01 Gra
POTAS-
SIUM,
DIS- | pevine Lk
CAR-
BONATE
WATER
DIS IT | Site AC BICAR- BONATE WATER DIS IT | LINITY
WAT DIS
TOT IT | DIS- | RIDE,
DIS- | RIDE,
DIS- | DIS-
SOLVED | | Date MAR 06 MAR | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | | MAR
06
MAR
06-06 | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06 | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932)
25
 | 01 Gra POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.21 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06 | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) |
SODIUM
PERCENT
(00932)
25 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
42.4 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932)
25

 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06
06
06
06
MAY | DIS-
SOLVED
(MG/L
AS CA)
(00915)
42.4

42.3 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
21.0

21.2 | SODIUM AD-
SORP-
TION RATIO
(00931) | SODIUM
PERCENT
(00932)
25

25 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.21 | CAR-BONATE WATER DIS IT FIELD MG/L AS (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.5

22.8 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06
06
06
06
MAY
15
MAY | DIS-
SOLVED
(MG/L
AS CA)
(00915)
42.4

42.3
42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED (MG/L
AS NA) (00930)
21.0
 | SODIUM AD- SORP- TION RATIO (00931) | SODIUM PERCENT (00932) 25 | 01 Gra POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.21 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 107 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06
06
06
MAY
15
MAY
15-15 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
42.4

42.3
42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
21.0

21.2
17.7 | SODIUM AD- SORP- TION RATIO (00931) .88 .7 | SODIUM
PERCENT (00932)
25

25
22 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.21

4.13
4.04 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 107 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.5

22.8
18.6 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.5

2.4
4.3 | | MAR 06 MAR 06-06 06 06 06 06 4MAY 15 MAY 15 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
42.4

42.3
42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED (MG/L
AS NA) (00930)
21.0
 | SODIUM AD-
SORP-
TION RATIO
(00931) | SODIUM PERCENT (00932) 25 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.21 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 107 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.5

22.8 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | MAR
06
MAR
06-06
06
06
06
MAY
15
MAY
15-15 | DIS-
SOLVED (MG/L
AS CA) (00915)
42.4
 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.0 21.2 17.7 | SODIUM
AD-
SORP-
TION
RATIO
(00931)
.8 | SODIUM
PERCENT
(00932)
25

25
22 | O1 Gra POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.21 4.13 4.04 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 107 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.5

22.8
18.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.5

2.4
4.3 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15 15 | DIS-
SOLVED (MG/L
AS CA) (00915) 42.4 42.3 42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.0 21.2 17.7 | SODIUM AD- SORP- TION RATIO (00931) .88 .7 | SODIUM
PERCENT
(00932)
25

25
22

 | O1 Gra POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.21 4.13 4.04 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 107 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.5

22.8
18.6 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.5

2.4
4.3 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15-15 15 15 | DIS-
SOLVED (MG/L AS CA) (00915) 42.4 42.3 42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.0 21.2 17.7 | SODIUM AD- SORP- TION RATIO (00931) .88 .7 | SODIUM PERCENT (00932) 25 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935)
4.21

4.13
4.04 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 136 129 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7

 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.5 | RIDE,
DIS-
SOIVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.5

2.4
4.3 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15 15 15 15 | DIS- SOLVED (MG/L AS CA) (00915) 42.4 42.3 42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02

5.14 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.0 21.2 17.7 18.2 | SODIUM AD- SORP- TION RATIO (00931) .88 .77 | SODIUM PERCENT (00932) 25 | POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.21 4.13 4.04 4.02 | CAR-BONATE WATER DIS IT FIELD MG/L AS (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 112 107 110 109 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7

29.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
22.5

22.8
18.6

18.5 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS- SOLVED (MG/L AS SIO2) (00955) 2.5 2.4 4.3 5.3 | | MAR 06 MAR 06-06 06 06 06 06 15 MAY 15 MAY 15 15 15 15 | DIS-
SOLVED (MG/L AS CA) (00915) 42.4 42.3 42.8 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
5.94

5.95
5.02 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.0 21.2 17.7 18.2 18.1 | SODIUM AD- SORP- TION RATIO (00931) .88 .7 | SODIUM PERCENT (00932) 25 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935)
4.21

4.13
4.04 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 136 129 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 115 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
35.3

35.2
28.7

29.2
27.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.5 | RIDE,
DIS-
SOIVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
2.5

2.4
4.3 | | MAR 06 MAR 06-06 06 06 06 06 15 MAY 15 MAY 15 15 15 15 14 AUG 14 AUG | DIS-
SOLVED (MG/L
AS CA) (00915) 42.4 42.3 42.8 42.8 37.8 | SIUM, DIS- SOLVED (MG/L AS MG) (00925) 5.94 5.95 5.02 5.14 5.28 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.0 21.2 17.7 18.2 18.1 | SODIUM AD- SORP- TION RATIO (00931) .88 .77 | SODIUM PERCENT (00932) 25 | POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.21 4.13 4.04 4.02 4.97 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 136 129 131 129 | LINITY WAT DIS TOT IT FIELD MG/L AS (39086) 115 112 107 112 107 1109 104 | DIS-
SOLVED
(MG/L
AS
SO4)
(00945)
35.3

35.2
28.7

29.2
27.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
22.5 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS- SOLVED (MG/L AS SIO2) (00955) 2.5 2.4 4.3 5.3 4.2 | -- -- --19.2 .2 7.9 # 08054500 Grapevine Lake near Grapevine, TX--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 325822097030401 -- Grapevine Lk Site AC | Date | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | BENZENE
TOTAL
(UG/L)
(34030) | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | |--|--|--|--|---|--|--|---|--|---|---|--|---|--| | MAR
06 | 202 | E.004 | .32 | <.04 | | .35 | .005 | <.02 | | <10 | <2.0 | | | | MAR
06-06 | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | 06
06 | | | | | | | | | | | | | | | 06
MAY | 205 | E.004 | .32 | <.04 | | .33 | .005 | <.02 | | <10 | <2.0 | | | | 15
MAY | 188 | <.008 | .58 | <.04 | | .37 | .022 | E.01 | | <10 | <2.0 | .2 | .1 | | 15-15 | | | | | | | | | | | | | | | 15
15 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 15 | | <.008 | .58 | <.04 | | .38 | .022 | E.01 | | <10 | E1.2n | | | | 15
15
AUG | 192 | <.008 | .70 | <.04 | | .32 | .038 | .03 | .095 | <10 | E1.9b | | | | 14
AUG | 180 | <.008 | <.05 | <.04 | | .33 | .005 | <.02 | | <10 | E2.9 | <.2 | <.2 | | 14-14 | | | | | | | | | | | | | | | 14
14 | | <.008 |
<.05 | E.03 | | .36 | .006 | <.02 | |
E7 |
19.3 | | | | 14 | | <.008 | <.05 | .06 | .34 | .41 | .006 | <.02 | | 15 | 135 | | | | 14
14 | 203 | <.008 | <.05 |
.61 | .37 | .98 | .113 | .10 | .304 |
517 | 1470 | 2050 | 000000000 | 01 0 | | ~ ' . ~ ~ | | | | | | | | | | | 3258 | 220970304 | ui Gra | pevine Lk | Site AC | | | | | | | Date | TOLUENE
TOTAL
(UG/L)
(34010) | XYLENE
WATER
UNFLTRD
REC
(UG/L)
(81551) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | | MAR | TOTAL (UG/L) | WATER
UNFLTRD
REC
(UG/L) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | | MAR
06 | TOTAL (UG/L) | WATER
UNFLTRD
REC
(UG/L) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L) | ALPHA
BHC
DIS-
SOLVED
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | MAR
06
MAR
06-06 | TOTAL
(UG/L)
(34010) | WATER
UNFLTRD
REC
(UG/L)
(81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) | | MAR
06
MAR
06-06
06 | TOTAL
(UG/L)
(34010) | WATER
UNFLTRD
REC
(UG/L)
(81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLIRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82674) | | MAR
06
MAR
06-06
06
06 | TOTAL
(UG/L)
(34010) | WATER UNFLIRD REC (UG/L) (81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) | | MAR
06
MAR
06-06
06
06 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTR REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) | | MAR
06
MAR
06-06
06
06 | TOTAL
(UG/L)
(34010) | WATER UNFLIRD REC (UG/L) (81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) |
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) | | MAR
06
MAR
06-06
06
06
06
06
MAY
15 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLIRD REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | FURAN WATER FILTRD 0.7 U GF, REC (UG/L) (82674) | | MAR
06
MAR
06-06
06
06
06
06
MAY
15
MAY
15-15 | TOTAL (UG/L) (34010) | WATER UNFLITAD REC (UG/L) (81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) | | MAR
06
MAR
06-06
06
06
06
06
MAY
15 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLIRD REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | FURAN WATER FILTRD 0.7 U GF, REC (UG/L) (82674) | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15 15 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT-BUTYL ETHER WAT UNF REC (UG/L) (78032) 3.6 | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006 | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260)

<.006

<.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

<.041

 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15-15 15 15 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006 | ACETO-CHLOR, WATER FLIRD REC (UG/L) (49260) <.006 <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.004

<.004 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)

<.002

<.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15 15 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) <.006 <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15-15 15 15 15 14 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 | ACETO-CHLOR, WATER FLITRD REC (UG/L) (49260) <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010

 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)

<.002

<.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) | | MAR 06 06-06 06 06 06 06 06 15 MAY 15-15 15 15 15 15 15 15 14 AUG 14 AUG | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) 3.6 2.5 | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 <.006 <.006 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006 <.006 <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 < < < < < < <. | ATRA- ZINE, WATER, DISS, REC (UG/L)(39632)258482482482 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) (.020 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15 15 15 14 AUG 14-14 14 | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) 3.6 2.5 | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 <.006 | ACETO-CHLOR, WATER FLITRD REC (UG/L) (49260) <.006 <.006 <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 | ATRA-
ZINE,
WATER,
DISS,
REC (UG/L) (39632) | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) (.002 (.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) | | MAR 06 06-06 06 06 06 06 06 15 MAY 15-15 15 15 15 15 15 15 14 AUG 14 AUG | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) 3.6 2.5 | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 <.006 <.006 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006 <.006 <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 < < < < < < <. | ATRA- ZINE, WATER, DISS, REC (UG/L)(39632)258482482482 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) (.020 | | MAR 06 MAR 06-06 06 06 06 06 06 15 MAY 15-15 15 15 15 15 14 AUG 14-14 14 | TOTAL (UG/L) (34010) | WATER UNIFLITED REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) 3.6 2.5 | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 <.006 | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) <.006 <.006 <.006 <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 | ATRA- ZINE, WATER, DISS, REC (UG/L) (39632) 258482482482 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 | FLUR-ALIN MAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <- <.002 <- <.002 <- <- <- <- <- <- <- <- <- <- <- < | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

<.041

<.041 | FURAN WATER FILTED 0.7 U GF, REC (UG/L) (82674) | # 08054500 Grapevine Lake near Grapevine, TX--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 325822097030401 -- Grapevine Lk Site AC | | | | | | | |
bearing my | | | | | | | |---|---|--|--|--|---|--|---|--|---|---|--|---|--| | Date | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | | MAR
06 | | | | | | | | | | | | | | | MAR
06-06 | <.005 | <.006 | <.018 | <.003 | E.020 | .008 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | 06 | | | | | | | | | | | | | | | 06
06 | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | 06
MAY | | | | | | | | | | | | | | | 15
MAY | | | | | | | | | | | | | | | 15-15 | <.005 | <.006 | <.018 | <.003 | E.044 | .031 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | 15
15 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 15
15 | | | | | | | | | | | | | | | 15
AUG | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | AUG
14-14 | <.005 | <.006 | <.018 | <.003 | E.051 | .009 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | 14
14 | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | 14
14 | 3258 | 220970304 | 01 Gra | pevine Lk | Site AC | | | | | | | Date | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCORWATER DISSOLV (UG/L) (82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | Date
MAR
06 | URON WATER FLTRD 0.7 U GF, REC (UG/L) | THION,
DIS-
SOLVED
(UG/L) | LACHLOR
WATER
DISSOLV
(UG/L) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | P,P'
DDE
DISSOLV
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | | MAR
06
MAR | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | MAR
06
MAR
06-06
06 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | MAR
06
MAR
06-06
06
06 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | MAR
06
MAR
06-06
06 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | MAR
06
MAR
06-06
06
06
06
06 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | PARA-
THION,
DIS-
SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 |
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | MAR
06
MAR
06-06
06
06
06
06
MAY
15 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415)

E.010n

 | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542)

<.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | MAR
06
MAR
06-06
06
06
06
06
MAY | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415)

E.010n

 | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542)

<.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 | METON, WATER, DISS, REC (UG/L) (04037) | | MAR
06
MAR
06-06
06
06
06
06
MAY
15
MAY
15 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 | | MAR 06 MAR 06-06 06 06 06 06 404 15 MAY 15-15 15 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA-
THION,
DIS-
SOLVED (UG/L) (39542) <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 | | MAR 06 06 06 06 06 06 15 MAY 15 MAY 15 15 | URON WATER FLITED 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.022 <.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15-15 15 15 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002

 | NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007

 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022

 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011

 | METON, WATER, DISS, REC (UG/L) (04037) (.01 (.01 | | MAR 06 06 06 06 06 06 15 MAY 15 MAY 15 15 | URON WATER FLITED 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.022 <.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 | | MAR 06 06 06 06 06 06 06 15 MAY 15 MAY 15 15 15 15 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002

 | NAPROP-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007

 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022

 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011

 | METON, WATER, DISS, REC (UG/L) (04037) (.01 (.01 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15 15 15 15 15 14 AUG 14 AUG 14-14 | URON WATER FLITED 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 | MOL- INATE WATER FLURD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 <.002 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 < | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

<.006 | ULATE WATER WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 | | MAR 06 06 06 06 06 06 06 15 15 15 15 15 14 AUG 14-14 14 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022022031 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002

<.002 | NAPROP- AMIDE WATER FILTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022

<.022 | WATER FLIRD
0.7 U GF, REC (UG/L) (82664) <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) (.01 (.01 (.01 (.01 (.01 (.01 (.01 (.01 (.01 (.01 (.01 (.01 | | MAR 06 MAR 06-06 06 06 06 06 MAY 15 MAY 15-15 15 15 15 14 AUG 14 AUG 14 14 | URON WATER FLITED 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022031031 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 | MOL- INATE WATER FLURD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 <.002 | NAPROP- AMIDE WATER FILTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 <.01 <.01 < <.01 < < < | | MAR 06 06 06 06 06 06 06 15 15 15 15 15 14 AUG 14-14 14 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) E.010n022022031 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002

<.002 | NAPROP- AMIDE WATER FILTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022

<.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) (.01 (. | ## 08054500 Grapevine Lake near Grapevine, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 # 325822097030401 -- Grapevine Lk Site AC | Date | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | |-----------|---|--|--|---|---|---|--|--|---|---|---| | MAR | | | | | | | | | | | | | 06 | | | | | | | | | | | | | MAR | | | | | | | | | | | | | 06-06 | <.010 | <.011 | <.02 | <.004 | .149 | E.01n | <.034 | <.02 | <.005 | <.002 | <.009 | | 06 | | | | | | | | | | | | | 06 | | | | | | | | | | | | | 06 | | | | | | | | | | | | | 06 | | | | | | | | | | | | | 06
MAY | | | | | | | | | | | | | ма:
15 | | | | | | | | | | | | | MAY | | | | | | | | | | | | | 15-15 | <.010 | <.011 | <.02 | <.004 | .239 | E.05 | <.034 | <.02 | <.005 | <.002 | <.009 | | 15 | | | | | .233 | E.05 | | | | | | | 15 | | | | | | | | | | | | | 15 | | | | | | | | | | | | | 15 | | | | | | | | | | | | | 15 | | | | | | | | | | | | | 15 | | | | | | | | | | | | | AUG | | | | | | | | | | | | | 14 | | | | | | | | | | | | | AUG | | | | | | | | | | | | | 14-14 | <.010 | <.011 | <.02 | <.004 | .213 | .03 | <.034 | <.02 | <.005 | <.002 | <.009 | | 14 | | | | | | | | | | | | | 14 | | | | | | | | | | | | | 14 | | | | | | | | | | | | | 14 | | | | | | | | | | | | | 14 | | | | | | | | | | | | 325751097033001 -- Grapevine Lk Site AR | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | ATION) | |----------------------------------|--|--|--|---------------------------------|--|--|----------------------------------| | MAR | | | | | | | | | 06
06
06
06
06 | 1230
1233
1237
1240
1244 | 1.00
10.0
20.0
30.0
37.0 | 365
365
365
365
366 | 8.3
8.3
8.6
8.7 | 9.0
8.5
8.5
8.5
8.5 | 10.9
10.9
11.0
10.9
10.9 | 97
95
96
95
95 | | 15
15
15
15
15
15 | 1054
1056
1058
1100
1103
1106 | 1.00
10.0
20.0
30.0
40.0
48.0 | 344
344
344
345
345
344 | 8.0
8.0
8.0
7.9
7.8 | 22.0
22.0
22.0
22.0
21.5
21.5 | 7.3
7.2
7.2
7.2
6.9
6.3 | 85
84
84
84
80
73 | | 14
14
14
14 | 1226
1229
1232
1235
1238 | 1.00
10.0
20.0
30.0
42.0 | 340
341
342
345
373 | 7.5
7.4
7.4
7.3
7.1 | 28.0
28.0
27.5
27.5
25.0 | 3.7
3.3
2.8
2.6 | 48
43
36
34
2 | ## 08054500 Grapevine Lake near Grapevine, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 325930097053801 -- Grapevine Lk Site BC | | | | | 3259 | 300970538 | ui Gra | pevine Lk | Site BC | | | | | | |------------------------------------|---|--|--|--|--|--|--|--|---|--|---|--|--| | Date | Time | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | MAR
06
06
06
06
MAY | 1303
1307
1312
1317
1322 | .61

 | 1.00
10.0
20.0
30.0
42.0 | 364
365
364
365
365 | 8.4
8.4
8.4
8.4 | 9.0
8.5
8.5
8.5 | 11.2
11.2
11.1
11.1 |
99
98
97
97
97 | 1

 | E4k

 | 130

130 | 17

33 | 42.0

41.5 | | 15
15
15
15
15 | 1126
1131
1135
1139
1143 | .73

 | 1.00
10.0
20.0
30.0
40.0
50.0 | 348
347
348
347
346
349 | 8.2
8.2
8.1
8.1
7.4 | 22.5
22.5
22.5
22.5
22.5
22.5 | 7.5
7.5
7.5
7.6
7.5
3.2 | 88
88
89
88
36 | <1k

 | E3k

 | 130

130 | 18

19 | 43.9

43.4 | | 14
14
14
14 | 1256
1301
1306
1312
1318 | 1.16

 | 1.00
10.0
20.0
30.0
43.0 | 328
329
329
332
371 | 8.1
8.0
7.9
7.7
7.0 | 29.0
29.0
29.0
28.5
25.5 | 5.1
4.8
4.8
4.2 | 68
64
64
56
3 |

 |

 | 110

130 | 17

 | 36.7

44.8 | | | | | | 3259 | 300970538 | 01 Gra | pevine Lk | Site BC | | | | | | | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | MAR
06 | 5.90 | 21.1 | .8 | 25 | 4.19 | 2 | 133 | 112 | 35.5 | 22.9 | .3 | 2.3 | 203 | | 06
06 |
 | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | 06
MAY | 5.84 | 21.0 | .8 | 26 | 4.19 | <1 | 116 | 116 | 35.5 | 22.0 | .3 | 2.1 | 191 | | 15
15 | 5.09 | 17.9 | .7 | 22 | 4.10 | 1 | 136 | 112 | 28.6 | 18.8 | . 2 | 3.9 | 192 | | 15 | | | | | | | | | | | | | | | 15
15 | | | | | | | | | | | | | | | 15
AUG | 5.15 | 17.9 | .7 | 22 | 4.29 | <1 | E134 | 110 | 28.5 | 18.7 | .3 | 5.6 | 193 | | 14 | 5.58 | 19.8 | .8 | 26 | 5.02 | 1 | 116 | 97
 | 27.6 | 21.3 | .3 | 4.0 | 178 | | 14
14 | | | | | | | | | | | | | | | 14
14 | 5.38 |
17.6 | .7 | 21 |
4.96 | 1 |
162 | 133 |
17.5 | 20.2 | .2 | 8.3 | 204 | 3259 | 300970538 | 01 Gra | pevine Lk | Site BC | | | | | | | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | | | MAR
06 | | E.004 | .30 | <.04 | | .33 | .005 | <.02 | | <10 | <2.0 | | | | 06 | | | | | | | | | | | | | | | 06
06 | | | | | | | | | | | | | | | 06
MAY | | E.004 | .29 | <.04 | | .30 | .007 | <.02 | | <10 | <2.0 | | | | 15 | | <.008 | .51 | <.04 | | .37 | .016 | E.01 | | <10 | <2.0 | | | | 15
15 | | | | | | | | | | | | | | | 15
15 | | <.008 |
.53 |
<.04 | | .33 | .016 | <.02 | |
<10 |
<2.0 | | | | 15 | .63 | .031 | .66 | E.02 | | .39 | .039 | .03 | .095 | <10 | E3.0b | | | | AUG
14 | | <.008 | <.05 | <.04 | | .32 | .005 | <.02 | | <10 | E1.2 | | | | 14
14 | | <.008 |
<.05 | <.04 | | .32 | .006 | <.02 | |
<10 |
E2.0 | | | | 14 | | <.008 | <.05 | <.04 | | .33 | .006 | <.02 | | <10 | 21.3 | | | | 14 | | <.008 | <.05 | 1.03 | .41 | 1.4 | .19 | .19 | .586 | 923 | 1230 | | ## 08054500 Grapevine Lake near Grapevine, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | 325933097081401 Grapevine Lk Site CC | | | | | | | | | | | | | | |--------------------------------------|------|---|--|--|---|--|---|--|--|--|--|--|--| | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | | MAR | | | | | | | | | | | | | | | 06 | 1347 | 1.00 | 367 | 8.5 | 10.0 | 11.6 | 105 | | E.004 | .29 | <.04 | .33 | .004 | | 06 | 1352 | 6.00 | 377 | 8.5 | 10.0 | 11.5 | 104 | | <.008 | . 29 | <.04 | .31 | .006 | | MAY
15 | 1208 | 1.00 | 359 | 8.5 | 23.5 | 9.2 | 110 | .25 | .011 | .27 | <.04 | .38 | .008 | | 15 | 1214 | 12.0 | 357 | 8.3 | 23.5 | 7.7 | 91 | .36 | .009 | .37 | <.04 | .36 | .008 | | AUG | 1214 | 12.0 | 337 | 0.5 | 23.0 | 7.7 | 21 | .50 | .005 | . 3 / | 1.01 | .55 | .007 | | 14 | 1333 | 1.00 | 324 | 8.1 | 29.0 | 5.5 | 73 | | <.008 | <.05 | <.04 | .33 | .007 | | 14 | 1338 | 10.0 | 324 | 8.0 | 29.0 | 5.2 | 69 | | <.008 | <.05 | <.04 | .33 | .006 | | | | | | 3259 | 330970814 | ORTHO-
PHOS-
PHATE,
DIS- | pevine Lk
IRON,
DIS- | MANGA-
NESE,
DIS- | | | | | | | Date | PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |-----------------|---|---|---| | MAR
06
06 | <.02
<.02 | <10
<10 | E2.0b | | MAY
15 | <.02
<.02
<.02 | E6
<10 | E1.7b
E1.2n | | AUG
14
14 | <.02
<.02 | <10
<10 | <2.0
<2.0 | ## 330106097094601 -- Grapevine Lk Site DC | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | |------|------|---|--|--|---|--|---|--|--|--|--|--|--| | MAR | | | | | | | | | | | | | | | 06 | 1412 | 1.00 | 389 | 8.5 | 10.5 | 11.6 | 106 | | E.004 | .29 | <.04 | .32 | .005 | | 06 | 1417 | 7.00 | 387 | 8.5 | 10.5 | 11.5 | 106 | | <.008 | .23 | < .04 | .31 | .006 | | MAY | | | | | | | | | | | | | | | 15 | 1238 | 1.00 | 364 | 8.1 | 23.0 | 7.1 | 84 | .35 | .023 | .38 | E.02 | .43 | .018 | | 15 | 1243 | 10.0 | 358 | 8.1 | 23.0 | 7.1 | 84 | | | | | | | | 15 | 1248 | 15.0 | 356 | 8.1 | 23.0 | 7.1 | 84 | .38 | .021 | .40 | < .04 | .42 | .014 | | AUG | | | | | | | | | | | | | | | 14 | 1357 | 1.00 | 326 | 8.4 | 29.5 | 7.1 | 96 | | <.008 | <.05 | < .04 | .35 | .009 | | 14 | 1402 | 10.0 | 331 | 8.1 | 29.5 | 5.3 | 71 | | <.008 | <.05 | < .04 | .34 | .006 | 330106097094601 -- Grapevine Lk Site DC | |
ORTHO-
PHOS-
PHATE,
DIS- | PHOS-
PHATE,
ORTHO,
DIS- | IRON,
DIS- | MANGA-
NESE,
DIS- | |------|-------------------------------------|-----------------------------------|---------------|--------------------------------------| | Date | SOLVED
(MG/L
AS P)
(00671) | | | SOLVED
(UG/L
AS MN)
(01056) | | MAR | | | | | | 06 | <.02 | | <10 | E2.3b | | 06 | .02 | .074 | <10 | E1.0n | | MAY | | | | | | 15 | E.01 | | <10 | E1.9b | | 15 | | | | | | 15 | <.02 | | <10 | E2.5b | | AUG | | | | | | 14 | <.02 | | <10 | <2.0 | | 14 | < .02 | | <10 | < 2.0 | ## 08054500 Grapevine Lake near Grapevine, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 330207097103701 -- Grapevine Lk Site EC | Date | Time | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------------|---|--|---|--|--|---|--|--|---|--|---|--|--| | MAR
06
06
MAY | 1438
1449 | .18 | 1.00 | 401
406 | 8.5
8.5 | 12.0
12.0 | 11.5
11.3 | 109
107 | E2k
 | E13k
 | 140
140 | 19
18 | 45.5
46.0 | | 15
15 | 1311
1317 | .24 | 1.00
9.00 | 351
353 | 7.9
8.0 | 23.0
23.5 | 8.0
8.1 | 95
97 | E20k
 | E16k
 | 140
140 | 10
19 | 48.1
48.1 | | AUG
14
14 | 1419
1425 | .21 | 1.00
9.00 | 332
330 | 8.4
8.2 | 29.5
29.0 | 6.9
6.7 | 93
89 | | | 110
110 | 14
15 | 34.2
33.9 | | | | | | 3302 | 070971037 | 01 Gra | pevine Lk | Site EC | | | | | | | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | MAR
06
06 | 6.34
6.40 | 24.0
24.2 | .9 | 27
26 | 4.09
4.13 | 2
2 | 142
145 | 123
124 | 38.6
39.0 | 25.2
25.4 | .3 | 1.9 | 220
223 | | MAY
15
15
AUG | 4.79
4.84 | 15.6
16.0 | .6
.6 | 19
19 | 4.16
4.18 | 1 <1 | 156
148 | 130
122 | 23.9
24.6 | 17.1
17.3 | .3 | 4.6
4.3 | 198
194 | | 14
14 | 5.45
5.41 | 20.0
19.3 | .8 | 28
27 | 5.18
5.08 | 2
1 | 110
110 | 94
91 | 29.7
29.2 | 23.3
21.9 | .3 | 5.4
5.2 | 180
175 | 330207097103701 -- Grapevine Lk Site EC | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |-----------|--|--|--|--|--|--|--|--|---|---| | MAR
06 | | E.004 | .39 | <.04 | | .32 | .008 | <.02 | <10 | E2.6b | | 06 | | E.004 | . 44 | <.04 | | .32 | .008 | <.02 | <10 | E1.9b | | MAY | | | | | | | | | | | | 15 | .38 | .027 | .40 | .06 | .38 | .44 | .023 | <.02 | <10 | 10.6 | | 15 | .37 | .027 | .40 | .05 | .42 | .48 | .022 | E.01 | <10 | 10.8 | | AUG | | | | | | | | | | | | 14 | | <.008 | <.05 | < . 04 | | . 34 | .008 | <.02 | <10 | <2.0 | | 14 | | <.008 | <.05 | <.04 | | .34 | .006 | <.02 | <10 | <2.0 | Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: b -- Value was extrapolated below k -- Counts outside acceptable range n -- Below the NDV THIS PAGE IS INTENTIONALLY BLANK ## 08055000 Denton Creek near Grapevine, TX LOCATION.--Lat 32°59'13", long 97°00'45", Denton County, Hydrologic Unit 12030104, over center of channel at downstream side of bridge on State Highway 121, 1.3 mi downstream from Bakers Branch, 4.1 mi downstream from Grapevine Dam, 5.0 mi northeast of Grapevine and 6.1 mi upstream from mouth. DRAINAGE AREA.--705 \min^2 . PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1997 to current year. BIOCHEMICAL DATA: Oct. 1997 to current year. | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |------------------|--|--|--|--|--|--|--|---|--|---|--|--|--| | MAR
06 | 1340 | 63 | 373 | 8.0 | 9.0 | 11.5 | 102 | 120 | 12 | 40.5 | 5.72 | 20.3 | .8 | | MAY
15 | 1000 | | 350 | 8.1 | 21.5 | 9.5 | 109 | 130 | 18 | 42.6 | 5.09 | 18.5 | .7 | | AUG
14 | 1200 | 99 | 354 | 7.4 | 27.0 | 5.7 | 72 | 120 | 10 | 40.6 | 5.39 | 20.0 | .8 | | Date | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS
N)
(00613) | | MAR
06 | 25 | 4.01 | 2 | 134 | 112 | 35.5 | 22.2 | .3 | 2.08 | 218 | 200 | <10 | E.004 | | MAY
15 | 23 | 4.13 | <1 | 133 | 110 | 28.9 | 18.2 | .2 | 4.54 | 198 | 190 | <10 | <.008 | | AUG
14 | 25 | 4.83 | <1 | 138 | 114 | 25.5 | 21.0 | .3 | 5.19 | 198 | 191 | <10 | E.005 | | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | | MAR
06 | .31 | <.04 | | . 29 | .006 | <.02 | | 6.5 | <1 | .23 | М | 52 | <.06 | | MAY
15 | .59 | <.04 | | .34 | .026 | E.01 | | 5.4 | <1 | .16 | 2 | 53 | <.06 | | AUG
14 | E.03 | .19 | .39 | .58 | .030 | .02 | .061 | 5.4 | 2 | .06 | 5 | 50 | <.06 | | Date | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | MAR
06
MAY | <.04 | <.8 | .17 | 1.5 | <10 | E.06 | 1.1 | E.01n | 4.0 | 1.32 | <2 | <1 | 2 | | 15
AUG | <.04 | <.8 | .17 | 1.3 | <10 | <.08 | .7 | <.01 | 1.8 | 1.87 | <2 | <1 | <1 | | 14 | <.04 | <.8 | .22 | .7 | 17 | E.07 | 426 | <.01 | 1.8 | .99 | <2 | <1 | 2 | ## 08055000 Denton Creek near Grapevine, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |-------------------------------------|---| | MAR
06
MAY
15
AUG
14 | 1.25
1.08
.77 | Remark codes used in this report: <--- Less than E -- Estimated value M -- Presence verified, not quantified Value qualifier codes used in this report: n -- Below the NDV $\,$ #### 08055500 Elm Fork Trinity River near Carrollton, TX LOCATION.--Lat 32°57'57", long 96°56'39", Dallas County, Hydrologic Unit 12030103, on Sandy Lake Road 350 ft upstream on right bank at TXU Electric Co. pump station. Prior to July 7, 1999 located near left bank at downstream side of bridge on Sandy Lake Road, 40 ft upstream from Carrollton Dam, 0.3 mi downstream from Denton Creek, 1.0 mi upstream from St. Louis Southwestern Railway Lines bridge, 2.3 mi northwest of Carrollton, and 18.2 mi upstream from mouth. DRAINAGE AREA. -- 2,459 mi² #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Jan. 1907 to current year. Monthly discharge only for some periods, published in WSP 1312. Prior to Nov. 1923, published as "near Dallas". REVISED RECORDS.--WSP 788: 1924. WSP 1148: Drainage area at former site. WSP 1632: 1908(M). WSP 1922: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 431.40 ft above NGVD of 1929. Prior to Nov. 1923, nonrecording gage at site 15.5 mi downstream at different datum. Nov. 1, 1923, to Nov. 13, 1934, nonrecording gage, and Nov. 14, 1934, to July 6, 1938, water-stage recorder at present site and datum. July 7, 1938, to Apr. 14, 1939, nonrecording gage at site 9.3 mi downstream at datum 22.94 ft lower. Apr. 15, 1939 to Sept. 30, 1955, water-stage recorder at site 8.5 mi downstream at datum 22.94 ft lower. Oct. 1, 1955, to Sept. 30, 1987, water-stage recorder at present site and at datum 2.00 ft higher. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good, except those for Sept. 10-21, which are poor. Since water year 1954, at least 10% of contributing drainage area has been regulated. The city of Dallas diverts water from the pool at gage and from the river 14 mi downstream for municipal use. A wastewater treatment plant returns water to the river below the station. TXU Electric Co. diverts water from the pool at gage into North Lake for cooling water at their electric generating plant. No flow at times AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--47 years (water years 1908-54), 818 ft³/s (592,600 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1908-54).--Maximum gage height, about 19 ft May 25, 1908, present site and datum, from information by local resident; estimated discharge, 145,000 ft³/s, at site 8.5 mi downstream, from information by U.S. Army Corps of Engineers; maximum gage height subsequent to 1908, 16.5 ft, Apr. 26, 1942, present site and datum, from observation by National Weather Service; discharge at site 8.5 mi downstream, 90,700 ft³/s; no flow at times. DISCHARGE FROM DCP, in CFS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1866 reached about the same stage as flood of May 25, 1908. DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.8 3.8 0.00 0 00 0.00 QΩ 0 59 2.2 0.00 0.17 8.1 1 / 0 499n 2.7 ---TOTAL 3302.06 6298.8 MEAN 160.3 150.4 241.5 117.9 203.2 193.2 148.6 355.0 MAX 0.00 2.8 MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1955 - 2002z, BY WATER YEAR (WY) MEAN 407 4 715 9 798 4 609 2 743 4 895 9 507 3 286 1 MAX (WY) MTN 27 8 4 21 0.78 0.80 2 06 3 30 43 5 38 4 80 0 94 9 58 2 14 8 (WY) ## 08055500 Elm Fork Trinity River near Carrollton, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1955 - 2002z | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 365286.9 | 295086.86 | | | ANNUAL MEAN | 1001 | 808.5 | 862.8 | | HIGHEST ANNUAL MEAN | | | 4289 1982 | | LOWEST ANNUAL MEAN | | | 76.0 1978 | | HIGHEST DAILY MEAN | 5760 Mar 24 | 6980 Apr 7 | 25300 May 5 1990 | | LOWEST DAILY MEAN | 0.00 Feb 18 | 0.00 Feb 15 | 0.00 Dec 2 1954 | | ANNUAL SEVEN-DAY MINIMUM | 36 Jan 7 | 22 Feb 20 | 0.00 Jan 7 1959 | | MAXIMUM PEAK FLOW | | 9990 Mar 19 | 33000 Sep 21 1964 | | MAXIMUM PEAK STAGE | | 9.69 Mar 19 | 13.48 May 5 1990 | | ANNUAL RUNOFF (AC-FT) | 724500 | 585300 | 625000 | | 10 PERCENT EXCEEDS | 4200 | 3590 | 3840 | | 50 PERCENT EXCEEDS | 197 | 163 | 149 | | 90 PERCENT EXCEEDS | 73 | 73 | 38 | z Period of regulated streamflow. ## 08055500 Elm Fork Trinity River near Carrollton, TX--Continued #### PRECIPITATION RECORDS PERIOD OF RECORD. -- Oct. 2001 to Sept. 2002 (discontinued). TOTAL 1.52 0.77 3.29 ___ ___ GAGE.--Tipping-bucket rain gage (no wind shields used) with satellite telemtry. Datum of gage is 431.40 ft above NGVD of 1929. REMARKS.--Records fair. EXTREMES FOR CURRENT YEAR. -- Maximum daily rainfall, 4.985 inches, Mar. 19. PRECIPITATION DCP, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES DAY FEB лтт. AHG SEP OCT NOV DEC TAN MAR APR MAY TITIN 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 ---0.04 0.00 0.00 0.00 0.96 0.00 0.00 0.57 0.00 0.00 0.00 0.00 0.01 0.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.01 ---0.00 0.00 0.03 0.00 0.00 0.00 0.00 ___ 5 0.02 0.00 0.01 0.12 0.00 0.01 0.98 0.10 0.00 0.00 0.00 6 7 0.00 0.00 0.52 0 00 ---0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 3.42 0.00 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.18 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.66 0.00 0.00 0.00 0.00 10 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 11 0 59 0 11 0 17 0 00 0 00 0 03 0 00 0 00 0 00 0 00 0 00 0.00 12 0.67 0.00 0.01 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.15 0.00 0.17 0.00 0.00 0.00 0.42 0.00 0.28 0.12 0.00 0.00 13 14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 15 0.00 0.02 0.00 0.00 0.08 0.33 0.00 0.00 0.00 0.00 0.00 0.00 16 0 00 0.00 1 92 0 00 0 00 0.00 0.82 0 00 0.62 0 00 0 00 0.00 17 0.00 0.04 0.13 0.00 0.00 0.00 0.01 0.86 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.06 0.00 1.23 0.00 0.00 0.00 0.00 0.00 0.00 18 19 0.00 0.00 0.00 0.01 0.04 4 98 0 00 0.00 0.00 0 00 0.00 0.00 20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 0 00 22 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 23 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24 0.00 0.00 0 00 0.69 0.00 0.00 0 00 0.00 0.00 0 00 0 00 0 00 25 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.01 0.00 0.00 0.00 0.00 26 0 00 0 00 0 00 0.00 0 00 0 00 0 23 1 05 0 17 0 00 0 00 0 00 27 0.00 0.19 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 28 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.02 29 0.00 0.09 0.00 0.00 ---0.00 0.00 0.00 0.00 0.00 0.00 30 0.00 0.00 ___ 1.30 0.01 0.00 0.40 0.00 0.00 0.00 0.00 31 0.00 0.00 ------0.00 0.00 0.00 0.00 7.62 5.23 5.53 2.27 1.77 0.01 0.00 08055500 Elm Fork Trinity River near Carrollton, TX--Continued ## 08056000 Elm Fork Trinity River at Frasier Dam, Dallas, TX LOCATION.--Lat 32°50′31", long 96°53′23", Dallas County, Hydrologic Unit 12030103, on right bank of dam, 0.7 mi downstream of Spur 482, and 4.4
mi northeast of city hall in Irving, Texas. DRAINAGE AREA. -- 2,557 mi². PERIOD OF RECORD. -- Apr. 1999 to current year (elevations only). GAGE.--Water-stage recorder and a concrete weir. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily elevations, which are fair. Water elevation is regulated by a concrete weir at gage. COOPERATION. -- Maintained in cooperation with City of Dallas Water Utilities. EXTREMES FOR CURRENT YEAR.--Maximum elevation, 416.02 ft, Mar. 20; minimum elevation, 405.23 ft, July 27. ELEVATION FROM DCP, in FT (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1 | 406.66 | 406.60 | 407.19 | 407.03 | 412.69 | 407.13 | 408.54 | 410.14 | 407.50 | 407.92 | 407.28 | 407.18 | | 2 | 407.01 | 406.77 | 407.14 | 406.81 | 408.37 | 407.08 | 409.41 | 410.08 | 407.50 | 407.95 | 407.14 | 407.16 | | 3 | 407.47 | 406.81 | 407.16 | 406.64 | 407.78 | 407.36 | 410.03 | 410.14 | 407.41 | 408.20 | 407.09 | 407.04 | | 4 | 407.06 | 407.09 | 407.08 | 406.64 | 407.55 | 407.17 | 410.28 | 410.19 | 407.26 | 408.00 | 407.10 | 406.93 | | 5 | 407.33 | 407.23 | 406.98 | 406.57 | 408.13 | 407.00 | 410.39 | 411.83 | 407.17 | 407.48 | 407.11 | 406.93 | | 6 | 407.51 | 407.15 | 407.15 | 406.74 | 408.81 | 406.74 | 410.54 | 412.69 | 407.25 | 407.45 | 407.11 | 407.08 | | 7 | 407.33 | 407.05 | 407.38 | 406.90 | 408.15 | 406.56 | 411.24 | 410.19 | 407.50 | 407.30 | 407.06 | 406.99 | | 8 | 407.07 | 407.06 | 407.12 | 407.02 | 407.72 | 406.36 | 415.32 | 409.42 | 408.05 | 407.12 | 407.21 | 407.24 | | 9 | 406.70 | 406.83 | 406.89 | 406.93 | 407.53 | 406.42 | 412.97 | 408.46 | 408.26 | 407.31 | 407.18 | 407.81 | | 10 | 406.44 | 406.98 | 406.69 | 406.75 | 407.39 | 406.64 | 409.14 | 408.94 | 408.21 | 407.09 | 407.32 | 407.46 | | 11
12
13
14
15 | 407.91
407.90
408.64
407.81
407.33 | 407.12
407.39
407.22
407.25
407.31 | 406.67
407.12
407.38
407.46
407.29 | 407.00
407.28
407.25
407.17
406.97 | 407.36
407.50
407.39
407.24
407.18 | 406.69
406.69
406.64
406.36
406.12 | 409.82
410.29
410.46
410.31
409.84 | 409.22
409.48
409.67
409.65
409.65 | 408.18
407.93
407.76
407.82
407.33 | 407.11
407.80
407.62
407.41
407.34 | 407.74
407.41
407.25
407.27 | 407.26
407.23
407.22
407.18
407.06 | | 16 | 407.24 | 407.31 | 410.51 | 406.71 | 407.14 | 406.22 | 410.13 | 409.64 | 407.85 | 407.38 | 407.20 | 406.89 | | 17 | 407.29 | 407.25 | 409.70 | 406.90 | 407.13 | 406.34 | 411.43 | 409.85 | 407.68 | 407.40 | 406.90 | 406.84 | | 18 | 407.24 | 407.17 | 407.86 | 407.16 | 407.11 | 407.24 | 410.51 | 409.89 | 407.31 | 407.38 | 406.87 | 406.76 | | 19 | 407.30 | 407.13 | 407.49 | 407.25 | 407.50 | 410.04 | 410.14 | 409.64 | 407.22 | 407.36 | 407.06 | 406.67 | | 20 | 407.20 | 407.06 | 407.31 | 407.19 | 407.45 | 415.43 | 410.08 | 409.57 | 407.17 | 407.24 | 407.15 | 407.39 | | 21 | 407.17 | 406.78 | 407.23 | 407.21 | 407.18 | 413.54 | 410.07 | 409.55 | 407.20 | 407.22 | 407.16 | 407.32 | | 22 | 407.06 | 406.48 | 407.31 | 407.39 | 407.10 | 409.66 | 410.06 | 409.50 | 407.16 | 407.08 | 407.01 | 407.24 | | 23 | 406.68 | 406.35 | 407.20 | 407.53 | 407.05 | 409.16 | 410.11 | 409.02 | 407.11 | 406.88 | 407.08 | 407.23 | | 24 | 406.49 | 406.24 | 407.17 | 408.62 | 407.02 | 409.35 | 410.22 | 408.65 | 406.99 | 406.65 | 406.87 | 406.83 | | 25 | 406.68 | 406.17 | 407.06 | 408.20 | 407.03 | 409.35 | 410.35 | 408.14 | 406.98 | 406.45 | 406.54 | 406.41 | | 26
27
28
29
30
31 | 406.59
406.65
406.64
406.44
406.33
406.42 | 406.06
406.17
406.88
407.56
407.28 | 407.08
407.16
407.06
407.09
407.17
407.13 | 407.47
407.40
407.40
407.39
407.46
412.49 | 407.17
407.26
407.28
 | 409.69
409.90
409.81
409.84
411.28
411.35 | 410.43
410.40
410.28
410.25
410.21 | 408.17
407.86
407.82
408.28
407.76
407.56 | 407.13
407.25
407.22
407.30
407.39 | 406.20
405.53
405.41
405.84
407.09
407.44 | 406.59
407.46
407.64
407.34
407.26
407.22 | 406.66
407.00
407.25
407.27
407.25 | | MEAN | 407.08 | 406.93 | 407.36 | 407.34 | 407.65 | 408.36 | 410.44 | 409.38 | 407.47 | 407.15 | 407.16 | 407.09 | | MAX | 408.64 | 407.56 | 410.51 | 412.49 | 412.69 | 415.43 | 415.32 | 412.69 | 408.26 | 408.20 | 407.74 | 407.81 | | MIN | 406.33 | 406.06 | 406.67 | 406.57 | 407.02 | 406.12 | 408.54 | 407.56 | 406.98 | 405.41 | 406.54 | 406.41 | 08056000 Elm Fork Trinity River at Frasier Dam, Dallas, TX--Continued Figure 4.--Map showing location of gaging stations in the second section of the Trinity River Basin | 08057000 | Trinity River at Dallas, TX | 166 | |----------|--|-----| | 08057055 | Trinity River at Cedar Crest Boulevard, Dallas, TX | 170 | | 08057200 | White Rock Creek at Greenville Avenue, Dallas, TX | 178 | | 08057410 | Trinity River below Dallas, TX | 190 | | 08057445 | Prairie Creek at U.S. Highway 175, Dallas, TX | 194 | | 08057448 | Trinity River near Wilmer, TX | 196 | | 08058900 | East Fork Trinity River at McKinney, TX | 206 | | 08059400 | Sister Grove Creek near Blue Ridge, TX | 208 | | 08060500 | Lavon Lake near Lavon, TX | 210 | | 08061540 | Rowlett Creek near Sachse, TX | 212 | | 08061550 | Lake Ray Hubbard near Forney, TX | 214 | | 08061750 | East Fork Trinity River near Forney, TX | 216 | | 08062000 | East Fork Trinity River near Crandall, TX | 218 | | 08062500 | Trinity River near Rosser, TX | 222 | | 08062700 | Trinity River at Trinidad, TX | 236 | | 08062730 | New Terrell City Lake near Terrell, TX | 238 | | 08063010 | Cedar Creek Reservoir near Trinidad, TX | 240 | | 08063045 | Richland Creek near Irene, TX | 248 | | 08063050 | Navarro Mills Lake near Dawson, TX | 244 | | 08063100 | Richland Creek near Dawson, TX | 254 | | 08063600 | Lake Waxahachie near Waxahachie, TX | 258 | | 08063685 | Waxahachie Creek near Waxahachie, TX | 260 | | 08063700 | Bardwell Lake near Ennis, TX | 262 | | 08063800 | Waxahachie Creek near Bardwell, TX | 270 | | 08064100 | Chambers Creek near Rice, TX | 274 | | 08064510 | Halbert Lake near Corsicana, TX | 288 | | 08064550 | Richland-Chambers Reservoir near Kerens, TX | 290 | #### 08057000 Trinity River at Dallas, TX LOCATION.--Lat 32°46′29", long 96°49′18", Dallas County, Hydrologic Unit 12030105, on right bank (levee) 90 ft downstream from Commerce Street viaduct in Dallas, 5.2 mi downstream from confluence of West and Elm Forks, and at mile 500.3. DRATNAGE AREA. -- 6.106 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Oct. 1898 to Dec. 1899 (gage heights only published in WSP 28 and 37), July 1903 to current year. Daily discharges are not available for all periods prior to 1931. REVISED RECORDS.--WSP 850: 1903-06 (monthly and annual means). WSP 1732: 1937(M). WSP 1922: Drainage area. WDR TX-73-1: 1972. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 368.02 ft above NGVD of 1929. Oct. 1, 1898, to Dec. 31, 1899, nonrecording gage at site 2 mi upstream at different datum. July 1, 1903, to July 20, 1930, nonrecording gage at present site and datum. July 21, 1930, to Sept. 30, 1932, nonrecording gage at site 6 mi downstream at datum 3.08 ft lower. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily discharges, which are fair. Since 1914, at least 10% of contributing drainage area as been regulated. The city of Dallas diverts water for municipal use from the Elm Fork, Lake Ray Hubbard (on the East Fork), and from Lake Tawakoni (on the Sabine River), and purchases water from North Texas Municipal Water District (from the East Fork). Wastewater effluent from the City of Dallas is returned to the river downstream from this station. The Trinity River Authority and the city of Fort Worth discharge wastewater effluent into the river upstream from this station. There are many other diversions upstream from this station for municipal, industrial and other uses. AVERAGE DISHARGE FOR PERIOD PRIOR TO REGULATION.--10 years (water years 1904-13), 1,047 ft³/s (758,600 acre-ft/yr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1903-13).--Maximum discharge, 184,000 ft³/s May 25, 1908 (gage height, 52.6 ft), from rating curve extended above 109,000 ft³/s. Maximum stage since at least 1840, that of May 25, 1908. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1866 reached about the same stage as that of May 25, 1908. DAILY MEAN VALUES DAY ОСТ NOV DEC JAN FEB MAR APR MAY .TTTN .TTTT. ATTG SEP e9470 e577 e678 e6850 ---___ TOTAL MEAN 769.2 524.5 888.0 758.5 560.6 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 2002hz, BY WATER YEAR (WY) MEAN 705.1 790.8 MAX (WY) 58.2 76.9 91.5 51.9 50.2 MIN 68.2 53.0 62.4 68.2 68.0 52.4 ## 08057000 Trinity River at Dallas, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR | YEAR | FOR 2002 WAT | TER YEAR | WATER YEARS | 1931 - | 2002hz | |---
-------------------|-------------|------------------|------------------|------------------|------------------|--------------| | ANNUAL TOTAL
ANNUAL MEAN | 838392
2297 | | 756235
2072 | | 1826 | | | | HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | | | | 7154
115 | | 1982
1956 | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | | b 17
g 2 | 26100
433 | Mar 20
Nov 8 | 103000
10 | Apr 26
Oct 1 | | | ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW | 424 Aug | g 2 | 447
32400 | Oct 26
Mar 20 | 26
111000 | Apr 12
Apr 26 | | | MAXIMUM PEAK STAGE
ANNUAL RUNOFF (AC-FT) | 1663000 | | 38.94
1500000 | Mar 20 | 47.10
1323000 | May 3 | | | 10 PERCENT EXCEEDS
50 PERCENT EXCEEDS | 6540
682 | | 5490
618 | | 5230
435 | | | | 90 PERCENT EXCEEDS | 447 | | 464 | | 114 | | | e h z Estimated See PERIOD OF RECORD paragraph. Period of regulated streamflow. ## 08057000 Trinity River at Dallas, TX--Continued ## PRECIPITATION RECORDS PERIOD OF RECORD.--Oct. 2001 to Sept. 2002 (discontinued). ${\tt GAGE.--Tipping-bucket\ rain\ gage\ (no\ wind\ shields\ used)\ with\ satellite\ telemetry.}$ REMARKS. -- Records fair. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.526 inches, May 5. | | | PRECIPI' | TATION FR | OM DCP, | in INCHES,
DAIL | WATER YE.
Y SUM VAL | | 2001 TO | SEPTEMBE | R 2002 | | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.44 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.05
0.00 | 0.00
0.00
0.00
0.02
0.10 | e0.00
e0.00

0.01
0.93 | 0.00
0.06
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.36
0.00
2.53 | 0.00
0.00
0.00
0.00
0.00 | 0.23
0.47
0.26
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
0.02 | 0.00
0.00
0.00
0.05
0.00 | 0.16
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.22
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.20
0.00 | 0.39
1.54
0.00
0.00
0.00 | 0.00
0.00
0.00
0.03
0.27 | 0.00
0.00
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
2.51 | 0.00
0.03
0.33
0.03
0.00 | | 11
12
13
14
15 | 0.87
0.58
0.37
0.00
0.00 | 0.12
0.00
0.00
0.00
0.09 | 0.22
0.01
0.32
0.00
0.49 | 0.00
0.00
0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.10
0.00
0.00 | 0.00
0.75
0.03
0.00
0.00 | 0.00
0.00
0.08
0.00
0.00 | 0.50
0.02
0.02
0.02
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 2.00
0.08
0.00
0.00
0.00 | e0.00
e0.00

e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.22
1.54
0.04 | 0.05
0.00
0.00
0.00
0.00 | 0.00
0.74
0.00
0.00
0.00 | 0.53
0.00
0.00
0.00
0.00 | 0.01
0.98
0.01
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.85
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.02 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.01
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.08
0.33
0.03
0.00 | 0.00
0.00
0.00
0.00
0.00 | e0.00
e0.00
e0.00 | 0.00
0.00
0.00
 | 0.00
0.00
0.00
0.00
2.41
0.00 | 0.63
0.00
0.00
0.00
0.00 | 0.00
0.26
0.01
0.28
0.00 | 0.00
0.00
0.25
0.00
1.01 | 0.00
0.00
0.00
0.00
0.00 | 0.08
1.26
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL | 2.28 | 0.72 | 3.33 | | | 4.49 | 2.71 | 5.26 | 1.90 | 2.52 | 3.87 | 1.24 | e Estimated ## 08057000 Trinity River at Dallas, TX--Continued ## 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX LOCATION.--Lat $32^{\circ}45'04"$, long $96^{\circ}47'07"$, Dallas County, Hydrologic Unit 12030105, on right bank at abandoned bridge abutment, 0.2 mi upstream from Cedar Crest Boulevard. Bridge, 1.8 mi southeast of Dallas City Hall, 2.1 mi downstream from Coombs Creek, and 2.7 mi downstream from Commerce Street Bridge (station 08057000). CHEMICAL DATA: Feb. 1984 to Sept. 1993. BIOCHEMICAL DATA: Feb. 1984 to Sept. 1993. PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: Feb. 1984 to current year. pH: Feb. 1984 to current year. WATER TEMPERATURES: Feb. 1984 to current year. DISSOLVED OXYGEN: Feb. 1984 to current year. INSTRUMENTATION. -- Water-quality monitor since Feb. 1984. REMARKS.--Records poor. Interruption in the record was caused by malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous water years using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. Discharge records are available for Trinity River at Dallas (station 08057000), 2.7 mi upstream. There is no appreciable inflow between the two stations. EXTREMES FOR PERIOD OF DAILY RECORD. SPECIFIC CONDUCTANCE: Maximum, 1,030 microsiemens/cm, Feb. 12, 1988; minimum, 93 microsiemens/cm, Oct. 20, 1984. pH: Maximum, 9.0 units, June 27, 2000; minimum, 5.3 units, Feb. 1, 2002. WATER TEMPERATURE: Maximum, 33.5°C, Aug. 12, 1987; minimum, 4.1°C, Dec. 27, 2000. DISSOLVED OXYGEN: Maximum, 13.7 mg/L, Feb. 8, 1989; minimum, 0.0 mg/L, July 21, 1985. EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE: Maximum, 873 microsiemens/cm, Mar. 17; minimum, 214 microsiemens/cm, Feb. 6. pH: Maximum, 8.4 units, Jan. 24; minimum, 5.3 units, Feb. 1. WATER TEMPERATURE: Maximum, 32.4°C, July 25; minimum, 8.4°C, Feb. 1. DISSOLVED OXYGEN: Maximum, 12.9 mg/L, Aug. 17, 18; minimum, 5.2 mg/L, Aug. 11. SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 792
793
804
791
791 | 767
762
780
766
319 | 776
771
790
779
697 | 750
780
787
788
791 | 735
740
775
780
753 | 742
760
782
784
772 | 690
758
762
787
788 | 656
685
726
737
761 | 676
725
745
755
772 | 778
777
766
769
768 | 754
738
735
751
742 | 765
759
750
761
754 | | 6
7
8
9
10 | 723
766
773
778
784 | 673
701
755
761
760 | 694
734
764
770
776 | 767
793
770
770
805 | 751
767
757
742
687 | 756
782
764
752
749 | 777
763
721
747
759 | 726
636
636
703
729 | 758
708
698
727
744 | 798
794

 | 752
772

 | 771
784

 | | 11
12
13
14
15 | 776

 | 338

 | 534

 | 786
775
760
624
655 | 708
665
617
606
617 | 764
722
707
614
634 | 759
766
734
623
631 | 680
729
540
538
231 | 745
748
656
576
567 |

 | |

 | | 16
17
18
19
20 | 614
627
656
699
716 | 535
605
625
642
667 | 575
611
644
673
687 | 725
759
794
814
710 | 655
718
751
710
661 | 694
737
765
766
676 |

633 |

535 |

593 | 809
794
795
802
816 | 776
759
768
771
768 | 795
773
780
788
785 | | 21
22
23
24
25 | 743
738
741
746
726 | 716
716
700
711
699 | 730
728
719
729
712 | 748
752
803
808
787 | 678
721
751
774
772 | 718
738
776
792
780 | 690
684
730
698
752 | 515
515
532
534
698 | 632
579
673
584
730 | 815
782
746
645
486 | 781
745
589
429
413 | 796
764
712
536
449 | | 26
27
28
29
30
31 | 755
768
790
785
776
789 | 713
753
768
755
752
747 |
727
758
785
771
759
767 | 798
780
766
735
665 | 771
753
653
624
638 | 785
765
725
662
653 | 740
737
746
742
749
764 | 501
513
714
717
727
718 | 563
647
730
730
739
739 | 553
662
698
733
727 | 470
553
661
688
700 | 510
614
680
711
708 | | MONTH | | | | 814 | 606 | 737 | | | | | | | TRINITY RIVER BASIN 171 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | DI DOII | 10 001,200 | | ritori ber, | 211 007 011 | 0 200, | WILLIAM TERM | 00102210 | 2001 10 | | 2002 | | |---|---|--|--|--|--|--|--|--|---|---|---|---| | DAY | MAX | MIN | MEAN | | | | | | | MARGII | | | 3 DD TT | | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 809 | 772 | 782 | | | | 401 | 361 | 394 | | 2 | 393 | 301 | 346 | 824 | 801 | 811 | | | | 403 | 393 | 400 | | 3 | 516 | 393 | 445 | 819 | 761 | 794 | | | | 410 | 380 | 393 | | 4
5 | 526 | 461 | 478 | 785 | 747 | 766
701 | | | | 427 | 400 | 416 | | Э | 561 | 224 | 399 | 805 | 780 | 791 | | | | | | | | 6 | 250 | 214 | 237 | 807 | 784 | 795 | | | | | | | | 7 | 317 | 250 | 282 | 796 | 774 | 784 | | | | | | | | 8 | 367 | 317 | 336 | 823 | 790 | 802 | | | | | | | | 9 | 399 | 364 | 379 | 827 | 796 | 814 | 420 | 220 | 201 | | | | | 10 | 538 | 399 | 482 | 823 | 804 | 812 | 430 | 338 | 381 | | | | | 11 | 513 | 393 | 419 | 824 | 795 | 809 | 434 | 399 | 422 | | | | | 12 | | | | 822 | 800 | 810 | 432 | 392 | 410 | | | | | 13 | | | | 822 | 806 | 812 | 413 | 390 | 397 | | | | | 14 | | | | 815 | 795 | 804 | 423 | 393 | 410 | 415 | 387 | 397 | | 15 | | | | 850 | 815 | 831 | 421 | 397 | 403 | 421 | 415 | 419 | | 16 | 800 | 784 | 791 | 850 | 836 | 841 | 410 | 392 | 400 | 428 | 420 | 425 | | 17 | 833 | 787 | 816 | 873 | 841 | 859 | | | | 432 | 390 | 421 | | 18 | 823 | 807 | 815 | 867 | 487 | 762 | | | | 423 | 376 | 394 | | 19 | 842 | 687 | 803 | 603 | 308 | 492 | 413 | 402 | 408 | 417 | 388 | 406 | | 20 | 737 | 668 | 696 | | | | 413 | 408 | 410 | 427 | 414 | 420 | | 21 | 790 | 737 | 768 | | | | 412 | 407 | 409 | 425 | 410 | 418 | | 22 | 825 | 790 | 805 | | | | 409 | 389 | 405 | 421 | 404 | 416 | | 23 | 828 | 806 | 816 | | | | 402 | 378 | 394 | | | | | 24 | 855 | 825 | 841 | | | | 399 | 367 | 382 | | | | | 25 | 832 | 817 | 827 | | | | 392 | 375 | 386 | | | | | 26 | 000 | 000 | 000 | | | | 100 | 200 | 200 | | | | | 26
27 | 828
808 | 808
774 | 820
786 | | | | 406
406 | 360
381 | 388
394 | | | | | 28 | 774 | 756 | 763 | | | | 400 | 392 | 397 | | | | | 29 | | | | | | | 402 | 385 | 394 | | | | | 30 | | | | | | | 396 | 388 | 393 | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | 1 | MAX | | | MAX | | MEAN | 703 | | MEAN
674 | 765 | | ER 752 | | 1
2 | | JUNE | | | JULY
 | | 703
730 | AUGUST
643
680 | 674
708 | 765
764 | SEPTEMB
739
731 | ER
752
746 | | 1
2
3 | | JUNE

 | |
 | JULY

 | | 703
730
773 | AUGUST
643
680
705 | 674
708
737 | 765
764
770 | 739
731
731 | ER
752
746
755 | | 1
2
3
4 |

 | JUNE

 |

 | | JULY

 |

 | 703
730
773
800 | AUGUST 643 680 705 770 | 674
708
737
783 | 765
764
770
784 | 739
731
731
759 | FR 752 746 755 772 | | 1
2
3 | | JUNE

 | |
 | JULY

 | | 703
730
773 | AUGUST
643
680
705 | 674
708
737 | 765
764
770 | 739
731
731 | ER
752
746
755 | | 1
2
3
4 |

 | JUNE

 |

 | | JULY

 |

 | 703
730
773
800 | AUGUST 643 680 705 770 | 674
708
737
783 | 765
764
770
784 | 739
731
731
759 | FR 752 746 755 772 | | 1
2
3
4
5 | | JUNE | |

 | JULY | ==== | 703
730
773
800
792
786
811 | AUGUST 643 680 705 770 778 774 786 | 674
708
737
783
784
778
803 | 765
764
770
784
774
764
772 | 739
731
731
759
741
749
716 | 752
746
755
772
755
755 | | 1
2
3
4
5 | | JUNE | |

 | JULY |

 | 703
730
773
800
792
786
811
796 | AUGUST 643 680 705 770 778 774 786 739 | 674
708
737
783
784
778
803
782 | 765
764
770
784
774
764
772
778 | 739
731
731
759
741
749
716
533 | 752
746
755
772
755
755
758
710 | | 1
2
3
4
5
6
7
8 | | JUNE | |

620 | JULY 605 |

611 | 703
730
773
800
792
786
811
796
764 | AUGUST 643 680 705 770 778 774 786 739 739 | 674
708
737
783
784
778
803
782
753 | 765
764
770
784
774
764
772
778
642 | 739
731
731
759
741
749
716
533
551 | 752
746
755
772
755
755
758
710
608 | | 1
2
3
4
5 | | JUNE | |

 | JULY |

 | 703
730
773
800
792
786
811
796 | AUGUST 643 680 705 770 778 774 786 739 | 674
708
737
783
784
778
803
782 | 765
764
770
784
774
764
772
778 | 739
731
731
759
741
749
716
533 | 752
746
755
772
755
755
758
710 | | 1
2
3
4
5
6
7
8 | | JUNE | |

620 | JULY 605 |

611 | 703
730
773
800
792
786
811
796
764 | AUGUST 643 680 705 770 778 774 786 739 739 | 674
708
737
783
784
778
803
782
753 | 765
764
770
784
774
764
772
778
642 | 739
731
731
759
741
749
716
533
551 | 752
746
755
772
755
755
758
710
608 | | 1
2
3
4
5
6
7
8
9 | | JUNE | ====================================== |

620
672 | JULY 605 614 |

611
636 | 703
730
773
800
792
786
811
796
764
783 | AUGUST 643 680 705 770 778 774 786 739 739 315 | 674
708
737
783
784
778
803
782
753
613 | 765
764
770
784
774
764
772
778
642
609 | 739
731
731
759
741
749
716
533
551
526 | 752
746
755
772
755
755
758
710
608
546 | | 1
2
3
4
5
6
7
8
9
10 |

599 | JUNE 552 |

575 |

620
672
761
567
630 | JULY 605 614 349 338 431 |

611
636
685
410
550 | 703
730
773
800
792
786
811
796
764
783
574
475
574 | AUGUST 643 680 705 770 778 774 786 739 739 315 329 376 475 | 674
708
737
783
784
778
803
782
753
613
383
436
539 | 765
764
770
784
774
764
772
778
642
609
593
637
702 | 739
731
731
759
741
749
716
533
551
526
510
581
624 | 752
746
755
772
755
755
758
710
608
546
571
610
660 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

599
620 | JUNE |

575 |

620
672
761
567
630
643 | JULY 605 614 349 338 431 529 |

611
636
410
550
625 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625 | AUGUST 643 680 705 770 778 774 786 739 739 315 329 376 475 573 | 674
708
737
783
784
778
803
782
753
613
383
436
539 |
765
764
770
784
774
764
772
778
642
609
593
637
702
725 | 739 731 731 739 741 749 716 533 551 526 510 581 624 698 | 752
746
755
772
755
755
758
710
608
546
571
610
660
714 | | 1
2
3
4
5
6
7
8
9
10 |

599 | JUNE 552 |

575 |

620
672
761
567
630 | JULY 605 614 349 338 431 |

611
636
685
410
550 | 703
730
773
800
792
786
811
796
764
783
574
475
574 | AUGUST 643 680 705 770 778 774 786 739 739 315 329 376 475 | 674
708
737
783
784
778
803
782
753
613
383
436
539 | 765
764
770
784
774
764
772
778
642
609
593
637
702 | 739
731
731
759
741
749
716
533
551
526
510
581
624 | 752
746
755
772
755
755
758
710
608
546
571
610
660 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

599
620
673 | JUNE 552 562 620 |

575
594
651 |

620
672
761
567
630
643
725 | JULY 605 614 349 338 431 529 480 |

611
636
685
410
550
625
606 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725
735 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 | 752
746
746
755
772
755
758
710
608
546
571
610
660
714
722 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

599
620 | JUNE |

575 |

620
672
761
567
630
643 | JULY 605 614 349 338 431 529 |

611
636
410
550
625 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625 | AUGUST 643 680 705 770 778 774 786 739 739 315 329 376 475 573 | 674
708
737
783
784
778
803
782
753
613
383
436
539 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725 | 739 731 731 739 741 749 716 533 551 526 510 581 624 698 | 752
746
755
772
755
755
758
710
608
546
571
610
660
714 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

599
620
673
656
573
583 | JUNE 552 562 620 457 493 515 |

575
594
651
536
525 |

620
672
761
567
630
643
725
691
685
683 | JULY 605 614 349 338 431 529 480 499 457 505 |

611
636
685
410
550
625
606 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632
567
629
724 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 6621 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725
735 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 537 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
742
762
659 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

599
620
673
656
573
583 | JUNE 552 562 620 457 493 515 583 |

575
594
651
536
525
547
616 |

620
672
761
567
630
643
725
691
685
683
715 | JULY 605 614 349 338 431 529 480 499 457 505 670 |

611
636
410
550
625
606
556
649
623 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632
567
629
724
680 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 621 | 674
708
737
783
784
778
803
753
613
383
436
539
602
552
513
602
678
678
638 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725
735 | 739 731 731 739 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
744
762
659
561 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

599
620
673
656
573
583 | JUNE 552 562 620 457 493 515 |

575
594
651
536
525 |

620
672
761
567
630
643
725
691
685
683 | JULY 605 614 349 338 431 529 480 499 457 505 |

611
636
685
410
550
625
606 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632
567
629
724 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 6621 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725
735 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 537 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
742
762
659 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

599
620
673
656
573
583
654
714 | JUNE 552 562 620 457 493 515 583 653 |

575
594
651
536
525
547
616
690 |

620
672
761
567
630
643
725
691
685
683
715
737 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 |

611
636
685
410
550
625
606
649
623
692
723 | 703
773
800
792
786
811
796
764
783
574
475
574
625
632
567
629
724
680
672 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 621 640 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
638
663 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
744
762
659
561
645 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

599
620
673
656
573
583
654
714 | JUNE 552 562 620 457 493 515 583 653 |

575
594
651
536
525
547
6690 |

620
672
761
567
630
643
725
691
685
683
715
737 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 |

611
636
410
550
625
606
556
649
623
692
723 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632
567
629
724
680
672 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 640 631 | 674
708
737
783
784
778
803
753
613
383
436
539
602
552
513
602
678
638
663 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 | 739 731 731 739 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
744
762
659
561
645 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

599
620
673
656
573
583
654
714
749
789 | JUNE 552 562 620 457 493 515 583 653 706 741 665 |

575
594
651
536
525
547
616
690
730
773
689 |

620
672
761
567
630
643
725
691
685
683
715
737
745 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 |

611
636
685
410
550
625
606
649
623
692
723
729
752
778 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632
724
680
672
677
716
743 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 620 631 640 631 674 716 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
638
663
655
693
728 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725
735
760
777
736
684
675
583
635
649 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
744
762
659
561
645 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

599
620
673
656
573
583
654
714
749
789
752
776 | JUNE 552 562 620 457 493 515 583
653 706 741 665 697 |

575
594
651
536
525
547
616
690
730
773
689
731 |

620
672
761
567
630
643
725
691
685
683
715
737
745
780
800
800 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 |

611
636
410
550
625
606
556
649
623
723
729
752
778 | 703 730 773 800 792 786 811 796 764 783 574 475 574 625 632 567 629 724 680 672 677 716 743 778 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 640 631 674 716 735 | 674
708
737
783
784
778
803
753
613
383
436
539
602
552
513
602
678
638
663
655
693
728
753 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 | 739 731 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 419 583 549 561 605 | 752 746 755 772 755 758 758 710 608 546 571 610 660 714 722 744 762 659 561 645 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

599
620
673
656
573
583
654
714
749
789 | JUNE 552 562 620 457 493 515 583 653 706 741 665 |

575
594
651
536
525
547
616
690
730
773
689 |

620
672
761
567
630
643
725
691
685
683
715
737
745 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 |

611
636
685
410
550
625
606
649
623
692
723
729
752
778 | 703
730
773
800
792
786
811
796
764
783
574
475
574
625
632
724
680
672
677
716
743 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 620 631 640 631 674 716 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
638
663
655
693
728 | 765
764
770
784
774
764
772
778
642
609
593
637
702
725
735
760
777
736
684
675
583
635
649 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 549 561 605 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
744
762
659
561
645 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |

599
620
673
656
573
583
654
714
749
789
752
776
809 | JUNE 552 562 620 457 493 515 583 653 706 741 665 697 746 |

575
594
651
536
525
547
616
690
730
773
689
731
777 |

620
672
761
567
630
643
725
681
685
683
715
737
745
780
800
809
822 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 755 782 786 |

611
636
685
410
550
625
606
556
649
623
692
723
729
752
778
797
805 | 703
730
773
800
792
786
811
796
764
775
574
475
625
632
724
680
672
677
7716
743
778
796 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 621 621 640 631 674 716 735 778 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
638
663
655
693
728
753
787 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 | 739 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 549 561 605 605 | 752 746 755 772 755 758 710 608 546 571 610 660 714 722 7444 762 659 561 645 561 662 631 648 687 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 |

599
620
673
656
573
583
654
714
749
789
752
776
809 | JUNE |

575
594
651
536
525
547
616
690
730
773
689
731
777 |

620
672
761
567
630
643
725
691
685
737
745
780
800
809
822 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 755 782 786 |

6111
636
685
4100
550
625
606
556
649
623
723
729
752
778
777
805 | 703 730 773 800 792 786 811 796 764 783 574 475 574 625 632 567 629 724 680 672 677 716 743 778 796 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 567 621 640 631 674 716 735 778 | 674
708
737
783
784
778
803
753
613
383
436
539
602
552
513
602
678
638
663
655
693
728
728
753
787 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 730 | 739 731 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 9583 549 561 605 667 708 | 752
746
755
772
755
758
758
758
758
760
608
546
571
610
660
714
722
744
762
659
561
645 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |

599
620
673
656
573
583
654
714
749
789
752
776
809 | JUNE 552 562 620 457 493 515 583 653 706 741 665 697 746 723 559 391 |

5794
651
536
525
547
616
690
730
773
689
731
777
765
654
642 |

620
672
761
567
630
643
715
685
683
715
737
745
780
800
809
822 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 755 782 786 816 841 831 |

611
636
685
410
550
625
606
556
649
623
723
779
779
779
805 | 703
730
773
800
792
786
811
796
764
778
574
475
574
475
625
632
724
680
672
677
716
743
778
796 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 573 454 477 621 621 640 631 674 716 735 778 770 3460 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
638
663
728
753
787
780
555
508 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 730 745 758 | 739 731 731 739 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 549 561 605 667 708 715 | 752
746
755
772
755
758
710
608
546
571
610
660
714
722
744
762
659
561
645
645
646
647
744
747
747
747
748
749
749
749
749
749
749
749
749
749
749 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

599
620
673
656
573
654
714
749
789
752
776
809 | JUNE |

575
594
651
536
525
547
616
690
730
773
689
731
777 |

620
672
761
567
630
643
725
691
685
683
715
737
745
780
800
809
822
857
857
848
847 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 755 782 786 816 841 831 835 |

611
636
410
550
625
606
556
649
623
723
729
752
778
805
833
848
840
842 | 703 730 773 800 772 786 811 796 764 783 574 475 574 625 632 567 629 724 680 672 677 716 743 778 796 793 809 567 645 | AUGUST 643 680 775 770 778 774 786 739 315 329 376 475 573 454 477 567 621 640 631 674 716 735 778 770 336 460 562 | 674
708
737
783
784
778
803
753
613
383
436
539
602
552
513
602
678
638
663
728
728
728
753
787
780
555
508
607 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 730 745 758 748 | 739 731 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 737 419 583 549 561 605 667 708 715 736 722 | 752
746
755
772
755
758
758
710
608
546
571
610
660
714
722
744
762
659
561
645
561
662
637
648
687 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 |

599
620
673
656
573
583
654
714
749
789
752
776
809 | JUNE 552 562 620 457 493 515 583 653 706 741 665 697 746 723 559 391 322 |

575
594
651
536
525
547
6690
730
773
689
731
777 |

620
672
761
567
630
643
725
691
685
683
715
737
745
780
800
809
809
822
857
848
847
848 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 7552 786 816 841 831 831 835 734 |

611
636
410
550
625
606
556
649
623
692
723
729
752
778
797
797
805 | 703 730 773 800 7792 786 8111 796 764 783 574 475 574 625 632 567 629 724 680 672 677 716 743 778 796 793 809 567 645 725 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 567 621 640 631 674 716 735 778 770 336 460 562 645 |
674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
663
663
728
728
753
787
780
755
508
607
694 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 730 745 758 748 763 | 739 731 731 731 739 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 549 561 605 667 708 715 736 722 723 | 752
746
755
772
755
758
758
758
710
608
546
571
610
660
714
722
744
762
659
561
645
561
602
631
648
687 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

599
620
673
656
573
654
714
749
789
752
776
809 | JUNE |

575
594
651
536
525
547
616
690
730
773
689
731
777 |

620
672
761
567
630
643
725
691
685
683
715
737
745
780
800
809
822
857
857
848
847 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 755 782 786 816 841 831 835 |

611
636
410
550
625
606
556
649
623
723
729
752
778
805
833
848
840
842 | 703 730 773 800 772 786 811 796 764 783 574 475 574 625 632 567 629 724 680 672 677 716 743 778 796 793 809 567 645 | AUGUST 643 680 775 770 778 774 786 739 315 329 376 475 573 454 477 567 621 640 631 674 716 735 778 770 336 460 562 | 674
708
737
783
784
778
803
753
613
383
436
539
602
552
513
602
678
638
663
728
728
728
753
787
780
555
508
607 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 730 745 758 748 | 739 731 731 731 759 741 749 716 533 551 526 510 581 624 698 704 726 734 737 419 583 549 561 605 667 708 715 736 722 | 752
746
755
772
755
758
758
710
608
546
571
610
660
714
722
744
762
659
561
645
561
602
638
647
714
732
744
732
744
732
733 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 |

599
620
673
656
573
583
654
714
749
789
752
776
809 | JUNE 552 562 620 457 493 515 583 653 706 741 665 697 746 723 559 391 322 |

575
594
651
536
525
547
6690
730
773
689
731
777 |

620
672
761
567
630
643
725
691
685
683
715
737
745
780
800
809
809
822
857
848
847
848 | JULY 605 614 349 338 431 529 480 499 457 505 670 705 714 712 7552 786 816 841 831 831 835 734 |

611
636
410
550
625
606
556
649
623
692
723
729
752
778
797
797
805 | 703 730 773 800 7792 786 8111 796 764 783 574 475 574 625 632 567 629 724 680 672 677 716 743 778 796 793 809 567 645 725 | AUGUST 643 680 705 770 778 774 786 739 315 329 376 475 567 621 640 631 674 716 735 778 770 336 460 632 645 | 674
708
737
783
784
778
803
782
753
613
383
436
539
602
552
513
602
678
663
663
728
728
753
787
780
755
508
607
694 | 765 764 770 784 774 764 772 778 642 609 593 637 702 725 735 760 777 736 684 675 583 635 649 692 710 730 745 758 748 763 | 739 731 731 731 739 741 749 716 533 551 526 510 581 624 698 704 726 734 537 419 583 549 561 605 667 708 715 736 722 723 | 752
746
755
772
755
758
758
758
710
608
546
571
610
660
714
722
744
762
659
561
645
561
602
631
648
687 | 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | OCTO | OBER | NOVEN | MBER | DECEM | /BER | JANU | JARY | FEBR | JARY | MAF | RCH | | 1
2
3
4
5 | 7.5
7.5
7.5
7.5
7.5 | 7.4
7.4
7.4
7.4
7.2 | 7.8
7.7
7.7
7.7
7.8 | 7.7
7.6
7.6
7.6
7.6 | 7.7
7.6
7.6
7.6
7.5 | 7.6
7.6
7.5
7.5
7.5 | 7.9
7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8 | 7.7
7.7
7.7
7.7
7.8 | 7.3
7.3
7.2
7.2 | 8.1
7.9
7.9
7.9
7.9 | 7.8
7.8
7.8
7.8
7.8 | | 6
7
8
9
10 | 7.3
7.3
7.3
7.4
7.3 | 7.2
7.2
7.2
7.3
7.3 | 7.7
7.7
7.7
7.7
7.6 | 7.6
7.6
7.6
7.6
7.5 | 7.5
7.5
7.6
7.7 | 7.5
7.5
7.5
7.6
7.6 | 7.9
7.9
 | 7.8
7.8
 | 7.8
7.8
7.9
7.9 | 7.6
7.8
7.8
7.8
7.8 | 7.9
7.9
7.8
7.7
7.7 | 7.7
7.8
7.7
7.6
7.6 | | 11
12
13
14
15 |

 |

 | 7.7
7.7
7.7
7.6
7.6 | 7.6
7.6
7.5
7.5 | 7.6
7.5
7.6
7.7 | 7.5
7.4
7.5
7.5
7.6 |

 |

 | 8.0

 | 7.8

 | 7.8
8.0
8.1
8.1 | 7.7
7.7
7.8
7.9
7.8 | | 16
17
18
19
20 | 7.8
7.9
7.9
7.9
8.0 | 7.7
7.7
7.8
7.8
7.8 | 7.6
7.6
7.7
7.7 | 7.6
7.6
7.6
7.6
7.7 |

7.4 |

7.4 | 7.9
7.9
7.9
8.0
8.0 | 7.8
7.8
7.8
7.8
7.9 | 7.9
7.9
7.9
8.0
8.0 | 7.8
7.8
7.8
7.8
7.9 | 8.0
7.9
7.8
7.8 | 7.8
7.8
7.6
7.5 | | 21
22
23
24
25 | 8.0
8.0
8.0
8.0
7.9 | 7.8
7.9
7.9
7.9 | 7.7
7.7
7.7
7.7
7.7 | 7.6
7.6
7.6
7.6
7.6 | 7.9
8.0
8.0
8.0
7.6 | 7.4
7.4
7.4
7.6
7.6 | 8.0
8.0
8.1
8.4
8.2 | 7.9
7.9
7.9
8.0
7.9 | 7.9
7.8
7.9
8.0
8.0 | 7.8
7.8
7.8
7.8
7.8 |

 |

 | | 26
27
28
29
30
31 | 7.8
7.8
7.8
7.7
7.7 |
7.7
7.7
7.7
7.7 | 7.7
7.7
7.7
7.7
7.6 | 7.6
7.6
7.6
7.6
7.6 | 8.1
8.0
7.8
7.8
7.8
7.9 | 7.6
7.7
7.7
7.7
7.8
7.8 | 8.1
8.0
8.0
8.1
8.0 | 7.9
7.9
8.0
7.9
8.0 | 8.1
8.2
8.3
 | 7.8
7.9
8.0
 |

 | | | MONTH | | | 7.8 | 7.5 | | | | | | | | | 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------| | | API | RIL | MZ | ΑΥ | JUI | NE | JUI | LY | AUG | JST | SEPTE | MBER | | 1
2
3
4
5 | | | 7.3
7.4
7.4 | 7.2
7.2
7.2
7.2 |

 |

 | 7.8
7.8
7.7
7.7
7.8 | 7.6
7.6
7.6
7.6
7.6 |

 |

 | 8.1
8.1
7.9
7.8
7.8 | 7.9
7.8
7.6
7.5
7.6 | | 6
7
8
9
10 |

7.6 |

7.4 |

 |

 |

 |

 | 7.9
7.8
8.0
8.0 | 7.8
7.7
7.8
7.9
7.9 |

8.1 |

7.4 | 7.8
7.7
7.5
7.5
7.3 | 7.6
7.4
7.3
7.2
7.2 | | 11
12
13
14
15 | 7.7
7.8
7.8
7.8
7.7 | 7.6
7.7
7.7
7.7
7.6 |

8.0
8.2 |

7.9
8.0 | 8.1
8.0
8.0 | 8.0
7.9 | 8.2
7.9
7.8
7.9
7.8 | 7.7
7.7
7.7
7.7
7.7 | 7.5
7.5
7.6
7.7
7.7 | 7.3
7.4
7.5
7.6
7.5 | 7.3
7.3
7.4
7.4
7.3 | 7.2
7.2
7.2
7.2
7.2 | | 16
17
18
19
20 | 7.8

7.3
7.4 | 7.6

7.2
7.1 | 8.2
8.3
8.0
8.2
8.3 | 8.1
8.0
7.9
8.0
8.1 | 7.9
7.9
7.8
7.8
7.8 | 7.7
7.7
7.8
7.7
7.7 | 7.9
8.3
7.8
8.0
8.1 | 7.8
7.7
7.6
7.8
7.8 | 7.8
8.1
8.2
8.3
8.1 | 7.6
7.8
8.0
8.0
7.9 | 7.4
7.4
7.5
7.4
7.4 | 7.3
7.3
7.3
7.1
7.2 | | 21
22
23
24
25 |

 |

 | 8.3

 | 8.1

 | 7.9
7.9
8.0
8.0 | 7.8
7.7
7.8
7.8
7.8 | 8.2
8.1
8.0
8.0 | 7.9
7.9
7.8
7.8 | 8.1
8.1
8.0
7.9 | 7.9
7.8
7.8
7.8
7.7 | 7.4
7.5
7.5
7.5
7.5 | 7.3
7.3
7.3
7.4
7.3 | | 26
27
28
29
30
31 | | |

 | | 7.9
7.7
7.7
7.7
7.6 | 7.7
7.5
7.5
7.4
7.5 |

 | | 7.7
7.8
7.9
7.9
8.1
8.1 | 7.7
7.5
7.7
7.8
7.8
7.9 | 7.4
7.4
7.4
7.5
7.5 | 7.3
7.3
7.3
7.3
7.4 | | MONTH | | | | | | | | | | | 8.1 | 7.1 | WATER YEAR 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | | MIN | | MAX | | | MAX | | | MAX | | MEAN | |----------------------------------
--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------| | 2111 | 1221 | OCTOBER | | N | | | D | | | 1.11.11.1 | JANUARY | | | 1
2
3
4
5 | 25.8 | 23.8
24.0
24.0
24.3
23.5 | 24.7 | 23.0
24.0
24.9
24.7
24.5 | 21.3 | 22.1 | 16.1
18.2
19.3
20.6
21.3 | 13.9 | 15.0 | 13.4
12.6
12.7
12.6
13.3 | 12.0
11.4
11.2
10.8 | 12.7
12.1 | | 6
7
8
9
10 | 23.6
23.2
22.9
23.9
25.7 | 21.6
21.3
21.5
22.4
23.6 | | 23.7
23.2
23.3
22.4
21.0 | | 23.1
22.5
22.4
21.6
20.5 | 22.0
21.6
20.1
17.9
17.3 | 20.9
20.1
17.5
16.5
15.6 | 21.5
20.6
19.0
17.1
16.5 | | | 12.9
13.3
 | | 11
12
13
14
15 | 25.0

 | | 22.6

 | 20.7
21.2
21.6
21.2
21.1 | 20.1
20.3
20.7
20.5
20.6 | 20.5
20.8
21.3
20.8
20.9 | 16.5
17.1
16.5
14.8
15.1 | 15.3
15.3
14.7
13.8
14.0 | 15.9
16.3
15.6
14.2
14.6 |

 | | | | 16
17
18
19
20 | 21.4
21.0
21.4
22.6
23.7 | 20.0
19.8
19.8
20.5
21.7 | 20.7
20.3
20.5
21.4
22.6 | 21.3
21.9
21.9
21.8
19.6 | 20.5
20.8
21.1
19.6
18.3 | 20.9
21.3
21.5
21.1
19.0 |

14.5 | |

13.9 | 16.0
15.5
14.7
14.9 | 14.7
13.9
13.5 | 14.9
15.1
14.3
14.2
13.9 | | 21
22
23
24
25 | | | 23.0
23.6
24.5
24.3
22.8 | 19.0
19.7
20.9
20.2
19.8 | 17.7
17.8
18.8
18.8
18.3 | 18.3
18.7
19.8
19.5
19.0 | 15.2
15.3
16.1
13.5
15.0 | 12.6
12.6
12.8
12.1
13.4 | 14.1
13.9
15.0
12.7
14.1 | 15.2
15.0
16.5
16.5 | 14.3
14.8
11.2 | 15.4
13.5 | | 26
27
28
29
30
31 | 22.1
21.9
22.1 | 21.2
20.6
20.4
20.5
20.5 | 21.7
21.2 | 20.5
19.4
16.8
13.2
14.4 | 18.7
16.8
13.2
11.3
12.6 | 19.5
18.2
14.9
12.4
13.5 | 14.7
14.3
15.2
15.1
14.0
13.4 | 10.8
10.6
13.6
13.8
13.0 | 11.9
12.5
14.3
14.3
13.4
12.8 | 12.3
13.9
15.6
17.4
17.7 | 10.8
12.1
13.6
15.4
16.9 | 11.4
12.9
14.5
16.6
17.3 | | MONTH | | | | 24.9 | 11.3 | 20.3 | | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 3 | 10.1
12.0
12.2 | 9.1
10.1
11.3 | 9.4
10.8
11.5 | 14.2
14.4
11.7
13.1
14.7 | 13.6
11.3
10.0
10.6
12.4 | 13.9
13.0
10.9
11.7
13.3 |

 | | | 22.0
21.6
21.2
21.9 | 20.5
20.1
21.1 | 21.5
21.2
20.6
21.4 | | 6
7
8
9
10 | | 12.1
13.6
15.2 | | 15.9
17.4
18.1
18.0
16.6 | 13.7
15.6
17.2
16.0
15.0 | 14.7
16.5
17.6
17.1
15.7 |

18.3 | |

17.7 |

 |
 | | | 11
12
13
14
15 | | 15.4

 |

 | 16.0
17.9
18.9
20.2
20.0 | 15.4 | 16.5 | 18.3
18.1
17.7
18.3
19.0 | 17.1
17.1
16.9
16.8
18.1 | 17.6
17.6
17.3
17.4
18.5 |

22.9
23.3 |

21.9
22.2 |

22.4
22.7 | | 16
17
18
19
20 | 15.5
15.7
15.9
17.7
16.4 | 13.8
14.4
14.8
15.8
14.2 | 14.6
15.0
15.3
16.6
15.4 | 18.5
18.9
18.7
16.7 | 17.3
17.4
16.2
15.7 | 17.8
18.0
18.0
16.1 | 18.8

20.5
20.4 | 18.1

19.9
19.8 | 18.4

20.2
20.0 | 23.3
23.2
22.4
22.6
22.8 | 22.6
22.4
21.7
21.7
21.9 | 23.0
22.8
22.0
22.2
22.4 | | 21
22
23
24
25 | 16.6
17.0
17.1
17.7 | 15.9
15.1
15.5
15.9
16.1 | 16.4
16.0
16.2
16.6
17.1 |

 |

 |

 | 19.9
19.7
20.7
20.8
19.9 | 19.2
18.6
19.4
19.9
19.1 | 19.6
19.1
19.9
20.5
19.4 | 23.1
23.0
 | 22.1
21.7

 | 22.6
22.5

 | | 26
27
28
29
30
31 | 16.1
14.0
14.3
 | 13.0
12.0
12.6
 | 14.2
13.0
13.3
 |

 |

 |

 | 19.1
19.5
20.8
21.5
21.9 | 18.7
18.6
19.5
20.3
21.2 | 19.0
19.0
20.1
20.9
21.5 | 25.2
26.1 |

23.7
23.8 |

24.5
25.2 | | MONTH | | | | | | | | | | | | | 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued | WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2 | WATER | TEMPERATURE | FROM DCP. | in | (DEGREES C). | WATER | YEAR | OCTOBER | 2001 | TO | SEPTEMBER | 2.0 | 12 | |--|-------|-------------|-----------|----|--------------|-------|------|---------|------|----|-----------|-----|----| |--|-------|-------------|-----------|----|--------------|-------|------|---------|------|----|-----------|-----|----| | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 |

 |

 |

 | 26.5
27.1
26.8
27.3
28.1 | 25.5
25.8
25.8
25.7
26.8 | 26.3
26.3
26.3
26.3
27.4 | 31.0
31.6
32.1
32.1
31.9 | 29.4
29.7
30.1
30.5
30.3 | 30.1
30.6
30.9
31.1
31.0 | 30.9
31.2
31.0
31.2
31.1 | 28.9
29.3
29.5
29.7
29.7 | 29.7
30.0
30.1
30.3
30.2 | | 6
7
8
9
10 |

 |

 |

 | 28.9
29.7
30.6
31.0
31.1 | 27.6
28.2
29.1
29.2
29.7 | 28.3
29.0
29.8
30.1
30.3 | 31.7
31.8
31.1
31.0
30.2 | 30.2
30.2
29.9
29.3
24.5 | 30.7
30.9
30.4
30.0
27.9 | 30.8
30.0
28.9
28.4
28.9 | 29.6
28.9
25.4
27.1
27.4 | 30.0
29.5
27.9
27.7
28.2 | | 11
12
13
14
15 | 28.5
27.9
28.3 | 27.2
26.6
26.7 | 27.8
27.4
27.5 | 31.3
29.6
29.9
30.6
29.7 | 27.0
26.1
28.4
28.9
28.6 | 30.3
28.0
29.2
29.8
29.2 | 27.7
28.9
30.3
29.5
29.0 | 26.2
27.2
28.6
28.4
28.0 | 27.1
27.9
29.3
29.1
28.6 | 29.4
29.1
29.5
29.6
29.3 | 28.0
28.2
28.0
28.1
28.2 | 28.6
28.7
28.7
28.6 | | 16
17
18
19
20 | 27.6
27.6
28.3
28.9
29.6 | 25.8
25.7
26.4
27.4
27.9 | 26.4
26.7
27.4
28.0
28.5 | 29.0
28.6
29.4
30.6
31.2 | 28.1
25.8
27.7
29.0
29.6 | 28.6
27.7
28.5
29.6
30.2 | 29.3
30.3
31.0
30.9
31.1 | 27.7
28.7
29.2
29.6
29.5 | 28.5
29.3
30.0
30.1
30.2 | 28.9
29.1
29.3
28.2
27.5 | 27.9
27.7
28.1
25.7
26.5 | 28.3
28.2
28.5
27.1
27.1 | | 21
22
23
24
25 | 30.1
30.0
30.0
30.2
29.6 | 28.2
28.4
28.4
28.5
28.7 | 28.9
29.2
29.1
29.2
29.0 | 31.3
31.7
32.1
32.2
32.4 | 29.8
29.9
30.2
30.5
30.6 | 30.4
30.7
31.0
31.2
31.3 | 31.2
31.4
31.6
31.9
31.6 | 29.7
29.6
29.9
30.3
30.2 | 30.3
30.3
30.6
30.9
30.7 | 27.4
27.6
26.9
26.5
27.0 | 26.1
26.2
25.6
24.8
25.0 | 26.8
26.7
26.1
25.5
25.8 | | 26
27
28
29
30
31 | 29.5
29.0
29.7
28.7
28.3 | 28.7
27.6
27.2
26.4
25.5 | 29.0
28.4
28.7
27.7
27.2 | 32.0
31.4
30.6
29.6
29.9
30.5 | 30.5
29.8
29.5
29.0
28.5
28.6 | 31.2
30.5
29.9
29.3
29.2
29.7 | 31.3
30.9
29.2
29.3
29.9
30.2 | 29.6
23.2
27.5
28.4
28.3
28.5 | 30.3
28.2
28.4
28.8
28.9
29.2 | 27.5
27.8
28.1
28.2
28.3 | 25.7
25.7
26.2
26.4
26.6 | 26.4
26.6
26.9
27.2
27.3 | | MONTH | | | | 32.4 | 25.5 | 29.2 | 32.1 | 23.2 | 29.7 | 31.2 | 24.8 | 28.0 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |--|---|--|--|---|---
---|---|---|---|------------------------------|---------------------------------|------------------------------| | | | OCTOBER | | | NOVEMBER | | | ECEMBER | | | JANUARY | | | - | 0.0 | | | | | 7.0 | | | | | | | | 1
2 | 8.0
7.7 | 7.1
6.9 | 7.5
7.3 | 8.1
7.7 | 7.5
7.3 | 7.8
7.5 | | | | | | | | 3 | 7.8 | 6.9 | 7.3 | 7.7 | 7.1 | 7.3 | | | | | | | | 4
5 | 7.7
6.9 | 6.8
5.8 | 7.2
6.4 | 7.5
8.2 | 7.0
6.8 | 7.2
7.2 | 6
7 | 6.6
6.7 | 5.8
6.2 | 6.3
6.5 | 7.5
7.7 | 6.8
7.1 | 7.1
7.3 | | | | | | | | 8 | 6.5 | 6.1 | 6.3 | 7.7 | 7.1 | 7.3 | | | | | | | | 9 | 7.0 | 5.9 | 6.4 | | | | | | | | | | | 10 | 7.4 | 6.3 | 6.8 | | | | | | | | | | | 11 | 7.3 | 6.5 | 6.9 | | | | | | | | | | | 12
13 | | | | | | | 8.9 | 8.2 |
8.6 | | | | | 14 | | | | | | | 9.6 | 8.9 | 9.2 | | | | | 15 | | | | | | | 9.6 | 8.8 | 9.1 | | | | | 16 | 7.9 | 7.2 | 7.5 | | | | | | | | | | | 17 | 7.9 | 7.4 | 7.7 | | | | | | | | | | | 18
19 | 7.8
7.7 | 7.3
7.2 | 7.5
7.4 | | | | | | | | | | | 20 | 7.3 | 6.9 | 7.1 | | | | | | | | | | | 21 | 7.3 | 6.8 | 7.1 | | | | | | | | | | | 22 | 8.8 | 6.8 | 7.6 | | | | | | | | | | | 23 | 8.7 | 7.8 | 8.2 | | | | | | | | | | | 24
25 | 8.2
8.7 | 7.4
7.5 | 7.8
8.1 | 26
27 | 8.3 | 7.6 | 7.9 | | | | | | | | | | | 28 | 8.4 | 7.6 | 7.9 | | | | | | | | | | | 29 | 8.4 | 7.8 | 8.0 | | | | | | | | | | | 30
31 | 8.3
8.2 | 7.7
7.7 | 8.0
7.9 | MONTH | DAY | MAX | MIN | MEAN | | DAY | | | MEAN | MAX | | MEAN | | | MEAN | MAX | | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | FEBRUARY | | 10.6 | MARCH
9.0 | 9.6 | | APRIL | | 8.5 | MAY
8.1 | 8.3 | | | | FEBRUARY | | | MARCH | | | APRIL |
 | | MAY | | | 1
2
3
4 |

 | FEBRUARY | | 10.6
9.8
10.4
10.3 | MARCH
9.0
8.4
9.4
9.4 | 9.6
9.1
9.9
9.9 | | APRIL |

 | 8.5
8.3
8.4
8.5 | MAY
8.1
7.8
7.9
7.8 | 8.3
8.1
8.2
8.1 | | 1
2
3 | | FEBRUARY | | 10.6
9.8
10.4 | MARCH
9.0
8.4
9.4 | 9.6
9.1
9.9 | | APRIL |
 | 8.5
8.3
8.4 | MAY
8.1
7.8
7.9 | 8.3
8.1
8.2 | | 1
2
3
4
5 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4 | 9.0
8.4
9.4
9.4
9.1 | 9.6
9.1
9.9
9.9
9.8 |

 | APRIL |

 | 8.5
8.3
8.4
8.5 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1 | | 1
2
3
4
5 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4 | 9.0
8.4
9.4
9.4
9.1
9.0 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0 |

 | APRIL | | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4 | | APRIL |

 | 8.5
8.3
8.4
8.5 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5 |

 | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4 |

 | APRIL | | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4 | | APRIL |

 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.1
8.5 |

8.0
8.8
8.7 | APRIL 7.4 7.9 8.3 |

7.6
8.4
8.5 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.1
8.5 |

8.0
8.8
8.7
8.4 | APRIL 7.4 7.9 8.3 8.1 |

7.6
8.4
8.5
8.2 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.1
8.5 |

8.0
8.8
8.7 | APRIL 7.4 7.9 8.3 |

7.6
8.4
8.5 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9
7.8
7.2
7.8
7.3
6.8 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.5
8.4
8.5
8.4
7.5 |

8.0
8.8
8.7
8.4
8.3
8.1 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 |

7.6
8.4
8.5
8.2
8.0
7.8 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
9.2
8.8
9.4
9.8 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 7.3 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.1
8.5
8.4
8.2
8.4 | 8.8
8.7
8.4
8.3
8.1 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 |

7.6
8.4
8.5
8.2
8.0
7.8 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 |

9.3
9.3
8.9 | FEBRUARY |

9.0
8.8
8.6 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8
9.4
9.8
9.4 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9
7.8
7.2
7.8
6.8
6.8
6.8 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.5
8.4
8.5
7.6
6.8 |

8.0
8.8
8.7
8.4
8.3
8.1 | APRIL 7.4 7.9 8.3 8.1 7.6 7.9 |

7.6
8.4
8.5
8.2
8.0
7.8 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

9.3
9.3
8.9
9.2 | FEBRUARY | 9.0
8.8
8.6
8.3 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8
9.4
9.8
9.4
8.2 | 9.0
8.4
9.4
9.4
9.1
9.0
8.5
7.7
7.9
7.8
7.2
7.8
7.3
6.8 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.5
8.4
8.2
8.6
8.4
7.5 |

8.0
8.8
8.7
8.4
8.3
8.1 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 7.9 7.1 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 9.3
9.3
9.2
9.3 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8
9.4
9.8
9.4
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9
7.8
7.2
7.8
6.8
6.8
6.8
5.5 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.5
8.4
8.5
7.6
6.8
6.4 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 7.9 7.1 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 9.3
9.3
9.3
9.2
9.3 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
9.8.7
9.2
8.8
9.4
9.8
8.2
8.6
8.2
8.1 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 6.8 6.8 6.8 5.5 | 9.61
9.99
9.8
9.60
8.11
8.5
8.4
8.2
8.4
7.5
7.4
6.4 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3
8.1 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 7.9 7.1 7.6 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |

9.3
8.9
9.2
9.3
8.7
8.6
8.8 | FEBRUARY |

9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3 |
10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8
9.4
9.8
9.4
8.2
8.6
8.2
8.1 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9
7.8
7.2
7.8
7.3
6.8
6.8
5.5
5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.1
8.5
8.4
7.5
7.6
6.8
6.4 | 8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.1 | APRIL 7.4 7.9 8.3 8.1 7.6 7.9 7.1 7.6 7.7 9.9 8.0 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 9.3
9.3
9.3
8.9
9.2
9.3
8.7
8.6
8.8
8.9 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.6 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.4
8.2
8.6
8.2
8.1 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 6.8 6.8 6.8 5.5 5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.1
8.5
8.4
8.2
8.4
7.5
7.4
6.4
 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.1
8.3
8.3 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 7.9 7.1 7.6 7.7 9.8 8.0 7.8 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |

9.3
8.9
9.2
9.3
8.7
8.6
8.8 | FEBRUARY |

9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.6
8.8 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8
9.4
9.8
9.4
8.2
8.6
8.2
8.1 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9
7.8
7.2
7.8
7.3
6.8
6.8
5.5
5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.1
8.5
8.4
7.5
7.6
6.8
6.4 | 8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.1
8.3
8.4 | APRIL 7.4 7.9 8.3 8.1 7.6 7.9 7.1 7.6 7.7 9.8 8.0 7.8 8.1 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 9.3
9.3
9.3
9.2
9.3
8.7
8.6
8.8
9.4
9.5 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.6
8.8 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
8.2
8.6
8.2
8.1 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 6.8 6.8 6.8 5.5 5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.1
8.5
8.4
8.2
8.4
7.5
7.6
6.4
 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.4
8.3
8.4
8.3 | APRIL 7.4 7.9 8.3 7.6 7.6 7.9 7.1 7.6 7.7 7.9 8.0 7.8 8.1 7.8 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7
7.8
8.1
8.1
8.1
8.0
8.2 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |

9.3
9.3
8.9
9.2
9.3
8.7
8.6
8.8
9.4 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.9
8.1
8.2
8.3 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
9.8
9.4
9.8
9.4
10.1
10.1
10.1
10.1
10.1
10.1
10.1
10 | 9.0
8.4
9.4
9.1
9.0
8.5
7.9
7.7
7.9
7.8
7.2
7.8
7.3
6.8
6.8
5.5
5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.5
8.4
7.5
7.6
6.8
6.4
 | 8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.1
8.3
8.4 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 7.91 7.6 7.7 7.9 8.0 8.1 7.8 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7
7.8
8.1
8.1
8.1
8.2 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3 8.1 8.2 8.1 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 9.3
9.3
9.3
9.2
9.3
8.7
8.6
8.8
9.4
9.5 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.6
8.8 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
8.2
8.6
8.2
8.1
 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 6.8 6.8 6.8 6.5 5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.1
8.5
8.4
8.2
8.4
7.5
7.6
6.4
 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.4
8.3
8.1
8.3
8.1
8.3
8.3
8.4
8.7
8.7 | APRIL 7.4 7.9 8.3 7.6 7.6 7.9 7.1 7.6 7.7 7.9 8.0 7.7 7.9 8.0 7.8 8.1 7.8 |

7.6
8.4
8.5
8.2
8.0
7.8
8.1

7.3
7.7
7.8
8.1
8.1
8.1
8.2
8.1
8.1
8.1
8.2 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 9.3
9.3
9.3
9.3
8.9
9.3
8.9
9.3
10.6
11.5
11.8 | FEBRUARY 8.6 8.3 8.3 7.9 8.5 7.8 7.8 7.8 8.0 8.1 8.6 9.6 10.0 | 9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.6
10.5
10.8 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
9.4
9.8
9.4
8.2
8.6
8.2
8.1
8.1 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 6.8 6.8 6.8 6.5 5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.4
8.5
8.4
7.5
7.6
7.4
6.4
 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.4
8.3
8.1
8.3
8.3
8.3
8.3
8.3
8.4
8.5
8.7
8.6 | APRIL 7.4 7.9 8.3 8.1 7.6 7.6 7.7 7.9 8.0 8.1 7.8 8.0 8.0 8.0 7.8 7.9 |

7.6
8.4
8.5
8.0
7.8
8.1

7.3
7.7
7.8
8.1
8.1
8.1
8.2
8.1
8.1
8.1
8.2
8.3
8.3 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3 8.1 8.2 8.1 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 9.3
9.3
9.3
9.2
9.3
8.7
8.6
8.8
9.4
9.5 | FEBRUARY | 9.0
8.8
8.6
8.3
8.9
8.1
8.2
8.3
8.6
8.8 | 10.6
9.8
10.4
10.3
10.4
10.1
9.4
8.9
8.7
9.2
8.8
9.4
8.2
8.6
8.2
8.1
 | MARCH 9.0 8.4 9.4 9.1 9.0 8.5 7.9 7.7 7.9 7.8 7.2 7.8 6.8 6.8 6.8 6.5 5.7 | 9.6
9.1
9.9
9.9
9.8
9.6
9.0
8.1
8.5
8.4
8.2
8.4
7.5
7.6
6.4
 | 8.0
8.8
8.7
8.4
8.3
8.1
8.3
8.1
8.3
8.4
8.3
8.1
8.3
8.1
8.3
8.3
8.4
8.7
8.7 | APRIL 7.4 7.9 8.3 7.6 7.6 7.9 7.1 7.6 7.7 7.9 8.0 7.7 7.9 8.0 7.8 8.1 7.8 |

7.6
8.4
8.5
8.0
7.8
8.1

7.3
7.7
7.8
8.1
8.1
8.0
8.2 | 8.5
8.3
8.4
8.5
 | MAY 8.1 7.8 7.9 7.8 | 8.3
8.1
8.2
8.1
 | 08057055 Trinity River at Cedar Crest Boulevard, Dallas, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | P | AUGUST | | ٤ | EPTEMBE | R | | 1
2
3
4
5 |

 |

 |

 | 7.2
7.1
7.1
6.8
6.8 | 6.7
6.6
6.6
6.4
6.5 | 7.0
6.8
6.9
6.6
6.6 | 8.2
9.1
9.7
8.8
8.4 | 7.2
7.7
7.9
7.4
6.7 | 7.6
8.3
8.6
8.0
7.6 | 8.1
8.1
7.4
7.2
7.8 | 6.9
6.7
6.1
5.6
5.6 | 7.4
7.3
6.9
6.5
6.9 | | 6
7
8
9
10 |

 | |

 | 7.1
7.2
7.6
7.8
8.8 | 6.3
6.6
6.9
6.8
7.2 | 6.8
6.9
7.2
7.3
7.9 | 8.5
8.8
8.3
8.6
8.0 | 6.9
6.5
7.1
7.2
6.4 | 7.5
7.7
7.6
7.9
7.5 | 7.8
7.6
7.1
7.2
7.2 | 6.6
6.5
6.5
6.8
6.7 | 7.1
7.0
6.9
6.9
7.0 | | 11
12
13
14
15 |
8.2
7.6
7.5 |
7.3
6.8
6.6 |
7.8
7.2
7.0 | 9.3
7.5
7.4
8.3
7.9 | 7.1
6.2
6.5
7.1
7.2 | 8.1
6.7
6.9
7.6
7.6 | 7.3

 | 5.2

 | 6.5

 | 7.0
6.9
6.9
7.8
7.8 | 6.6
6.4
6.2
5.9
6.6 | 6.8
6.6
6.8
7.2 | | 16
17
18
19
20 | 7.1
7.2
7.7
7.8
8.4 | 5.5
6.7
6.8
7.1
7.0 | 6.7
7.0
7.2
7.4
7.6 | 8.0
8.6
8.8
9.4
10.0 | 7.5
7.9
7.8
8.3
8.5 | 7.8
8.2
8.3
8.8
9.2 |

 |

 |

 | 7.3
7.5
7.4
7.4
6.7 | 6.3
6.2
6.1
5.9 | 7.0
6.9
7.0
6.6
6.4 | | 21
22
23
24
25 | 8.6
8.0
9.1
8.8
8.0 | 7.3
7.2
7.5
7.3
6.7 | 7.9
7.6
8.3
8.0
7.3 | 10.7
10.3
9.8
9.6
10.0 | 8.7
7.6
8.8
7.9
8.3 | 9.6
9.2
9.3
8.7
8.9 |

 | |

 | 6.9
7.1
7.4
7.4
7.4 | 6.0
6.1
6.3
6.3 | 6.4
6.5
6.7
6.8
6.9 | | 26
27
28
29
30
31 | 7.4
6.9
6.9
6.7
6.9 | 6.2
5.3
6.5
5.8
6.3 | 6.8
6.8
6.2
6.6 | 10.4
9.8
9.2
8.5
7.9
7.8 | 7.8
8.3
8.1
7.7
6.9
6.5 | 9.2
9.0
8.6
8.1
7.5
7.2 |
7.5
7.5
7.9
8.1 |
7.0
7.1
7.1
7.0 | 7.3
7.3
7.4
7.4 | 7.5
7.6
7.9
7.2
7.6 | 6.7
6.8
6.0
6.5 | 7.0
7.1
7.3
6.8
7.0 | | MONTH | | | | 10.7 | 6.2 | 7.9 | | | | 8.1 | 5.6 | 6.9 | DAILY MEAN DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER ## 08057200 White Rock Creek at Greenville Avenue, Dallas, TX LOCATION.--Lat 32°53'21", long 96°45'23", Dallas County, Hydrologic Unit 12030105, on left bank 20 ft upstream from bridge on Greenville Avenue in Dallas, 1.1 mi downstream from Texas and New Orleans Railroad Co. bridge, 1.2 mi downstream from Cottonwood Creek, 2.9 mi upstream from White Rock Lake, and 8.2 mi northeast of Dallas County Courthouse. DRAINAGE AREA.--66.4 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Aug. 1961 to Sept. 1980, Apr. 1984 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 400 ft above NGVD of 1929. Prior to Oct. 24, 1961, nonrecording gage at same site and datum. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation. Low flow is affected by diversions from small dams upstream from station. | | | DISCHARGE | FROM DCP, | CUBIC FEE | | OND, WAT | | OCTOBER 200 | 1 TO SE | PTEMBER 20 | 02 | | |---|--|---|----------------------------------|---|---------------------------|------------------------------------|---|--|-----------------------------|--|--|------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 25 | 22 | 35 | 24 | 140 | 33 | 85 | 20 | 38 | 266 | e3.2 | 11 | | 2 | 24 | 22 | 32 | 24 | 89 | 57 | 67 | 18 | 33 | 133 | e3.3 | 9.2 | | 3 | 24 | 23 | 31 | 23 | 79 | 49 | 57 | 224 | 29 | 210 | e3.0 | 11 | | 4 | 24 | 22 | 31 | 23 | 74 | 37 | 47 | 46 | 27 | 106 | e2.7 | 8.6 | | 5 | 106 | 26 | 30 | 65 | 516 | 33 | 43 | 535 | 48 | 60 | e2.7 | e5.0 | | 6 | 43 | 34 | 154 | 35 | 457 | 31 | 69 | 54 | 41 | 40 | e2.4 | e3.0 | | 7 | 31 | 23 | 49 | 26 | 332 | 34 | 3680 | 38 | 31 | 36 | e15.2 | e3.0 | | 8 | 28 | 23 | 35 | 23 | 259 | 33 | 1020 | 40 | 28 | 31 | 41 | 475 | | 9 | 26 | 27 | 30 | 22 | 217 | 57 | 94 | 45 | 32 | 26 | 12 | 147 | | 10 | 35 | 23 | 29 | 24 | 179 | 37 | 67 | 633 | 30 | 21 | 120 | 62 | | 11 | 486 | 110 | 70 | 22 | 164 | 42 | 52 | 81 | 23 | 138 | 43 | 37 | | 12 | 214 | 50 | 79 | 23 | 137 | 33 | 47 | 57 | 20 | 118 | 29 | 30 | | 13 | 517 | 32 | 132 | 23 | 128 | 31 | 211 | 105 | 119 | 54 | 16 | 28 | | 14 | 77 | 28 | 73 | 22 | 107 | 28 | 86 | 44 | 108 | 57 | 60 | 25 | | 15 | 55 | 34 | 81 | 21 | 91 | 27 | 58 | 39 | 39 | 35 | 49 | 24 | | 16 | 44 | 39 | 5600 | 29 | 79 | 28 | 50 | 36 | 277 | 33 | 21 | 23 | | 17 | 39 | 28 | 239 | 25 | 70 | 28 | 67 | 514 | 58 | 39 | 12 | 17 | | 18 | 37 | 26 | 86 | 23 | 61 | 2300 | 63 | 80 | 35 | 40 | 8.2 | 19 | | 19 | 37 | 42 | 63 | 30 | 63 | 6380 | 52 | 50 | 27 | 27 | 7.3 | 129 | | 20 | 37 | 25 | 51 | 26 | 51 | 2020 | 42 | 50 | 23 | 20 | e3.3 | 48 | | 21 | 35 | 23 | 44 | 22 | 41 | 81 | 36 | 36 | 19 | e16 | e3.7 | 30 | | 22 | 33 | 23 | 40 | 37 | 44 | 53 | 32 | 32 | 23 | e13 | e4.1 | 24 | | 23 | 30 | 29 | 34 | 158 | 42 | 41 | 30 | 29 | 22 | e9.5 | e1.7 | 22 | | 24 | 27 | 44 | 30 | 614 | 42 | 34 | 27 | 28 | 25 | e5.9 | e1.4 | 17 | | 25 | 22 | 28 | 27 | 94 | 38 | 31 | 23 | 27 | 22 | e5.8 | e1.3 | 16 | | 26
27
28
29
30
31 | 19
22
22
20
22
24 | 27
23
178
75
44 | 26
25
25
26
27
26 | 57
48
46
42
48
6730 | 34
34
35
 | 24
20
19
17
717
340 | 93
41
27
22
20 | 357
90
168
225
60
44 | 26
56
31
42
197 | e6.5
e5.6
e4.0
e3.6
e3.6
e3.6 | 5.9
241
51
26
19
13 | 14
15
e9.2
18
15 | | TOTAL | 2185 | 1153 | 7260 | 8429 | 3603 | 12695 | 6308 | 3805 | 1529 | 1567.1 | 822.4 | 1295.0 | | MEAN | 70.48 | 38.43 | 234.2 | 271.9 | 128.7 | 409.5 | 210.3 | 122.7 | 50.97 | 50.55 | 26.53 | 43.17 | | MAX | 517 | 178 | 5600 | 6730 | 516 | 6380 | 3680 | 633 | 277 | 266 | 241 | 475 | | MIN | 19 | 22 | 25 | 21 | 34 | 17 | 20 | 18 | 19 | 3.6 | 1.3 | 3.0 | | AC-FT | 4330 | 2290 | 14400 | 16720 | 7150 | 25180 | 12510 | 7550 | 3030 | 3110 | 1630 | 2570 | | STATIST | TICS OF | MONTHLY ME | AN DATA F | OR WATER Y | EARS 1961 | - 2002h | n, BY WAT | TER YEAR (WY | ·) | | | | | MEAN | 90.84 | 70.79 | 99.43 | 62.13 | 100.2 | 119.5 | 122.5 | 156.2 | 93.79 | 37.85 | 26.07 | 58.40 | | MAX | 450 | 388 | 627 | 394 | 516 | 480 | 690 | 460 | 800 | 252 | 108 | 624 | | (WY) | 1995 | 2001 | 1992 | 1998 | 2001 | 1995 | 1966 | 1990 | 1989 | 1962 | 1994 | 1964 | | MIN | 0.83 | 2.96 | 4.35 | 5.85 | 6.19 | 12.0 | 16.6 | 15.8 | 7.25 | 0.78 | 1.26 | 0.92 | | (WY) | 1964 | 1964 | 1964 | 1976 | 1967 | 1971 | 1971 | 1972 | 1980 | 1964 | 1963 | 1963 | | SUMMARY | STATIS | STICS | FOR | 2001 CALEN | DAR YEAR | F | FOR 2002 | WATER YEAR | | WATER YEAR | RS 1961 - | 2002h | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN
ANNUAL
10 PERC
50 PERC | MEAN TANNUAL ANNUAL TDAILY DAILY SEVEN-I M PEAK F M PEAK S | MEAN MEAN MEAN DAY MINIMUM FLOW STAGE (AC-FT) CEEDS CEEDS | | 56284.1
154.2
5710
6.7
8.5
111600
235
44
13 | Feb 16
Jul 25
Aug 7 | | 50651.
138.
6730
1.
3.
25700
89.
100500
160
34
14 | Jan 31
3 Aug 25
0 Jul 31
Mar 19 | | 87.20
201
20.8
14700
0.0:
39200
90.5:
63210
121
22
4.2 | Sep 21
l Jul 8
l Aug 21
May 2 | 1970
1961 | e Estimated h See PERIOD OF RECORD paragraph. 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: May 1997 to current year. PESTICIDE DATA: May 1997 to current year. | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | |------------------------|----------------------|---|--|--|---|--|---|--|--|--|--|--|--| | OCT
10
25 | 0900
1400 | 29
21 | 565
572 | 8.2
7.8 | 22.9
19.3 |
8.6 | | 153 | 63.8 | 38.7 | 1.95 | .022 | 1.97 | | NOV
07
19
DEC | 1100
1300 | 22
77 | 593
599 | 8.2
7.9 | 18.1
17.2 | 8.8
8.9 | 94
 | 167
 | 71.4 | 39.4 | 1.27 | .013 | 1.28 | | 05
20
JAN | 1200
1130 | 32
50 | 607
568 | 8.0
7.8 | 17.3
9.4 | 8.5
10.8 | 89
 | 172
 | 69.0 | 38.0 | 2.11 | .027 | 2.14 | | 10
25
FEB | 1130
0930 | 23
90 | 647
 | 8.1 | 11.6 | 12.0 | 112 | 202 | 83.2 | 40.0 | 2.50 | .021 | 2.53 | | 13
19
MAR | 1630
1600 | 120
71 | 689
674 | 8.1
8.0 | 10.6
16.3 | 11.8
10.1 | 106 | 189
 | 79.7
 | 35.0 | 2.50 | .026 | 2.53 | | 05
13
20 | 0900
1600
1530 | 32
30
180 | 654
593
381 | 7.9
8.2
7.9 | 6.9
15.2
15.1 | 11.6
12.8
10.4 | 95
130
104 | 170
 | 73.7
 | 35.8
 | 2.44
1.93
1.61 | .022
.030
.034 | 2.46
1.96
1.64 | | 27
APR
02
10 | 1030
1050
1030 | 20
68
71 | 681
552
567 | 8.0
8.0
8.0 | 12.6
17.1
17.4 | 9.2
9.3 | 101
97
97 |
190 |
64.3 |
23.7 | 2.69
2.15
2.18 | .027 | 2.71
2.19
2.21 | | 16
23
MAY | 0900
1230 | 49
31 | 623
656 | 7.8
8.1 | 20.5 | 7.8
12.7 | 88
151 |
 | | | 2.16
2.06
2.19 | .032 | 2.09 | | 07
15
21 | 0800
1130
1000 | 37
38
36 | 489
509
477 | 8.5
8.1
7.8 | 23.7
21.8
19.7 | 9.2
11.5
10.9 | 111
133
120 |
157
 | 56.2
 | 23.9 | 1.55
2.06
1.74 | .022
.032
.026 | 1.57
2.09
1.77 | | 30
JUN
03 | 1000 | 86
29 | 382
541 | 7.4
7.6 | 22.7
25.6 | 9.2 | 109
138 | | | | 1.49
2.01 | .020 | 1.51
2.03 | | 11
17
24 | 1030
1030
1430 | 23
79
25 | 534
358
474 | 7.4
7.6
7.9 | 26.4
25.1
30.3 | 9.1
10.1
13.4
| 115
125
180 | 125

 | 64.5

 | 33.8

 | 1.91
1.22
1.20 | .032
.018
.016 | 1.94
1.24
1.22 | | JUL
09
23
AUG | 1130
1030 | 29
11 | 465
560 | 8.3
7.9 | 30.0
28.6 | 12.7
9.4 | 168
121 | 124 | 53.6 | 27.4 | 1.24
2.34 | .024 | 1.27
2.37 | | 05
19
SEP | 1230
1100 | 5.1
7.9 | 575
500 | 8.1
8.1 | 30.4
28.3 | 11.0
10.0 | 149
132 | 112 | 76.6
 | 44.9 | 3.24
1.85 | .038 | 3.28
1.88 | | 11 | 1000 | 37 | 383 | 7.9 | 25.1 | 8.9 | 110 | 99 | 40.6 | 18.9 | 1.20 | .015 | 1.22 | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | BENZENE
TOTAL
(UG/L)
(34030) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | |------------------------|--|--|---|---|---|--|--|---|--|---|---|---------------------------------------|---| | OCT
10
25 | <.04 | 2.5 | | .54
 | .30 | .24 | .745 | 61.5 | 1.2 | .86 | 11 | <.04
E.02 | .10 | | NOV
07
19 | <.04 | 1.7 | | .47 | .23 | .16 | .488 | 4.3 | 3.0 | 2.0 | 34 | <.04
<.04 | .05 | | DEC
05
20
JAN | <.04 | 2.7 | | .56
 | .34 | .26 | .806 | 4.2 | 1.1 | 1.5 | 17
 | <.04
E.04 | E.19
 | | 10
25
FEB | E.02 | 3.0 | | . 44 | .23 | .18 | .555
 | 3.0 | 1.3 | .50 | 8.0 | <.04
E.02 | .04 | | 13
19
MAR | .10 | 3.0 | .42 | .51
 | .123 | .08 | .258 | 3.0 | 1.3 | 8.1 | 25
 | <.04
<.04 | .13 | | 05
13
20 | <.04
<.04
.14 | 3.0
2.5
2.9 |
1.1 | .51
.52
1.3 | . 25
. 21
. 27 | .21
.13
.08 | .632
.405
.251 | 3.7 | 7.6
 | 3.2 | 39
 |
 | .16
.42
.83 | | 27
APR
02
10 | E.03
.06
.06 | 3.1
2.9
2.8 | .63
.51 | .39
.69
.57 | .133
.175
.133 | .08 | .242 |
3.2 |
2.5 |
8.6 |
45 | <.04

<.04 | .22 | | 16
23
MAY | E.02
<.04 | 2.9 | | .84 | .29 | .05 | .163 |
 | | | | | .48 | | 07
15
21 | <.04
<.04
<.04 | 2.1
2.6
2.2 | | .51
.50
.40 | .134
.19
.183 | .08
.13
.11 | . 242
. 411
. 337 | 3.7 | .8 | .90
.62
.78 | 9.0
6.0
8.0 |
<.04
 | .17
.06
.04 | | 30
JUN
03 | <.04 | 2.1 | | . 60 | .195 | .13 | .386 | | | .70 | 3.0 | | .11 | | 11
17
24
JUL | <.04
<.04
<.04 | 2.5
1.8
1.8 |
 | .53
.53
.55 | .26
.163
.21 | .22
.08
.15 | .668
.258
.451 | 3.5

 | 1.0

 | .43
.43
.34 | 7.0
2.0
5.0 | <.04

 | .11
.25
.11 | | 09
23
AUG | <.04
<.04 | 1.8
2.9 | | .51
.54 | .21
.50 | .15
.41 | .466
1.25 | 4.0 | 1.1 | .23 | 3.0
4.0 | <.04 | E.79
<.02 | | 05
19
SEP | E.02
.10 | 4.0
2.5 |
.50 | .71
.60 | .79
.42 | .77
.38 | 2.37
1.17 | 4.9 | 1.1 | .14
.21 | 10
10 | <.04 | <.02
.07 | | 11 | <.04 | 1.7 | | .51 | .161 | .10 | .316 | 4.0 | 1.1 | .90 | 9.0 | <.04 | | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | 3HYDRXY
CARBO-
FURAN
WAT,FLT
GF 0.7U
REC
(UG/L)
(49308) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | |-----------|---|---|--|--|---|--|---|--|---|---|---|---|---| | OCT | | | | | | | | | | | | | | | 10
25 | <.02 | <.002 | <.006 | <.004 | <.007 | <.002 | <.04 | <.02 | <.008 | <.005 | E.106 | <.050 | <.010 | | NOV | | | | | | | | | | | | | | | 07 | <.02 | <.002 | <.006 | <.004 | <.007 | <.002 | <.04 | <.02 | <.008 | <.005 | E.019 | | <.010 | | 19
DEC | | | | | | | | | | | | | | | 05 | <.02 | <.002 | <.006 | <.004 | <.007 | <.002 | <.04 | <.02 | <.008 | <.005 | .100 | <.050 | <.010 | | 20 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 10 | <.02 | <.006 | <.006 | <.006 | <.007 | <.004 | <.04 | <.02 | <.008 | <.005 | .167 | | <.010 | | 25
FEB | | | | | | | | | | | | | | | 13 | <.02 | <.006 | <.006 | <.006 | <.007 | <.004 | <.04 | <.02 | <.008 | <.005 | .513 | < 050 | <.010 | | 19 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 05 | <.02 | <.006 | <.006 | <.006 | <.007 | <.004 | <.04 | <.02 | <.008 | <.005 | .468 | | <.010 | | 13 | <.02 | <.006 | <.006 | <.006 | <.007 | .027 | <.04 | <.02 | <.008 | <.005 | .516 | | <.010 | | 20
27 | <.02
<.02 | <.006
<.006 | <.006
<.006 | .009 | <.104
<.097 | .013 | <.04
<.04 | <.02
<.02 | <.008
<.008 | <.005
<.005 | 1.63
.609 | | E.005n
<.010 | | APR | <.02 | <.006 | <.000 | .012 | <.097 | .015 | <.04 | <.∪∠ | <.006 | <.005 | .009 | <.050 | <.010 | | 02 | <.02 | <.006 | <.006 | .013 | <.007 | .025 | <.04 | <.02 | <.008 | <.005 | 1.06 | <.050 | <.010 | | 10 | <.02 | <.006 | <.006 | .013 | <.007 | .016 | <.04 | <.02 | <.008 | <.005 | .880 | <.050 | | | 16 | <.02 | <.006 | <.006 | .029 | <.007 | .028 | <.04 | <.02 | <.008 | <.005 | .799 | <.050 | | | 23 | <.02 | <.006 | <.006 | .011 | <.007 | .018 | <.04 | <.02 | <.008 | <.005 | 2.69 | <.050 | <.010 | | MAY
07 | <.02 | <.006 | <.006 | .015 | <.007 | .017 | <.04 | <.02 | <.008 | <.005 | .712 | < 050 | <.010 | | 15 | <.02 | <.006 | <.006 | .017 | <.007 | .020 | <.04 | <.02 | <.008 | <.005 | .585 | <.050 | <.010 | | 21 | <.02 | <.006 | <.006 | .010 | <.007 | .013 | <.04 | <.02 | <.008 | <.005 | .496 | | <.010 | | 30 | <.02 | <.006 | <.006 | <.006 | <.007 | .011 | <.04 | <.02 | <.008 | <.005 | .403 | <.050 | <.010 | | JUN | | | | | | | | | | | | | | | 03 | <.02 | <.006 | <.006 | .013 | <.007 | .015 | <.04 | <.02 | <.008 | <.005 | .338 | | <.010 | | 11
17 | <.02
<.02 | <.006
<.006 | <.006
<.006 | <.015
<.007 | <.007
<.007 | .014 | <.04
<.04 | <.02
<.02 | <.008
<.008 | <.005
<.005 | .343
E.373 | <.050 | <.010 | | 24 | <.02 | r | <.006 | r | <.007 | r | <.04 | <.02 | <.008 | r | .252 | r | r | | JUL | | - | 1.000 | - | 1.007 | - | | 2 | 1.000 | _ | .232 | - | - | | 09 | <.02 | <.006 | <.006 | <.006 | <.007 | .010 | <.04 | <.02 | <.008 | <.005 | .312 | <.050 | <.010 | | 23 | <.02 | <.006 | <.006 | <.010 | <.007 | <.015 | <.04 | <.02 | <.008 | <.005 | .317 | <.050 | <.010 | | AUG
05 | <.02 | <.006 | <.006 | .009 | <.007 | .009 | <.04 | <.02 | <.008 | <.005 | .357 | <.050 | <.010 | | 19 | <.02 | <.006 | <.006 | <.009 | <.007 | <.009 | <.04 | <.02 | <.008 | <.005 | .228 | | <.010 | | SEP | 02 | 1.000 | 1.000 | 1.000 | 1.507 | 1.001 | 1.01 | 1.02 | 1.000 | 1.005 | .220 | 1.050 | 1.010 | | 11 | | | | | | | | | | | | | | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) |
BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | |------------------------|---|---|--|---|---|--|---|--|---|--|--|---|--| | OCT
10
25 | <.01 | <.03 | <.02 | <.002 | M
 | <.041 | <.006 | <.020 | <.04 | <.005 | <.006 | <.01 | <.018 | | NOV
07
19
DEC | <.01 | <.03 | <.02 | <.002 | <.03 | <.041 | <.006 | <.020 | <.04 | <.005 | <.006 | <.01 | <.018 | | 05
20
JAN | E.01 | <.03 | <.02 | <.002 | M
 | E.007 | <.006 | <.020 | E4.23 | <.005 | <.006 | <.01 | <.018 | | 10
25
FEB | <.01 | E.02 | <.02 | <.002 | <.03 | <.041 | <.006 | <.020 | <.04 | <.005 | <.006 | E.01
 | <.018 | | 13
19
MAR | <.01 | <.03 | <.02 | <.002 | M
 | <.041 | <.006 | <.020 | <.04 | <.005 | <.006 | <.01 | <.018 | | 05
13
20 | <.01
<.01
<.01 | E.02
E.05
<.03 | <.02
<.02
<.02 | <.002
<.002
<.002 | <.03
E.02
.06 | E.008
E.065
E.066 | <.006
<.006
<.006 | <.020
<.020
<.020 | <.04
<.04
<.04 | <.005
<.005
<.005 | <.006
<.006
<.006 | <.01
<.01
<.01 | <.018
<.018
<.018 | | 27
APR
02 | <.01 | <.03 | <.02 | <.002 | E.02 | E.020 | <.006 | <.020 | <.04 | <.005 | <.006 | <.01 | <.018 | | 10
16
23 | <.01
<.01
<.01
<.01 | <.03
.01
<.03
<.03 | <.02
<.02
<.02
<.02 | <.002
<.002
<.002
<.002 | E.03
.02
E.02
E.01 | E.023
E.029
E.041
<.041 | <.006
<.006
<.006 | <.020
<.020
<.020
E.012 | <.04
<.04
<.04
<.04 | <.005
<.005
.008
<.005 | <.006
<.006
<.006
<.006 | <.01
<.01
<.01
<.01 | <.018
<.018
<.018
<.018 | | MAY
07 | <.01 | <.03 | <.02 | <.002 | E.03 | E.043 | <.006 | <.020 | <.04 | E.004n | <.006 | <.01 | <.018 | | 15
21
30 | <.01
<.01
<.01 | <.03
<.03
<.03 | <.02
<.02
<.02 | <.002
<.002
<.002 | .03
.05
.05 | E.061
E.111
E.115 | <.006
<.006
<.006 | <.020
<.020
<.020 | <.04
<.04
<.04 | <.005
E.003n
.006 | <.006
<.006
<.006 | <.01
<.01
<.01 | <.018
<.018
<.018 | | JUN
03
11
17 | <.01
E.04
<.01 | <.03
<.03
E.21 | <.02
<.02
<.02 | <.002
<.002
<.002 | <.03
<.03
E.02 | E.007
E.006
E.042 | <.006
<.006
<.006 | <.020
<.020
<.020 | <.04
<.04
<.04 | E.003n
<.005
<.005 | <.006
<.006
<.006 | <.01
<.01
<.01 | <.018
<.018
<.018 | | 24
JUL
09 | <.01
<.01 | <.03 | <.02 | r
<.002 | <.03 | r
<.041 | <.006
<.006 | r
<.020 | <.04 | r
<.005 | r
<.006 | <.01 | r
<.018 | | 23
AUG
05 | <.01 | <.03 | <.02 | <.002 | <.03 | <.041 | <.006 | <.020 | <.04 | <.005 | <.006 | <.01 | <.018 | | 19
SEP | <.01 | <.03 | <.02 | <.002
<.002 | М | <.041
E.007 | <.006 | <.020
<.020 | <.04 | <.005 | <.006 | <.01
<.01 | <.018 | | 11 | | | | | | | | | | | | | | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DICHLOR
PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | |------------------------|---|---|--|---|--|---|--|--|--|--|---|---|--| | OCT
10
25 | <.01 | <.003 | E.03 | .099 | .04 | <.01 | <.005 | <.01 | <.02 | E.02 | <.002 | <.009 | <.005 | | NOV
07
19 | <.01 | <.003 | E.01 | .039 | <.01 | <.01 | <.005 | <.01 | <.02 | <.01 | <.002 | <.009 | <.005 | | DEC
05
20
JAN | <.01 | <.003 | E.03 | .053 | .05 | <.01 | <.005 | <.01 | <.02 | .02 | <.002 | <.009 | <.005 | | 10
25
FEB | <.01 | <.003 | E.031 | .017 | E.01 | <.01 | <.005 | <.01 | <.02 | .02 | <.002 | <.009 | <.005 | | 13
19
MAR | <.01 | <.003 | E.043 | .013 | <.01 | <.01 | <.005 | <.01 | <.02 | .02 | <.002 | <.009 | <.005
 | | 05
13
20 | <.01
<.01
<.01 | <.003
<.003
<.003 | E.050
E.035
E.028 | .015
.029
.242 | <.01
.11
.06 | <.01
<.01
.04 | <.005
<.005
<.005 | <.01
<.01
<.01 | <.02
<.02
<.02 | .02
.02
.04 | <.002
<.002
<.002 | <.009
<.009
<.009 | <.005
<.005
<.005 | | 27
APR
02 | <.01 | <.003 | E.028 | .076 | .04 | <.01 | <.005 | <.01 | <.02 | .02
E.04 | <.002 | <.009 | <.005 | | 10
16
23
MAY | <.01
<.01
<.01 | <.003
<.003
<.003 | E.022
E.034
E.058 | .157
.178
.014 | .11
.12
.10 | .02
<.01
<.01 | <.005
<.005
<.005 | <.01
<.01
<.01 | <.02
<.02
<.02 | .09
E.03
.02 | <.002
<.002
<.002 | <.009
<.009
<.009 | <.005
<.005
<.005 | | 07
15
21 | <.01
<.01
<.01 | <.003
<.003
<.003 | E.067
E.072
E.053 | .186
.306
.222 | <.01
.08
.12 | <.01
<.01
<.01 | <.005
<.005
<.005 | <.01
<.01
<.01 | <.02
<.02
<.02 | .03
.02
.13 | <.002
<.002
<.002 | <.009
<.009
<.009 | <.005
<.005
<.005 | | 30
JUN
03 | <.01
<.01 | <.003
<.003 | E.043
E.056 | .218 | .06 | <.01
<.01 | <.005
<.005 | <.01
<.01 | <.02
<.02 | .09
E.04 | <.002 | <.009
<.009 | <.005
<.005 | | 11
17
24 | <.01
<.01
<.01 | <.003
<.003
r | E.073
E.050
E.05 | .048
.162
r | .04
.05
<.01 | <.01
<.01
<.01 | <.005
<.005
r | <.01
<.01
<.01 | <.02
<.02
r | .05
.99
.21 | <.002
<.002
r | <.009
<.009
r | <.005
<.005
r | | JUL
09
23
AUG | <.01
<.01 | <.003
<.003 | E.062
E.076 | .048 | <.01
<.01 | <.01
<.01 | <.005
<.005 | <.01
<.01 | <.02
<.02 | .02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | | 05
19
SEP | <.01
<.01 | <.003
<.003 | E.103
E.050 | .165
.169 | <.01
<.01 | <.01
<.01 | <.005
<.005 | <.01
<.01 | <.02
<.02 | <.01
E.05 | <.002
<.002 | <.009
<.009 | <.005
<.005 | | 11 | | | | | | | | | | | | | | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | METHIO-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) |
METH-
OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | |-----------|--|---|--|--|--|---|--|--|--|---|---|---|--| | OCT | | | | | | | | | | | | | | | 10 | <.03 | <.03 | <.003 | <.004 | <.01 | | <.027 | .03 | <.01 | <.008 | <.004 | E.006 | <.006 | | 25
NOV | | | | | | | | | | | | | | | 07 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | .17 | <.01 | <.008 | <.004 | E.006 | <.006 | | 19 | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | 05
20 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | .05 | <.01 | <.008 | <.004 | E.004 | <.006 | | JAN | | | | | | | | | | | | | | | 10 | <.03 | <.03 | <.003 | < .004 | <.01 | <.035 | <.027 | .02 | <.01 | <.008 | <.004 | E.005 | <.006 | | 25 | | | | | | | | | | | | | | | FEB | 0.0 | 0.0 | 000 | 004 | 0.1 | 0.05 | 0.05 | 1.0 | 0.1 | 000 | 004 | | 005 | | 13
19 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | .12 | <.01 | <.008 | <.004 | E.005n | <.006 | | MAR | | | | | | | | | | | | | | | 05 | <.03 | <.03 | <.003 | < .004 | <.01 | <.035 | <.027 | .09 | <.01 | <.008 | <.004 | E.012n | <.006 | | 13 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | .16 | <.01 | <.008 | < .004 | .017 | <.006 | | 20 | <.03 | <.03 | <.003 | <.004 | <.01 | | E.011n | .30 | <.01 | <.008 | <.004 | 1.69 | <.006 | | 27 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | <.06 | <.01 | <.008 | <.004 | .233 | <.006 | | APR
02 | . 02 | - 02 | - 003 | - 004 | . 01 | . 025 | . 007 | 0.0 | - 01 | - 000 | - 004 | 000 | . 000 | | 10 | <.03
<.03 | <.03
<.03 | <.003 | <.004
<.004 | <.01
<.01 | | <.027
E.004n | .02 | <.01
<.01 | <.008
<.008 | <.004
<.004 | .889
.288 | <.006
<.006 | | 16 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | E.10 | <.01 | <.008 | <.004 | .172 | <.006 | | 23 | <.03 | <.03 | <.003 | <.004 | <.01 | | <.027 | .02 | <.01 | <.008 | <.004 | .261 | <.006 | | MAY | 1.05 | 1.05 | 1.003 | 1.004 | 1.01 | 1.055 | 1.027 | .02 | 1.01 | 1.000 | 1.001 | .201 | 1.000 | | 07 | <.03 | <.03 | <.003 | < .004 | <.01 | <.035 | <.027 | .02 | <.01 | <.008 | <.004 | .071 | <.006 | | 15 | <.03 | < .03 | < .003 | < .004 | <.01 | <.035 | <.027 | .04 | <.01 | <.008 | < .004 | .116 | <.006 | | 21 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | E.012n | .04 | <.01 | <.008 | <.004 | .107 | <.006 | | 30 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | E.017n | E.01 | <.01 | <.008 | < .004 | .039 | <.006 | | JUN | | | | | | | | | | | | | | | 03 | <.03 | <.03 | <.003 | <.004 | <.01 | | <.027 | E.01 | <.01 | <.008 | < .004 | .070 | <.006 | | 11 | <.03 | <.03 | <.003 | <.004 | .11 | | <.027 | <.02 | <.01 | <.008 | <.004 | .077 | <.006 | | 17 | <.03 | <.03 | <.003 | <.004 | <.01 | | <.027 | .05 | <.01 | <.008 | <.004 | .046 | <.006 | | 24 | <.03 | <.03 | r | r | <.01 | r | r | <.02 | <.01 | <.008 | <.004 | r | r | | JUL
09 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | <.02 | <.01 | <.008 | <.004 | .044 | <.006 | | 23 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | <.02 | <.01 | <.008 | <.004 | .062 | <.006 | | AUG | <.03 | <.03 | <.003 | <.004 | <.01 | <.033 | <.027 | <.02 | <.01 | <.000 | <.00₽ | .002 | <.000 | | 05 | <.03 | <.03 | <.003 | <.004 | <.01 | <.035 | <.027 | <.02 | <.01 | <.008 | < .004 | .075 | <.006 | | 19 | <.03 | <.03 | <.003 | <.004 | <.01 | | <.027 | <.02 | <.01 | <.008 | <.004 | .032 | <.006 | | SEP | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | OXAMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | |------------------------|--|---|--|---|---|--|---|--|--|---|---|--|---| | OCT
10
25 | <.002 | <.007 | <.01 | <.02 | <.02 | <.01 | <.003 | <.007 | <.006 | <.002 | .020 | <.011 | <.02 | | NOV
07
19 | <.002 | <.007 | <.01 | <.02 | <.02 | <.01 | <.003 | <.007 | <.006 | <.002 | <.010 | <.011 | <.02 | | DEC
05
20 | <.002 | <.007 | <.01 | <.02 | <.02 | <.01 | <.003 | <.007 | <.006 | <.002 | .037 | <.011 | <.02 | | JAN
10
25
FEB | <.002 | <.007 | <.01 | <.02 | <.02 | <.01 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.02 | | 13
19
MAR | <.002 | <.007 | <.01 | <.02 | <.02 | <.01 | <.003 | <.010 | <.006 | <.004 | <.022 | <.011 | <.02 | | 05
13
20 | <.002
<.002
<.002 | <.007
<.007
<.007 | <.01
<.01
<.01 | <.02
<.02
<.02 | <.02
<.02
<.02 | <.01
<.01
<.01 | <.003
<.003
<.003 | <.010
<.010
<.010 | <.006
<.006
<.006 | <.004
<.004
<.004 | .052
.075
.214 | <.011
<.011
<.011 | <.02
<.02
<.02 | | 27
APR
02 | <.002
<.002 | <.007
<.007 | <.01 | <.02 | <.02 | <.01 | <.003
<.003 | <.010
<.010 | <.006
<.006 | <.004 | .116 | <.011
<.011 | <.02 | | 10
16
23 | <.002
<.002
<.002 | <.007
<.007
<.007 | <.01
<.01
<.01 | <.02
<.02
<.02 | <.02
<.02
<.02 | <.01
<.01
<.01 | <.003
<.003
<.003 | <.010
<.010
<.010 | <.006
<.006
<.006 | <.004
<.004
<.004 | .080
.077
<.022 | <.011
<.011
<.011 | <.02
<.02
<.02 | | MAY
07
15 | <.002
<.002 | <.007
<.007 | <.01
<.01 | <.02
<.02 | <.02
<.02 | <.01
<.01 | <.003
<.003 | <.010
<.010 | <.006
<.006 | <.004
<.004 | .028 | <.011
<.011 | <.02
<.02 | | 21
30
JUN | <.002 | <.007
<.007 | <.01 | <.02 | <.02 | <.01 | <.003 | <.010
<.010 | <.006 | <.004 | E.018n
.024 | <.011 | <.02 | | 03
11
17
24 | <.002
<.002
<.002
r | <.007
<.007
<.007
r | <.01
<.01
<.01
<.01 | <.02
<.02
<.02
<.02 | <.02
<.02
<.02
<.02 | <.01
<.01
<.01
<.01 | <.003
<.003
<.003
r | <.010
<.010
<.010
r | <.006
<.006
<.006
r | <.004
<.004
<.004
r | E.010n
<.022
E.013n
r | <.011
<.011
<.011
r | <.02
<.02
<.02
<.02 | | JUL
09
23
AUG | <.002
<.002 | <.007
<.007 | <.01
<.01 | <.02
<.02 | <.02
<.02 | <.01
<.01 | <.003
<.003 | <.010
<.010 | <.006
<.006 | <.004
<.004 | <.022
<.022 | <.011
<.011 | <.02
<.02 | | 05
19
SEP | <.002
<.002 | <.007
<.007 | <.01
<.01 | <.02
<.02 | <.02
<.02 | <.01
<.01 | <.003
<.003 | <.010
<.010 | <.006
<.006 | | <.022
<.022 | <.011
<.011 | <.02
<.02 | | 11 | | | | | | | | | | | | | | # 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF,
REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | |------------------------|---|---|--|--|--|---|---|---|---|--|--|---|---| | OCT
10
25 | E.01 | <.010 | <.011 | <.02 | <.010 | E.023 | <.004 | .664 | <.006 | <.041 | <.02 | <.005 | <.002 | | NOV
07
19
DEC | <.01 | <.010 | <.011 | <.02 | <.010 | <.008 | <.004 | .891
 | <.006 | <.034 | <.02 | <.005 | <.002 | | 05
20
JAN | E.01 | <.010 | <.011 | <.02 | <.010 | E.012 | <.004 | 1.10 | <.006 | <.034 | <.02 | <.005 | <.002 | | 10
25
FEB | E.01
 | <.010 | <.011 | <.02 | <.010 | .008 | <.004 | .527
 | <.02 | <.034 | <.02 | <.005
 | <.002 | | 13
19
MAR | <.01 | <.010 | <.011 | <.02 | <.010 | E.005 | .023 | .437 | <.02 | <.034 | <.02 | <.005
 | <.002 | | 05
13
20 | E.01n
<.01
<.01 | <.010
<.010
<.010 | <.011
<.011
<.011 | <.02
<.02
<.02 | <.010
<.010
<.010 | <.008
.009
.014 | E.030
.034
.016 | .746
1.05
3.38 | <.02
E.01
<.02 | <.034
<.034
<.034 | <.02
<.02
<.02 | <.005
<.005
<.005 | <.002
<.002
<.002 | | 27
APR
02 | <.01 | <.010 | <.011 | <.02 | <.010 | E.006 | .018 | 1.86 | E.01 | <.034 | <.02 | <.005 | <.002 | | 10
16
23
MAY | E.01n
E.01n
E.01n | <.010
<.010
<.010 | <.011
<.011
<.011 | <.02
<.02
<.02 | <.010
<.010
<.010 | <.008
E.004
E.005 | .019
.025
<.004 | .783
.362
.104 | <.02
<.02
E.03 | <.034
<.034
<.034 | <.02
<.02
<.02 | <.005
<.005
<.005 | <.002
<.002
<.002 | | 07
15
21 | E.01n
.02
E.01n | <.010
<.010
<.010 | <.011
<.011
<.011 | <.02
<.02
<.02 | <.010
<.010
<.010 | E.005
E.006
<.008 | <.004
<.025
E.004n | .315
.281
.233 | <.02
<.02
<.02 | <.034
<.034
<.034 | <.02
<.02
<.02 | <.005
<.005
<.005 | <.002
<.002
<.002 | | 30
JUN
03 | .02 | <.010 | <.011 | <.02 | <.010 | .011
E.005 | <.004 | .154 | <.02 | <.034 | <.02 | <.005 | <.002 | | 11
17
24 | .02
.02
r | <.010
<.010
r | <.011
<.011
r | <.02
<.02
r | <.010
<.010
<.010 | .009
.008
E.004 | <.004
<.004
r | .107
.106
r | <.02
<.02
<.006 | <.034
<.034
r | <.02
<.02
r | <.005
<.005
r | <.002
<.002
r | | JUL
09
23 | .02
E.01 | <.010
<.010 | <.011
<.011 | <.02
<.02 | <.010
<.010 | E.007
E.007 | <.004
<.015 | .071
.056 | <.02
<.02 | <.034
<.034 | <.02
<.02 | <.005
<.005 | <.002
<.002 | | AUG
05
19 | .03 | <.010
<.010 | <.011
<.011 | <.02
<.02 | <.010
<.010 | E.011
E.011 | <.004
<.004 | .070 | E.01n
<.02 | <.034
<.034 | <.02
<.02 | <.005
<.005 | <.002
<.002 | | SEP
11 | | | | | | | | | | | | | | 08057200 White Rock Creek at Greenville Avenue, Dallas, TX--Continued (National Water-Quality Assessment Program) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | |-----------------------------|--|---| | OCT
10
25 | <.02 | E.006 | | NOV
07
19
DEC | <.02 | <.009 | | 05
20
JAN | .03 | <.009 | | 10
25
FEB | <.02 | <.009 | | 13
19
MAR | E.02 | <.009 | | 05
13
20
27 | <.06 | <.009
<.009
E.005n
<.009 | | APR
02
10
16
23 | .05
.05
.03 | E.003n
E.003n
<.009
<.009 | | MAY 07
15
21
30 | <.02
.03
<.02
<.02 | <.009
<.009
<.009
<.009 | | 03
11
17
24 | <.02
<.02
<.02
<.02 | <.009
<.009
<.009
r | | 09
23
AUG | | <.009
<.009 | | 05
19
SEP | <.02
<.02 | <.009
<.009 | | 11 | | | Remark codes used in this report: <-- Less than E -- Estimated value M -- Presence verified, not quantified Value qualifier codes used in this report: n -- Below the NDV $\,$ Null value qualifier codes used in this report: r -- Sample ruined in preparation u -- Unable to determine-matrix interference THIS PAGE IS INTENTIONALLY BLANK ### 08057410 Trinity River below Dallas, TX (National Water-Quality Assessment Program) LOCATION.--Lat 32°42′26", long 96°44′08", Dallas County, Hydrologic Unit 12030105, on right bank at downstream side of bridge on South Loop Highway 12, 1.0 mi downstream from White Rock Creek, 1.5 mi upstream from Fivemile Creek, 6.4 mi southeast of Dallas County Courthouse in Dallas, and at mile 491.8. DRAINAGE AREA. -- 6,278 mi². #### PERIOD OF RECORD. -- CHEMICAL DATA: Oct. 1967 to Sept. 1998, Oct. 2001 to Sept. 2002. BIOCHEMICAL DATA: Oct. 1967 to Sept. 1998, Oct. 2001 to Sept. 2002. BIOCHEMICAL DATA: Oct. 1970 to July 1981, Oct. 1994 to Sept. 1998, Oct. 2001 to Sept. 2002. PESTICIDE DATA: Oct. 1970 to July 1981, Oct. 1994 to Sept. 1998, Oct. 2001 to Sept. 2002. SEDIMENT DATA: Apr. 1972 to Apr. 1975, Oct. 1998 to Sept. 1999. Water-discharge records.--Nov. 1956 to Sept. 1998. #### PERIOD OF DAILY RECORD -- RIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Oct. 1967 to Sept. 1992, Apr. 1993 to Sept. 1999. pH: Jan. 1977 to Sept. 1992, Apr. 1993 to Sept. 1999. WATER TEMPERATURE: Oct. 1967 to Sept. 1992, Apr. 1993 to Sept. 1999. DISSOLVED OXYGEN: Jan. 1977 to Sept. 1992, Apr. 1993 to Sept. 1999. ## EXTREMES FOR PERIOD OF DAILY RECORD. -- TREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,130 microsiemens/cm, Dec. 17, 1977; minimum, 112 microsiemens/cm, Oct. 20, 1984. pH: Maximum, 8.8 units, Jan. 23, 1980; minimum, 6.5 units, Jan. 1,2 4, and 5, 1997. WATER TEMPERATURES: Maximum, 35.0°C, Aug. 20, 25, 28, 31, 1972; minimum, 1.0°C, Jan. 29, 1968. DISSOLVED OXYGEN: Maximum, 12.8 mg/L, Mar. 19, 1990; minimum, 0.0 mg/L, on many days during spring and summer of 1977-1981. | | | DIS-
CHARGE,
IN | SPE-
CIFIC | PH
WATER
WHOLE | | | OXYGEN,
DIS-
SOLVED | ALKA-
LINITY
WAT DIS | SULFATE | CHLO-
RIDE, | NITRO-
GEN,
NITRATE | NITRO-
GEN,
NITRITE | NITRO-
GEN,
NO2+NO3 | |-----------|------|-----------------------|---------------|----------------------|------------------|-----------------|---------------------------|----------------------------|----------------|----------------|---------------------------|---------------------------|---------------------------| | | | CUBIC
FEET | CON-
DUCT- | FIELD
(STAND- | TEMPER-
ATURE | OXYGEN,
DIS- | (PER-
CENT | TOT IT
FIELD | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | | Date | Time | PER | ANCE | ARD | WATER | SOLVED | SATUR- | MG/L AS | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | Date | 110 | SECOND | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | CACO3 | AS SO4) | AS CL) | AS N) | AS N) | AS N) | | | | (00060) | (00095) | (00400) | (00010) | (00300) | (00301) | (39086) | (00945) | (00940) | (00618) | (00613) | (00631) | | OCT | | | | | | | | | | | | | | | 11 | 1200 | E680 | | | | | | 100 | 78.3 | 68.6 | 11.1 | .063 | 11.2 | | NOV | 1200 | 2000 | | | | | | 100 | , 0.3 | 00.0 | | .005 | | | 05 | 1200 | E760 | 725 | 7.3 | 23.2 | 8.0 | 94 | 112 | 86.0 | 74.0 | 11.6 | .059 | 11.7 | | DEC | 1000 | -0450 | 700 | | 10.1 | | 0.5 | 100 | 0.4.4 | <i>.</i> | 0.06 | 000 | 0.00 | | 04
JAN | 1200 | E2470 | 700 | 7.5 | 19.1 | 8.8 | 96 | 128 | 84.4 | 65.5 | 9.06 | .022 | 9.08 | | 09 | 1130 | E225 | 735 | 7.6 | 13.6 | 10.0 | 98 | 115 | 101 | 68.3 | 10.9 | .017 | 10.9 | | FEB | 1100 | 2223 | , 55 | , | 13.0 | 10.0 | ,,, | 110 | 101 | 00.5 | 10.5 | .01, | 10.5 | | 13 | 1030 | E880 | 669 | 7.5 | 12.9 | 10.0 | 95 | 130 | 95.6 | 48.1 | 7.24 | .030 | 7.27 | | MAR | | | | | | | | | | | | | | | 13 | 1030 | E485 | 796 | 7.6 | 16.6 | 10.0 | 104 | 131 | 106 | 71.4 | 10.2 | .023 | 10.2 | | 26
APR | 0930 | E4030 | 447 | 7.8 | 13.6 | 9.8 | 94 | 126 | 55.8 | 25.8 | 2.03 | .016 | 2.05 | | 09 | 1100 | E24000 | 298 | 7.5 | 16.7 | 7.7 | 80 | 91 | 35.6 | 10.7 | .77 | .027 | .80 | | 23 | 0930 | E4450 | 413 | 7.8 | 19.9 | 9.3 | 102 | | | | 1.94 | .012 | 1.95 | | MAY | 0,50 | 21100 | 110 | ,.0 | 17.7 | ,,, | 102 | | | | 2.71 | .012 | 1.75 | | 14 | 0930 | E5300 | 400 | 7.6 | 22.0 | 7.8 | 90 | 116 | 41.4 | 18.9 | 1.69 | .018 | 1.71 | | 29 | 1100 | E2080 | 550 | 7.6 | 24.1 | 7.3 | 88 | | | | 4.22 | .043 | 4.26 | | JUN | | | | | | | | | | | | | | | 12 | 1040 | E1400 | 544 | 7.3 | 27.0 | 7.5 | 96 | 119 | 59.1 | 39.5 | 3.94 | .026 | 3.96 | | 25
JUL | 1015 | E315 | 751 | 7.2 | 28.4 | 7.6 | 99 | | | | 10.7 | .032 | 10.7 | | 10 | 1145 | E365 | 628 | 7.5 | 30.1 | 12.5 | 165 | 106 | 73.3 | 51.2 | 7.05 | .016 | 7.07 | | 24 | 1030 | E340 | 746 | 7.4 | 30.3 | 7.4 | 98 | | | | 8.39 | .043 | 8.43 | | AUG | | | | | | | | | | | | | | | 06 | 1130 | E265 | 743 | 7.4 | 30.1 |
7.3 | 99 | 104 | 84.5 | 71.9 | 11.0 | .045 | 11.0 | | 20 | 1100 | E340 | 667 | 7.3 | 29.6 | 7.6 | 102 | 100 | 73.7 | 63.2 | 8.39 | .041 | 8.43 | | SEP | 1100 | 7170 | F.0.F | | 00.4 | 6 5 | 0.6 | 0.1 | 60 1 | F0 0 | 7 05 | 0.4.4 | 7 00 | | 12 | 1100 | E170 | 595 | 7.3 | 28.4 | 6.5 | 86 | 91 | 69.1 | 52.0 | 7.05 | .044 | 7.09 | # 08057410 Trinity River below Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | |--|---|---|---|--|---|--|--|---|---|--|---|---|--| | OCT
11 | .15 | 13 | 1.2 | 1.4 | 2.07 | 1.44 | 4.42 | 7.7 | .3 | 229 | <.002 | <.004 | <.002 | | NOV
05 | .31 | 13 | 1.0 | 1.3 | 1.90 | 1.75 | 5.37 | 7.1 | 1.7 | 23 | <.002 | <.004 | <.002 | | DEC 04 | .07 | 10 | .96 | 1.0 | 1.66 | 1.52 | 4.65 | 5.9 | 2.1 | 48 | <.002 | <.004 | <.002 | | JAN
09 | .08 | 12 | 1.1 | 1.1 | 1.82 | 1.69 | 5.18 | 5.7 | 1.2 | 14 | <.006 | <.006 | <.004 | | FEB
13 | <.04 | 8.4 | | 1.1 | 1.06 | .96 | 2.94 | 5.4 | 1.9 | 38 | <.006 | <.006 | <.004 | | MAR
13 | <.04 | 11 | | 1.1_ | 1.43 | 1.25 | 3.82 | 6.7 | 1.6 | _== | <.006 | <.006 | <.004 | | 26
APR | .10 | 2.8 | .67 | .77 | . 49 | .23 | . 696 | | | 287 | <.006 | <.006 | .010 | | 09
23 | .07
<.04 | 1.9
2.4 | .99
 | 1.1
.45 | .32
.36 | .08
.22 | .245
.665 | 4.9 | 6.0
 | 214 | <.006
<.006 | <.006
.011 | .028
<.004 | | MAY
14
29 | E.03 | 2.5
5.7 | 1.2 | .81
1.4 | .37 | .21
.59 | .644
1.80 | 4.7 | 2.7 | 164
175 | <.006
<.006 | .014 | .088 | | JUN
12 | .07 | 4.8 | .82 | .89 | .76 | .60 | 1.84 | 5.1 | 3.2 | 74 | <.006 | <.006 | .065 | | 25
JUL | .06 | 12 | 1.1 | 1.1 | 1.88 | 1.77 | 5.42 | | | 49 | r | r | r | | 10 | <.04 | 8.1
9.5 |
.87 | .98
1.0 | 1.25
1.91 | 1.08
1.76 | 3.31
5.39 | 5.1 | 2.7 | 51
38 | <.006
<.006 | <.006
<.006 | .011 | | AUG
06 | . 20 | 12 | .89 | 1.1 | 2.13 | 1.90 | 5.82 | 5.8 | 1.7 | 44 | <.006 | <.006 | <.004 | | 20
SEP | .20 | 9.5 | .84 | 1.0 | 1.94 | 1.75 | 5.35 | | | 55 | <.006 | <.006 | <.004 | | 12 | E.03 | 8.2 | | 1.2 | 1.52 | 1.33 | 4.07 | 6.5 | 3.1 | 44 | <.006 | <.006 | <.004 | | | | | | | | | | | | | | | | | Date | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | | OCT | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | | OCT
11
NOV | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) |
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | AZINON,
DIS-
SOLVED
(UG/L)
(39572) | | OCT
11
NOV
05
DEC | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041 | FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030 | | OCT
11
NOV
05
DEC
04
JAN | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.183
.208 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.006 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB | BHC
DIS-
SOLVED
(UG/L)
(34253)
<.005
<.005
<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.183
.208
.150 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002 | BARYL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.006 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) < .020 < .020 < .020 < .020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025 | | OCT
11
NOV
05
DEC
04
JAN
09
FEB
13
MAR | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.183
.208
.150
.143
.444 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010
<.010
<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002
<.002
<.002
<.002 | BARYL
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.006
E.017
<.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018
<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.030
E.033 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 APR | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.183
.208
.150
.143
.444
.805 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010
<.010
<.010
<.010
<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 E.006 E.017 <.041 <.041 E.011 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.030
E.033 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005
.034 | | OCT
11
NOV
05
DEC
04
JAN
09
FEB
13
MAR
13 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.183
.208
.150
.143
.444 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010
<.010
<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002
<.002
<.002
<.002 | BARYL
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.006
E.017
<.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)
<.018
<.018
<.018
<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.030
E.033 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)
.183
.208
.150
.143
.444
.805 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)
<.050
<.050
<.050
<.050
<.050
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)
<.010
<.010
<.010
<.010
<.010
<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002 | BARYL
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82680)
<.041
<.041
E.006
E.017
<.041
E.011
E.011 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)
<.005
<.005
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)
<.003
<.003
<.003
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.030
E.033
E.029
E.032 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005
.034 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 MAY 14 29 JUN 12 25 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) .183 .208 .150 .143 .444 .805 2.46 .024 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 E.006 E.017 <.041 <.041 E.011 E.025 E.069 E.037 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020
<.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 .003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </.003 </</td <td>ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.030
E.033
E.029
E.032
E.037
E.037</td> <td>AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005
.034
.333
.052</td> | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.030
E.033
E.029
E.032
E.037
E.037 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005
.034
.333
.052 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 MAY 14 29 JUN 12 25 JUL 10 24 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) .183 .208 .150 .143 .444 .805 2.46 .024 .660 .564 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 E.006 E.017 <.041 <.041 E.011 E.125 E.069 E.037 E.061 <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.033
E.029
E.033
E.029
E.037
E.007
E.052
E.053
E.052 | AZINON,
DIS-
SOLVED
(UG/L)
(39572)
<.030
.021
.025
.012
.029
<.005
.034
.333
.052
.074
.091 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 MAY 14 29 JUN 12 25 JUL 10 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) .183 .208 .150 .143 .444 .344 .805 2.46 .024 .660 .564 .486 r .375 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 E.006 E.017 <.041 E.011 E.125 E.069 E.037 E.061 <.041r <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)
E.033
E.027
E.034
E.033
E.029
E.032
E.037
E.007
E.052
E.053
E.052 | AZINON, DIS- SOLVED (UG/L) (39572) <.030 .021 .025 .012 .029 <.005 .034 .333 .052 .074 .091 .020r .026 | # 08057410 Trinity River below Dallas, TX--Continued (National Water-Quality Assessment Program) | Date | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | |---|---|--|--|---|---|---|---
---|--|---|--|---|---| | OCT
11 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.006 | <.035 | <.027 | <.013 | <.006 | <.002 | <.007 | | NOV
05 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.004 | <.006 | <.002 | <.007 | | DEC
04 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.005 | <.006 | <.002 | <.007 | | JAN
09 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.007 | <.006 | <.002 | <.007 | | FEB 13 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.005n | <.006 | <.002 | <.007 | | MAR
13
26 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | E.009n
.066 | <.006
<.006 | <.002
<.002 | <.007
<.007 | | APR
09
23 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | .020
.035 | <.006
<.006 | <.002
<.002 | <.007
<.007 | | MAY
14
29
JUN | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
E.020n | .033 | <.006
<.006 | <.002
<.002 | <.007
<.007 | | 12
25
JUL | <.005
r | <.02
r | <.002
r | <.009
r | <.005
r | <.003
r | <.004
r | <.035
r | <.027
r | .027
r | <.006
r | <.002
r | <.007
r | | 10
24
AUG | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | .009
<.013 | <.035
<.035 | <.027
<.027 | .019
.014 | <.006
<.006 | <.010
<.002 | <.007
<.007 | | 06
20
SEP | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | .008
<.004 | <.035
<.035 | <.027
<.027 | .020
.014 | <.010
<.006 | <.002
<.002 | <.007
<.007 | | 12 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .013 | <.006 | <.002 | <.007 | | | | | | | | | | | | | | | | | Date | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | | Date OCT 11 | DDE
DISSOLV
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | CHLOR,
WATER,
DISS,
REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | MAZINE,
WATER,
DISS,
REC
(UG/L) | THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | OCT
11
NOV
05 | DDE
DISSOLV
(UG/L)
(34653) | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | | OCT
11
NOV
05
DEC
04 | DDE
DISSOLV
(UG/L)
(34653) | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PANIL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82679) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | | OCT
11
NOV
05
DEC
04
JAN
09 | DDE
DISSOLV
(UG/L)
(34653)
<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.010 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010 | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679)
<.011 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.02 | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676)
<.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) .03 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 | DDE
DISSOLV
(UG/L)
(34653)
<.003
<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007
<.007 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01
<.01 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)
<.010
<.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.02
<.02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 | | OCT
11
NOV
05
DEC
04
JAN
09
FEB
13
MAR
13 | DDE
DISSOLV
(UG/L)
(34653)
<.003
<.003
<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)
<.007
<.007
<.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006 | ULATE WATER FILIRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011
<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)
<.01
<.01
E.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 | PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)
<.02
<.02
<.02
<.02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185
.240
.425 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 .04 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 | DDE
DISSOLV
(UG/L)
(34653)
<.003
<.003
<.003
<.003
<.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILIRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010
<.022
<.022 |
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011
<.011
<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 E.01 <.01 <.01 <.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FILTED 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82685)
<.02
<.02
<.02
<.02
<.02
<.02
<.02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185
.240
.425
.836
.354 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 .04 .06 E.04 | | OCT
11
NOV
05
DEC
04
JAN
09
FEB
13
MAR
13
26
APR | DDE
DISSOLV
(UG/L)
(34653)
<.003
<.003
<.003
<.003
<.003
<.003
<.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010
<.022
<.022
<.022
E.021n | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011
<.011
<.011
<.011
<.011
<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 E.01 <.01 <.01 <.01 E.01 E.01 E.01 E.01 E.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FILTED 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185
.240
.425
.836
.354
.382 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 .04 .06 E.04 E.07 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 MAY 14 29 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010
<.022
<.022
<.022
E.021n
.066
.025
<.022 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)
<.011
<.011
<.011
<.011
<.011
<.011
<.011
<.011
<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 < | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FITTED 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185
.240
.425
.836
.354
.382
.453
.287 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 .04 .06 E.04 E.07 .06 <.02 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 MAY 14 29 JUN 12 25 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FIIT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)
<.010
<.010
<.010
<.022
<.022
<.022
E.021n
.066
.025
<.022
<.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 < | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FITTED 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185
.240
.425
.836
.354
.382
.453
.287
.176
.141 | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 .04 .06 E.04 E.07 .06 <.02 .04 .04 .06 | | OCT 11 NOV 05 DEC 04 JAN 09 FEB 13 MAR 13 26 APR 09 23 MAY 14 29 JUN 12 25 JUL 10 24 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FIIT
0.7 U
GF, REC
(UG/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.010 <.022 <.022 <.022 E.021n .066 .025 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 E.01 <.01 <.01 <.01 <.01 <.0102 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FITTED 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)
.101
.185
.240
.425
.836
.354
.382
.453
.287
.176
.141
.127
r | THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) .03 .02 E.06 .04 .06 E.04 E.07 .06 <.02 .04 .04 .06r E.10 | # 08057410 Trinity River below Dallas, TX--Continued (National Water-Quality Assessment Program) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | GF, REC (UG/L) | GF, REC (UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | LATE WATER FLTRD 0.7 U GF, REC (UG/L) | 0.7 U
GF, REC
(UG/L) | |-----------|----------------|----------------|--|---------------------------------------|----------------------------| | | (82665) | (82675) | (82681) | (82678) | (82661) | | OCT | | | | | | | 11 | <.034 | <.02 | <.005 | <.002 | <.009 | | NOV | | | | | | | 05 | <.034 | <.02 | <.005 | <.002 | <.009 | | DEC
04 | <.034 | <.02 | <.005 | <.002 | <.009 | | JAN | <.034 | <.02 | <.005 | <.002 | <.009 | | 09 | <.034 | <.02 | <.005 | <.002 | <.009 | | FEB | | | | | | | 13 | <.034 | <.02 | <.005 | <.002 | <.009 | | MAR | . 024 | <.02 | <.005 | . 000 | . 000 | | 13
26 | | | <.005 | | | | APR | 1.051 | 1.02 | 1.003 | 1.002 | 1.005 | | 09 | <.034 | <.02 | <.005 | <.002 | <.009 | | 23 | <.034 | <.02 | <.005 | <.002 | E.007n | | MAY | 004 | 0.0 | 005 | 000 | 000 | | 14
29 | <.034
<.034 | | <.005
<.005 | | | | JUN | <.034 | <.02 | <.005 | <.002 | <.009 | | 12 | <.034 | <.02 | <.005 | <.002 | <.009 | | 25 | r | | | | r |
| JUL | | | | | | | 10 | <.034 | | <.005 | | | | 24
AUG | <.034 | <.02 | <.005 | <.002 | <.009 | | 06 | < 034 | < 02 | <.005 | < 002 | < 009 | | 20 | | <.02 | <.005 | | | | SEP | | | | | | | 12 | <.034 | <.02 | <.005 | <.002 | <.009 | Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: \ensuremath{n} -- Below the NDV Null value qualifier codes used in this report: $\ensuremath{\text{r}}$ -- Sample ruined in preparation ## 08057445 Prairie Creek at U.S. Highway 175, Dallas, TX LOCATION.--Lat 32°42′17", long 96°40′11", Dallas County, Hydrologic Unit 12030105, on left bank at downstream side of the downstream access road bridge on U.S. Highway 175, 3.4 mi upstream from mouth, and 9.0 mi southeast of Dallas City Hall. DRAINAGE AREA. -- 9.03 mi². PERIOD OF RECORD.--Oct. 1975 to Sept. 1980, Apr. 1984 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 390.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation or diversions. No flow at times. | | | DISCHARGE | FROM DCP | | | ECOND, WA
LY MEAN V | | OCTOBER 200 | 1 TO SE | PTEMBER 20 | 002 | | |--|---|---|--|--|---------------------------------------|--|--|--|---------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.23
0.36
0.24
0.17 | 0.24 | 5.5
e5.3
e5.2
e5.1
e5.5 | 0.87
0.57
0.48
0.71
1.1 | 1.2
1.9
1.9
1.4 | | | | | 28
33
17
4.4
1.5 | 0.14
0.09
0.08
0.07
0.08 | 0.17
0.07
0.05
0.04
0.04 | | 6
7
8
9
10 | 8.1
0.63
0.18
0.13
0.18 | 0.17
0.16
0.13
0.13 | e11
e7.5
e5.4
e4.9
e4.8 | 2.1
0.99
1.3
1.3 | 0.87
1.4
3.7
3.3
1.3 | 1.0
1.4
1.2
4.0
2.5 | 5.6
e111
e320
e14
3.8 | 30
9.3
4.8
3.2
16 | 0.12
0.11
0.10
0.20
0.22 | 0.65
0.38
0.27
0.19
0.15 | 0.09
0.09
0.08
0.07
145 | 0.04
0.03
23
20
2.7 | | 11
12
13
14
15 | 9.1
93
6.6
1.7 | 3.5
3.6
2.2
0.64
0.27 | e5.6
e7.2
e8.6
e9.1
e5.9 | 1.0
0.96
0.86
1.4
1.3 | 1.2
1.3
1.2
0.99
1.0 | | | 5.4
2.7
43
6.6
2.6 | | 1.7
151
17
8.8
37 | 13
2.9
1.3
0.85
0.57 | 0.94
0.32
0.15
0.08
0.06 | | | | | | | | | | 1.5
92
14
3.8
2.2 | | | | | | | | | | | | | | 1.2
0.82
0.89
0.66
0.54 | | | | | | 26
27
28
29
30
31 | 0.28
0.25
0.26
0.26
0.24
0.23 | e5.5
5.0
4.9
5.0
6.5 | e10
2.2
1.7
1.3
0.98
0.89 | 2.1
1.4
1.3
1.3
1.0
e376 | 0.85
0.85
0.88
 | 2.2
1.4
1.4
1.4
152
32 | e3.1
e1.7
e1.0
e0.80
e0.77 | 0.46
0.41
3.1
42
4.2
0.92 | 0.23
0.18
0.16
4.0
2.9 | 0.11
0.09
0.12
0.14
0.15
0.16 | 0.23
81
12
2.8
1.0
0.38 | 0.07
0.08
0.08
0.09
0.10 | | | 352.21
11.36
151
0.13
699 | 64.34
2.145
8.7
0.13
128 | 546.07
17.62
345
0.89
1080 | 442.64
14.28
376
0.48
878 | 36.48
1.303
3.7
0.84
72 | 630.99
20.35
341
0.94
1250 | 524.47
17.48
320
0.77
1040 | 703.45
22.69
389
0.41
1400 | 51.38
1.713
32
0.09
102 | 416.72
13.44
151
0.09
827 | 263.07
8.486
145
0.06
522 | 235.27
7.842
116
0.03
467 | | STATIS | | | | | | | • | CER YEAR (WY | • | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11.43
46.3
1995
0.000
1976 | 8.986
43.1
1995
0.33
1990 | 11.70
40.2
1999
0.42
1978 | 7.053
19.8
1990
0.12
1976 | 11.13
41.6
1997
0.34
1976 | 11.71
27.0
2001
1.28
1996 | 11.97
42.2
1990
0.66
1978 | 16.56
72.4
1989
0.64
1977 | 9.150
51.1
2000
0.32
1978 | 3.984
24.9
1994
0.000
1980 | 2.495
15.3
2001
0.000
1980 | 3.449
10.4
2001
0.003
2000 | | SUMMAR | Y STATIS | STICS | FOR | 2001 CALEN | IDAR YEAF | 3 | FOR 2002 | WATER YEAR | | WATER YEA | ARS 1976 - | 2002h | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-I M PEAK 1 | MEAN MEAN MEAN MEAN DAY MINIMU FLOW STAGE (AC-FT) CEEDS CEEDS | М | 3705.44
10.15
345
0.09
0.12
7350
14
1.4
0.15 | Dec 16
May 15
Jul 23 | 5 5 3 | 8460
14
1. | May 5 03 Sep 7 06 Sep 1 May 5 76 May 5 | | 9.2
17.4
1.6
1150
0.0
5660
29.2
6710
11 | May 17 00 Oct 1 00 Oct 1 May 17 21 May 17 | 1995
1978
1978
1989
1975
1975
1989 | e Estimated h See PERIOD OF RECORD paragraph. 08057445 Prairie Creek at U.S. Highway 175, Dallas, TX--Continued ## 08057448 Trinity River near Wilmer, TX LOCATION.--Lat 32°37′03", long 96°37′19", Dallas County, Hydrologic Unit 12030105, on left bank at downstream side of bridge on Belt Line Road, 2.6 mi downstream from Prairie Creek, 4.4 mi northeast of Wilmer, 5.1 mi upstream from Tenmile Creek, and at mile 504.4. DRAINAGE AREA.--6,387 \min^2 . ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Oct. 1998 to Sept. 2002 (discontinued). GAGE.--Water-stage recorder. Datum of gage is 345.95 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Oct. 1998, at least 10% of contributing drainage area has been regulated. Several cities within the Dallas-Fort Worth metroplex divert water for municipal use and return it to the river as wastewater effluents above this station. Low flows are sustained by wastewater effluents. | | | DISCHARGE | FROM DCP, | CUBIC FI | | COND, WA
Y MEAN V | | OCTOBER 200 | 1 TO SE | PTEMBER 200 | 2 | | |----------------------------------|--|--|--|---|----------------------------|---|---|---|-------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 763 | 784 | 814 | 741 | 12300 | 975 | 11800 | 5060 | 1350 | 3200 | 860 | 746 | | 2 | 788 | 769 | 751 | 684 | 14700 | 962 | 6920 | 4930 | 1260 | 3860 | 751 | 693 | | 3 | 784 | 794 | 684 | 708 | 8370 | 1170 | 5870 | 5190 | 1170 | 3770 | 662 | 729 | | 4 | 807 | 770 | 718 | 736 | 3570 | 1160 | 6240 | 5580 | 1100 | 4380 | 580 | 728 | | 5 | 1160 | 804 | 665 | 784 | 3580 | 1020 | 6280 | 7830 | 986 | 2600 | 569 | 742 | | 6 | 1390 | 817 | 735 | 854 | 7190 | 1020 | 6810 | 10900 | 999 | 1690 | 597 | 769 | | 7 | 983 | 769 | 1150 | 865 | 6850 | 918 | 7270 | 11800 | 1170 | 1940 | 574 | 773 | | 8 | 844 | 752 | 906 | 789 | 4160 | 894 | 10500 | 8680 | 1430 | 1180 | 586 | 815 | | 9 | 815 | 792 | 718 | 767 | 3230 | 1050 | 17200 | 4670 | 1850 | 1060 | 617 | 1220 | | 10 | 802 | 971 | 619 | 754 | 2330 | 1040 | 18900 | 4470 | 1940 | 995 | 2200 | 1740 | | 11 | 2510 | 937 | 627 | 760 | 2240 | 885 | 12500 | 6210 | 2140 | 822 | 4520 | 1080 | | 12 | 4430 | 1320 | 925 | 768 | 1790 | 909 | 8160 | 6150 | 2000 | 3610 | 3110 | 837 | | 13 | 4620 | 1470 | 1130 | 1160 | 1540 | 888 | 7760 | 6790 | 1510 | 2940 | 1360 | 742 | | 14 | 4550 | 1190 | 1480 | 742 | 1390 | 884 | 7620 | 6710 | 1800 | 1430 | 1090 | 660 | | 15 | 2020 | 962 | 1240 | 725 | 1320 | 900 | 7300 | 5690 | 1640 | 1380 | 1920 | 551 | | 16 | 1380 | 969 | 7030 | 687 | 1240 | 874 | 6840 | 5390 | 2040 | 1800 | 1650 | 582 | | 17 | 1130 | 903 | 11300 | 690 | 1160 | 820 | 7760 | 5630 | 2780 | 1410 | 1110 | 811 | | 18 | 1110 | 958 | 9930 | 682 | 1140 | 1130 | 9090 | 7200 | 1570 | 2050 | 1020 | 738 | | 19 | 963 | 1050 | 3610 | 690 | 1200 | 4170 | 8390 | 6100 | 1060 | 1270 | 913 | 1290 | | 20 | 1000 | 857 | 1650 | 724 | 1480 | 10100 | 7390 | 4720 | 902 | 1010 | 976 | 1710 | | 21 | 901 | 719 | 1310 | 699 | 1170 | 18200 | 6490 | 4420 | 855 | 816 | 969 | 1300 | | 22 | 896 | 683 | 1890 | 720 | 1090 | 20800 | 5960 | 4180 | 1100 | 740 | 843 | 904 | | 23 | 834 | 641 | 1120 | 989 | 1010 | 15300 | 5810 | 3610 | 838 | 714 | 797 | 775 | | 24 | 880 | 633 | 1600 | 2680 | 953 | 9260 | 5940 | 2920 | 695 | 699 | 770 | 642 | | 25 | 841 | 596 | 866 | 4820 | 956 | 6510 | 5590 | 2300 | 660 | 670 | 719 | 538 | | 26
27
28
29
30
31 | 814
741
761
769
801
781 | 617
657
868
1470
1200 | 1370
1220
794
798
788
751 | 2460
1230
1030
998
999
5380 | 995
1010
900

 | 5190
5500
5490
4410
7360
11500 | 5960
6050
5710
5330
5160 | 1920
2170
2000
2860
2690
1680 | 796
1180
1220
2520
1430 |
659
639
632
614
724
1090 | 755
1900
2030
1250
934
796 | 500
486
458
440
462 | | TOTAL | 41868 | 26722 | 59189 | 37315 | 88864 | 141289 | 238600 | 160450 | 41991 | 50394 | 37428 | 24461 | | MEAN | 1351 | 890.7 | 1909 | 1204 | 3174 | 4558 | 7953 | 5176 | 1400 | 1626 | 1207 | 815.4 | | MAX | 4620 | 1470 | 11300 | 5380 | 14700 | 20800 | 18900 | 11800 | 2780 | 4380 | 4520 | 1740 | | MIN | 741 | 596 | 619 | 682 | 900 | 820 | 5160 | 1680 | 660 | 614 | 569 | 440 | | AC-FT | 83050 | 53000 | 117400 | 74010 | 176300 | 280200 | 473300 | 318300 | 83290 | 99960 | 74240 | 48520 | | STATIST | CICS OF | MONTHLY ME | EAN DATA F | OR WATER | YEARS 199 | 9 - 2002 | , BY WATE | ER YEAR (WY) | | | | | | MEAN | 1514 | 1773 | 2470 | 1427 | 3001 | 4692 | 4118 | 3294 | 2393 | 1308 | 924.1 | 1105 | | MAX | 2174 | 3029 | 4196 | 2096 | 6242 | 10710 | 7953 | 5176 | 5069 | 1626 | 1207 | 2083 | | (WY) | 1999 | 2001 | 1999 | 2001 | 2001 | 2001 | 2002 | 2002 | 2000 | 2002 | 2002 | 2001 | | MIN | 997 | 891 | 1535 | 1019 | 1176 | 1567 | 1434 | 1829 | 1085 | 783 | 581 | 593 | | (WY) | 2000 | 2002 | 2000 | 2000 | 1999 | 2000 | 2000 | 2000 | 2001 | 2000 | 2000 | 2000 | | SUMMARY | STATI: | STICS | FOR | 2001 CAL | ENDAR YEAR | | FOR 2002 | WATER YEAR | | WATER YEAR | S 1999 - | - 2002 | | MAXIMUN
MAXIMUN
INSTANI | MEAN ANNUAL ANNUAL DAILY DAILY SEVEN-I M PEAK I PEAK CANEOUS RUNOFF CENT EXC | MEAN MEAN MEAN DAY MINIMUN FLOW STAGE LOW FLOW (AC-FT) CEEDS CEEDS | М | 32500
596
649
2287000
8390
1290
741 | Feb 17
Nov 25
Nov 21 | | 948571
2599
20800
440
504
21800
27.
1881000
6820
1110
689 | Mar 22
Sep 29
Sep 24
Mar 22
36 Mar 22 | | 2330
3379
1480
e32500
440
504
b21800
27.36
321
1688000
6130
1030
660 | Feb 1'
Sep 29
Sep 20
Mar 20
Mar 20
Sep 30 | 9 2002
1 2002
2 2002
2 2002 | e Estimated b Maximum discharge for period of record occurred Feb. 17, 2001, discharge unknown. 08057448 Trinity River near Wilmer, TX--Continued ## 08057448 Trinity River near Wilmer, TX--Continued WATER-OUALITY RECORDS PERIOD OF RECORD. -- CHEMICAL DATA: Oct. 2000 to Sept. 2001. BIOCHEMICAL DATA: Oct. 2000 to Sept. 2001. PESTICIDE DATA: Oct. 2000 to Sept. 2001. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Oct. 1999 to Sept. 2002 (discontinued). pH: Oct. 1999 to Sept. 2002 (discontinued). WATER TEMPERATURE: Oct. 1999 to Sept. 2002 (discontinued). DISSOLVED OXYGEN: Oct. 1999 to Sept. 2002 (discontinued). INSTRUMENTATION. -- Water-quality monitor since Oct. 1999. REMARKS.--Records fair. Interruption in the record was caused by malfunctions of the instrument. Mean monthly and annual MARKS.—Records fair. Interruption in the record was caused by malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous water years using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. EXTREMES FOR PERIOD OF DAILY RECORD. -- CREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 842 microsiemens/cm, Aug. 24, 2000; minimum, 199 microsiemens/cm, May 19, 2000. pH: Maximum, 8.5 units, May 19, 2000; minimum, 6.3 units, Jan. 31, 2002. WATER TEMPERATURE: Maximum, 32.1°C, July 24, 25, 2001; minimum, 7.8°C, Feb. 26, 2002. DISSOLVED OXYGEN: Maximum, 12.6 mg/L, Mar. 28, 2001, Feb. 6, 2002; minimum, 2.5 mg/L, Aug. 11, 2002. EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 796 microsiemens/cm, Mar. 18; minimum, 221 microsiemens/cm, Aug. 10. PH: Maximum, 8.3 units, on several days; minimum, 6.3 units, Jan. 31. WATER TEMPERATURE: Maximum, 32.0°C, July 25; minimum, 7.8°C, Feb. 26. DISSOLVED OXYGEN: Maximum, 12.6 mg/L, Feb. 6; minimum, 2.5 mg/L, Aug. 11. SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | • | | 1
2
3
4
5 | 733
729
732
752
742 | 723
720
722
732
586 | 729
724
727
745
723 | 746
726
728
744
747 | 715
712
712
727
726 | 732
717
722
736
735 | 657
685
714
722
735 | 635
655
682
699
714 | 646
670
695
711
720 | 717
728
723
732
744 | 703
717
709
720
732 | 709
724
716
726
739 | | 6
7
8
9
10 | 674
676
726
744
751 | 506
633
676
721
723 | 593
651
705
733
734 | 733
719
735
723
727 | 712
708
707
708
690 | 725
714
723
716
706 | 743
729
706
690
730 | 728
706
653
650
687 | 737
721
685
678
709 | 743
737
747
754
751 | 722
720
732
744
739 | 734
728
739
749
744 | | 11
12
13
14
15 | 728
467
421
408 | 380
377
320
376 | 597
417
372
392 | 762
721
680
706
613 | 684
650
626
613
606 | 726
686
645
673
610 | 736
741
725
681
639 | 723
705
681
600
616 | 728
729
715
638
627 | 746
760
774
748
750 | 733
729
593
604
737 | 738
740
699
674
745 | | 16
17
18
19
20 |

 |

 |

 |

 |

 |

 | 636
365
383
493
576 | 234
352
356
383
493 | 387
358
365
437
540 | 752
770
756
761
773 | 740
752
737
738
745 | 745
760
746
747
760 | | 21
22
23
24
25 | |

 |

 |

 | |

 | 627
684
665
717
664 | 576
552
559
570
573 | 610
599
610
630
606 | 770
777
745
716
491 | 745
740
704
457
438 | 753
762
725
610
463 | | 26
27
28
29
30
31 | 713
730
748
737
729 | 700
711
720
716
717 | 708
724
735
730
723 |

 |

 |

 | 726
566
709
713
712
718 | 539
539
566
701
685
703 | 683
552
643
707
696
712 | 521
595
665
693
712
708 | 468
521
595
662
684
288 | 499
569
641
681
701
504 | | MONTH | | | | | | | 743 | 234 | 630 | 777 | 288 | 696 | TRINITY RIVER BASIN 199 08057448 Trinity River near Wilmer, TX--Continued SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPECIF | IC CONDUC | TANCE | FROM DCP, | In US/CM | @ 25C, | WAIER YEA | R OCTOBER | 2001 10 | SEPTEMBER | 2002 | | |--|--|--|--|---|--|---|---|---|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 743 | 730 | 735 | 396 | 359 | 375 | 421 | 416 | 418 | | 2 | | | | 746 | | 739 | | | 436 | 424 | 419 | 422 | | 3 | | | | 761 | 724 | 741 | 456 | | 442 | 425 | 387 | 413 | | 4 | | | | 752 | | 743 | 455 | | 441 | 451 | 417 | 435 | | 5 | 557 | 427 | 497 | 746 | 722 | 733 | 455 | 424 | 436 | 448 | 271 | 364 | | 6 | 427 | 397 | 408 | 765 | 718 | 741 | 436 | 391 | 420 | 335 | 314 | 329 | | 7 | 445 | 396 | 411 | 767 | | 761 | | | 434 | 361 | 334 |
346 | | 8
9 | 509
532 | 445
506 | 481
517 | 766
776 | | 758
765 | | | 345
308 | 404
487 | 361
404 | 375
446 | | 10 | 603 | 530 | 555 | 778 | 734 | 747 | 364 | 303 | 333 | 509 | 384 | 471 | | | | | | | | | | | | | | | | 11
12 | 659
641 | 583
585 | 626
604 | 772
774 | 746
757 | 762
763 | 420
441 | | 396
426 | 418
419 | 349
388 | 388
408 | | 13 | 684 | 641 | 674 | 771 | | 755 | | | 428 | 406 | 379 | 396 | | 14 | 704 | 671 | 684 | 777 | 771 | 774 | | | 430 | 407 | 385 | 397 | | 15 | 719 | 704 | 712 | 774 | 759 | 765 | 447 | 432 | 439 | 425 | 407 | 418 | | 16 | 734 | 719 | 725 | 777 | 764 | 769 | 435 | 426 | 430 | 431 | 424 | 426 | | 17 | 753 | 734 | 744 | 776 | 764 | 771 | | | 390 | 437 | 406 | 429 | | 18 | 762 | 737 | 753 | 796 | 750 | 782 | 397 | 361 | 380 | 413 | 376 | 429
396
392 | | 19 | 755 | 730 | 746 | 790 | | 598 | 421 | | 410 | 410 | 373 | 392 | | 20 | 780 | 668 | 738 | 430 | 330 | 357 | 427 | 421 | 424 | 430 | 410 | 423 | | 21 | 701 | 664 | 677 | 331 | 291 | 307 | 427 | 423 | 426 | 431 | 422 | 427 | | 22 | 724 | 701 | 716 | 335 | 292 | 311 | 429 | | 425 | 430 | 422 | 425 | | 23
24 | 736 | 705 | 722 | 396
432 | | 365 | | | 422 | 439
486 | 424 | 425
428
472 | | 25 | 727
726 | 721
721 | 723
724 | 451 | | 418
442 | | | 418
409 | 525 | 439
486 | 508 | | | | | | | | | | | | | | | | 26 | 739 | 725 | 728 | 455 | | 451 | | | 409 | 588 | 525 | 560 | | 27
28 | 743
759 | 724
743 | 735
750 | 449
440 | | 439
435 | 428
422 | | 419
419 | 596
584 | 515
529 | 543
564 | | 29 | | | | 451 | | 444 | | | 414 | 582 | 476 | 564
539 | | 30 | | | | 456 | 327 | 387 | 421 | 414 | 417 | 533 | 499 | 511 | | 31 | | | | 376 | 354 | 361 | | | | 593 | 533 | 566 | | MONTH | | | | 796 | 291 | 610 | 474 | 303 | 410 | 596 | 271 | 440 | | | | | | | | | | | | | | | | | MAY | MIN | MEAN | MAY | MIN | MEAN | MAV | MIN | MEAN | MAY | MIN | MEAN | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY | | JUNE | | | JULY | | | AUGUST | | MAX | SEPTEMB | ER | | | MAX
627
653 | | MEAN
615
640 | 590
495 | JULY
411
408 | MEAN
491
448 | 687 | AUGUST | MEAN
648
658 | | | | | DAY 1 2 3 | 627
653
670 | JUNE
593
627
651 | 615
640
662 | 590
495
449 | JULY
411
408
408 | 491
448
429 | 687
679
699 | AUGUST
624
627
662 | 648
658
684 |

725 | SEPTEMB 704 | ER

716 | | DAY 1 2 3 4 | 627
653
670
691 | JUNE 593 627 651 663 | 615
640
662
679 | 590
495
449
478 | JULY 411 408 408 384 | 491
448
429
423 | 687
679
699
713 | AUGUST
624
627
662
688 | 648
658
684
698 |

725
739 | SEPTEMB 704 704 | ER

716
720 | | DAY 1 2 3 | 627
653
670 | JUNE
593
627
651 | 615
640
662 | 590
495
449 | JULY 411 408 408 384 | 491
448
429 | 687
679
699
713 | AUGUST
624
627
662
688 | 648
658
684 |

725 | SEPTEMB 704 | ER

716 | | DAY 1 2 3 4 5 | 627
653
670
691
720 | JUNE 593 627 651 663 690 718 | 615
640
662
679
707 | 590
495
449
478
482
571 | JULY 411 408 408 384 401 | 491
448
429
423
441
516 | 687
679
699
713
732 | AUGUST 624 627 662 688 713 | 648
658
684
698
726 |
725
739
 | SEPTEMB 704 704 668 | ER 716 720 723 | | DAY 1 2 3 4 5 | 627
653
670
691
720
730
731 | JUNE 593 627 651 663 690 718 716 | 615
640
662
679
707
725
721 | 590
495
449
478
482
571
585 | JULY 411 408 408 384 401 482 511 | 491
448
429
423
441
516
552 | 687
679
699
713
732
736
741 | AUGUST 624 627 662 688 713 718 722 | 648
658
684
698
726
729
735 |
725
739

741 | SEPTEMB 704 704 668 | ER 716 720 723 | | DAY 1 2 3 4 5 6 7 8 | 627
653
670
691
720
730
731
740 | JUNE 593 627 651 663 690 718 716 651 | 615
640
662
679
707
725
721
714 | 590
495
449
478
482
571
585
547 | JULY 411 408 408 384 401 482 511 507 | 491
448
429
423
441
516
552
523 | 687
679
699
713
732
736
741
767 | AUGUST 624 627 662 688 713 718 722 732 | 648
658
684
698
726
729
735
753 |
725
739

741 | SEPTEMB 704 704 668 |
716
720

723 | | DAY 1 2 3 4 5 | 627
653
670
691
720
730
731 | JUNE 593 627 651 663 690 718 716 | 615
640
662
679
707
725
721 | 590
495
449
478
482
571
585 | JULY 411 408 408 384 401 482 511 507 547 | 491
448
429
423
441
516
552 | 687
679
699
713
732
736
741
767 | AUGUST 624 627 662 688 713 718 722 732 751 | 648
658
684
698
726
729
735 |
725
739

741 | SEPTEMB 704 704 668 | ER 716 720 723 | | DAY 1 2 3 4 5 6 7 8 9 10 | 627
653
670
691
720
730
731
740
651
559 | JUNE 593 627 651 663 690 718 716 651 558 537 | 615
640
662
679
707
725
721
714
597
550 | 590
495
449
478
482
571
585
547
623
638 | JULY 411 408 408 384 401 482 511 507 547 623 | 491
448
429
423
441
516
552
523
594
628 | 687
679
699
713
732
736
741
767
765
754 | AUGUST 624 627 662 688 713 718 722 732 751 221 | 648
658
684
698
726
735
753
757
611 | 725
739

741

734
592 | SEPTEMB 704 704 668 528 525 |
716
720

723

608
564 | | DAY 1 2 3 4 5 6 7 8 9 10 | 627
653
670
691
720
730
731
740
651
559 | JUNE 593 627 651 663 690 718 716 651 558 537 | 615
640
662
679
707
725
721
714
597
550 | 590
495
449
478
482
571
585
547
623
638 | JULY 411 408 408 384 401 482 511 507 547 623 | 491
448
429
423
441
516
552
523
594
628 | 687
679
699
713
732
736
741
767
765
754 | AUGUST 624 627 662 688 713 718 722 732 751 221 | 648
658
684
698
726
729
735
753
757
611 | 725
739

741

734
592 | SEPTEMB 704 704 668 528 525 |
716
720

723

608
564 | | DAY 1 2 3 4 5 6 7 8 9 10 | 627
653
670
691
720
730
731
740
651
559 | JUNE 593 627 651 663 690 718 716 651 558 537 | 615
640
662
679
707
725
721
714
597
550 | 590
495
449
478
482
571
585
547
623
638 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 | 491
448
429
423
441
516
552
523
594
628
644 | 687
679
699
713
732
736
741
767
765
754 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 | 648
658
684
698
726
729
735
753
751
611 | 725
739

741

734
592
563
616 | SEPTEMB 704 704 668 528 525 523 563 |
716
720

723

608
564
541
597 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 573 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569 | 687
679
699
713
732
736
741
767
765
754
574
463
541
618 | AUGUST 624 627 662 688 713 718 722 732 751 221 | 648
658
684
698
726
729
735
753
751
611 | 725
739

741

734
592 | SEPTEMB 704 704 668 528 525 523 563 |
716
720

723

608
564
541
597 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 | 627
653
670
691
720
730
731
740
651
559
606
608
577 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 | 615
640
662
679
707
725
721
714
597
550
578
561
565 | 590
495
449
478
482
571
585
547
623
638
655
681
496 | JULY 411 408 408 408 384 401 482 511 507 547 623 637 346 355 | 491
448
429
423
441
516
552
523
594
628
644
497
421 | 687
679
699
713
732
736
741
767
765
754
574
463
541 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 | 648
658
684
698
726
729
735
753
757
611
434
414
510 | 725
739
741

734
592
563
616
651 | SEPTEMB 704 704 668 528 525 523 563 611 |
716
720

723

608
564
541
597
627 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 627
653
670
691
720
731
740
651
559
606
608
577
604
609 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 573 577 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 | 648
658
684
698
726
729
735
753
757
611
434
414
510
590
617 |
725
739

741

734
592
563
616
651
686 | SEPTEMB 704 704 668 528 525 523 563 611 649 |
716
720

723

608
564
541
597
627
659 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 573 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598 | 687
679
699
713
732
736
741
767
765
754
574
463
541
618 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 | 648
658
684
698
726
729
735
753
757
611
434
414
510 | 725
739

741

734
592
563
616
651
686 | SEPTEMB 704 704 668 528 525 523 563 6611 649 |
716
720

723

608
564
541
597
627
659 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
549
544 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 573 577 492 462 514 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
587
600
642 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 | 648
658
684
698
726
729
735
753
757
611
434
414
510
590
617
551
555
622 | 725
739

741

734
592
563
616
651
686

746
759 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 | 716 720 723 608 564 541 597 627 659 733 752 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609 | JUNE 593 627 651 663 690 718 716 651 558 537 537 537 537 5492 462 514 544 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587
515
525
573 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598 | 687
679
699
713
732
736
741
767
765
754
574
463
541
618
646 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 | 648
658
684
698
726
729
735
757
611
434
414
510
590
617
551
555
622
666 | 725
739

741

734
592
563
616
651
686

746
759
742 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 | | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
549
544 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 573 577 492 462 514 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
587
600
642 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 | 648
658
684
698
726
729
735
753
757
611
434
414
510
590
617
551
555
622 | 725
739

741

734
592
563
616
651
686

746
759 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 | 716 720 723 608 564 541 597 627 659 733 752 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
636
549
549
602
651 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 602 651 | 615
640
662
679
707
725
721
714
714
597
550
578
561
565
588
587
515
525
573
624 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617 | JULY 411 408 384 401 482 511 507 547 623 637 346 355 496 568 486 628 | 491
448
429
423
441
516
552
533
594
628
644
497
421
569
598

575
648 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
587
600
642
709
690 | AUGUST 624 627 662 688 713 718 722 751 221 272 369 463 541 526 507 521 600 633 648 | 648
658
684
698
726
729
735
757
611
434
414
510
590
617
551
555
622
666
660 | 725
739

741

734
592
563
616
651
686

746
742
603 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 | FER 716 720 723 608 564 541 597 627 659 733 752 672 509 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | 627
653
670
691
720
731
740
651
559
606
608
577
604
609
636
549
549
5402
651 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 544 602 651 699 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587
515
525
573
624 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 486 628 660 679 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

57
648
679
685 | 687
679
699
713
732
736
741
767
765
754
574
463
541
618
646
587
600
642
709
690
680
680 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 648 664 651 | 648
658
684
698
726
729
735
753
757
611
434
414
510
590
617
551
555
622
666
660 | 725
739

741

734
592
563
616
651
686

746
759
742
603 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 590 585 | FER 716 720 723 608 564 541 597 627 659 733 752 672 509 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 627
653
670
691
720
731
740
651
559
606
608
577
604
609
636
549
544
602
651 | JUNE 593 627 651 663 690 718 716 651 558 537 539 543 577 492 462 514 544 602 651 699 747 | 615
640
662
679
707
725
721
714
714
559
550
578
561
565
587
581
515
525
573
624
680
722
760 | 590
495
449
478
482
571
585
547
623
638
655
661
617

628
660
688
660
688
692
708 | JULY 411 408 408 384 401 482 511 507 623 637 346 355 496 568 486 628 660 679 682 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
587
600
642
709
690
680
686
709 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 | 648
658
684
698
726
729
735
753
757
611
434
414
510
590
617
551
555
622
666
660
673
673
674 | 725
739

741

734
592
563
616
651
686

746
759
742
603
642
609
654 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 590 585 609 | FER 716 720 723 608 564 541 597 627 659 733 752 672 509 622 594 630 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | 627
653
670
691
720
731
740
651
559
606
608
577
604
609
636
549
549
5402
651 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 544 602 651 699 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587
515
525
573
624 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 486 628 660 679 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

57
648
679
685 | 687
679
699
713
732
736
741
767
765
754
574
463
541
618
646
587
600
642
709
690
680
680 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 | 648
658
684
698
726
729
735
753
757
611
434
414
510
590
617
551
555
622
666
660 |
725
739

741

734
592
563
616
651
686

746
759
742
603 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 590 585 | FER 716 720 723 608 564 541 597 627 659 733 752 672 509 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 627
653
670
691
720
731
740
651
559
606
608
577
604
609
544
609
544
609 | JUNE 593 627 651 663 690 718 716 651 558 537 539 543 577 492 462 514 544 602 651 699 747 | 615
640
662
679
707
725
721
714
714
7550
578
561
565
588
587
581
515
525
573
624
680
722
760 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692
708
726
737 | JULY 411 408 408 384 401 482 511 507 623 637 346 355 496 568 486 628 660 679 682 708 721 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

575
648
672
719
728 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
709
690
680
732
745 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 709 730 | 648
658
684
698
726
729
735
757
611
434
414
510
590
617
555
622
666
660
673
670
694
723
738 | 725
739

741

734
592
563
616
651
686
759
742
603
642
609
654
672
700 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 590 585 609 649 663 | ER 716 720 723 608 564 541 597 627 659 733 752 672 509 622 594 630 660 674 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
636
549
544
602
651 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 602 651 699 747 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587
515
525
525
573
624 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692
708
737 | JULY 411 408 384 401 482 511 507 547 623 637 346 355 496 568 486 628 660 679 682 708 721 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

575
648
679
685
692
728 | 687
679
699
713
732
736
741
765
754
574
463
541
618
646
587
600
642
709
690
680
686
709
732
745 | AUGUST 624 627 662 688 713 718 722 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 709 730 743 | 648
658
684
698
726
729
735
757
611
434
414
510
590
617
551
555
622
666
660
673
670
697
723
738 | 725
739

741

734
592
563
616
651
686

746
742
603
642
609
654
672
700 | SEPTEMB 704 704 528 525 523 563 611 649 717 742 481 430 590 585 609 649 663 | ER | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 627
653
670
691
720
731
740
651
559
606
608
577
604
609
636
549
544
609
651
699
747
765
 | JUNE 593 627 651 663 690 718 716 651 558 537 539 543 577 492 462 514 544 602 651 699 747 611 | 615
640
662
679
707
725
721
714
714
7550
578
561
565
588
587
515
525
573
624
680
722
760
 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692
708
726
737 | JULY 411 408 408 384 401 482 511 507 623 637 346 355 496 568 486 628 660 679 682 708 721 722 731 741 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

575
648
679
685
692
719
728
728
739 | 687
679
699
713
732
736
741
765
754
463
541
618
646
587
600
642
709
690
680
686
709
732
745 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 709 730 743 454 | 648
658
684
698
726
729
735
757
611
434
414
510
590
617
551
555
622
666
660
673
670
694
723
738
755
695
595 | 725
739

741

734
592
563
616
651
686
759
742
603
642
609
654
672
700 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 590 689 663 700 712 706 | ER 716 720 723 608 564 541 597 627 659 733 752 672 509 622 594 630 660 674 711 722 714 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
636
544
602
651
699
747
765

728
732 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 602 651 699 747 611 396 | 615
640
662
679
707
725
721
714
714
597
550
578
561
565
588
587
581
515
525
573
624
680
722
760
 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692
708
737
732
744
764
756 | JULY 411 408 384 401 482 511 507 547 623 637 346 355 496 568 486 628 660 679 682 708 721 722 731 741 728 | 491
448
429
423
441
516
552
533
594
628
644
497
421
569
598

575
648
679
685
692
719
728
739
754
742 | 687
679
699
713
732
736
741
767
765
754
574
463
541
618
646
587
600
642
709
690
680
686
709
732
745 | AUGUST 624 627 688 713 718 722 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 709 730 743 454 557 | 648
658
684
698
726
729
735
757
611
434
414
510
590
617
551
555
622
666
660
673
670
697
695
738
755
695
753
753 | 725
739
741
734
592
563
616
651
686
746
749
759
742
603
642
609
654
672
700 | SEPTEMB 704 704 528 525 523 563 611 649 717 742 481 430 590 585 609 649 663 700 712 700 712 700 712 700 700 712 700 700 712 700 700 712 700 700 700 700 700 700 700 700 700 70 | ER | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
636
549
549
544
747
765
 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 544 602 651 699 747 611 396 483 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587
515
525
525
573
624
680
722
760

666
509
543 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

8660
688
692
708
727
737
732
744
756
748 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

-575
648
679
685
692
719
728
739
754
742
742
743
744 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
587
600
642
709
690
680
686
709
732
745
765
762
582
888
654 | AUGUST 624 627 662 688 713 718 722 732 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 709 730 743 454 454 507 588 | 648
658
684
698
726
729
735
757
611
434
414
510
617
551
555
626
660
673
670
694
723
738
755
757
695
542
542
542
542 | 725
739

741

734
592
563
616
651
686
759
742
603
642
609
654
672
700 | SEPTEMB 704 704 668 528 525 523 563 611 649 717 742 481 430 590 689 663 700 712 706 | ER | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
636
544
602
651
699
747
765
 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 602 651 699 747 611 396 | 615
640
662
679
707
725
721
714
714
597
550
578
561
565
588
587
581
515
525
573
624
680
722
760
 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

628
660
688
692
708
737
732
744
764
756
748
761 | JULY 411 408 384 401 482 511 507 547 623 637 346 355 496 568 486 628 660 679 682 708 721 722 731 741 728 728 687 | 491
448
429
423
441
516
552
533
594
628
644
497
421
569
598

575
648
679
685
692
719
728
739
754
742
738
745 | 687
679
699
713
732
736
741
765
754
574
463
587
600
642
709
690
680
686
709
732
745
765
762
582
588
654
712 | AUGUST 624 627 668 713 718 722 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 651 684 709 730 743 454 507 588 654 |
648
658
684
698
726
729
735
757
611
434
414
510
590
617
551
555
622
666
660
673
670
697
723
738
755
695
542
542
542
542
666
666 | 725
739

741

734
592
563
616
651
686

746
759
742
603
642
609
654
672
700 | SEPTEMB | ER | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 627
653
670
691
720
730
731
740
651
559
606
608
577
604
609
636
549
549
544
747
765
 | JUNE 593 627 651 663 690 718 716 651 558 537 537 539 543 577 492 462 514 544 602 651 699 747 611 396 483 | 615
640
662
679
707
725
721
714
597
550
578
561
565
588
587
515
525
525
573
624
680
722
760

666
509
543 | 590
495
449
478
482
571
585
547
623
638
655
681
496
612
617

8660
688
692
708
727
737
732
744
756
748 | JULY 411 408 408 384 401 482 511 507 547 623 637 346 355 496 568 | 491
448
429
423
441
516
552
523
594
628
644
497
421
569
598

-575
648
679
685
692
719
728
739
754
742
742
743
744 | 687
679
699
713
732
736
741
767
765
754
463
541
618
646
587
600
642
709
690
680
686
709
732
745
765
762
582
888
654 | AUGUST 624 627 668 713 718 722 751 221 272 369 463 541 526 507 521 600 633 648 664 651 684 651 684 709 730 743 454 507 588 654 | 648
658
684
698
726
729
735
757
611
434
414
510
617
551
555
626
660
673
670
694
723
738
755
757
695
542
542
542
542 | 725
739

741

734
592
563
616
651
686

746
759
742
603
642
609
654
672
700 | SEPTEMB | ER | 08057448 Trinity River near Wilmer, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--| | | OCTO | OBER | NOVEM | IBER | DECEM | IBER | JANU | JARY | FEBRU | JARY | MAF | RCH | | 1
2
3
4
5 | 7.3
7.3
7.3
7.3
7.3 | 7.2
7.2
7.2
7.2
7.2 | 7.3
7.4
7.3
7.3
7.3 | 7.2
7.2
7.2
7.2
7.2 | 7.3
7.4
7.3
7.3
7.3 | 7.2
7.2
7.2
7.2
7.2 | 7.4
7.4
7.4
7.4
7.4 | 7.3
7.3
7.3
7.2
7.3 |

7.2 |

7.1 | 7.6
7.5
7.5
7.6
7.5 | 7.4
7.4
7.5
7.4
7.4 | | 6
7
8
9
10 | 7.3
7.3
7.3
7.3
7.4 | 7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
7.3
7.3
7.4 | 7.3
7.2
7.2
7.3
7.3 | 7.3
7.4
7.4
7.3
7.2 | 7.2
7.2
7.2
7.2
7.2 | 7.5
7.5
7.5
7.5
7.5 | 7.4
7.4
7.4
7.4
7.4 | 7.2
7.2
7.2
7.3
7.3 | 7.1
7.1
7.2
7.2
7.3 | 7.6
7.6
7.6
7.6
7.5 | 7.4
7.5
7.4
7.4
7.5 | | 11
12
13
14
15 | 7.7
7.6
7.5
7.5 | 7.4
7.4
7.4
7.4 | 7.4
7.4
7.5
7.5
7.6 | 7.2
7.3
7.3
7.4
7.3 | 7.3
7.3
7.2
7.3
7.3 | 7.2
7.2
7.2
7.2
7.2 | 7.5
7.6
7.7
7.6
7.6 | 7.4
7.4
7.5
7.4
7.4 | 7.4
7.3
7.3
7.3
7.2 | 7.2
7.2
7.2
7.2
7.2 | 7.5
7.6
7.7
7.8
7.6 | 7.4
7.5
7.5
7.6
7.6 | | 16
17
18
19
20 |

 |

 | 7.6
7.3
7.3
7.4
7.3 | 7.2
7.2
7.2
7.3
7.3 | 7.4
7.2
7.2
7.3
7.4 | 7.2
7.1
7.1
7.0
7.0 | 7.6
7.5
7.5
7.5
7.6 | 7.4
7.5
7.4
7.4 | 7.3
7.3
7.4
7.4
7.4 | 7.2
7.3
7.3
7.3
7.3 | 7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.6 | | 21
22
23
24
25 |

 |

 | 7.3
7.3
7.4
7.3
7.3 | 7.3
7.2
7.3
7.2
7.2 | 7.4
7.4
7.4
7.5
7.5 | 7.2
7.3
7.3
7.3
7.3 | 7.6
7.9
 | 7.4
7.5
 | 7.4
7.4
7.7
7.6
7.5 | 7.2
7.3
7.3
7.3
7.3 | 7.7
7.6
7.7
7.8
7.8 | 7.5
7.6
7.6
7.6
7.6 | | 26
27
28
29
30
31 | 7.3
7.3
7.3
7.4
7.3 | 7.2
7.2
7.2
7.2
7.2
7.2 | 7.3
7.3
 | 7.2
7.2

 | 7.5
7.5
7.4
7.4
7.4
7.4 | 7.3
7.4
7.3
7.3
7.3
7.3 |

 |

 | 7.6
7.6
7.7
 | 7.4
7.4
7.5
 | 7.9
7.9
7.9
7.9
7.9
7.8 | 7.6
7.8
7.8
7.8
7.8
7.7 | | MONTH | | | | | 7.5 | 7.0 | | | | | 7.9 | 7.4 | 08057448 Trinity River near Wilmer, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | API | RIL | MA | Y | JUN | ΙE | JUL | Ϋ́ | AUGU | JST | SEPTE | MBER | | 1
2
3
4
5 | 7.8
7.9
8.0
8.0 | 7.7
7.7
7.9
7.9
7.9 | 8.3
8.3
8.3
8.3 | 8.2
8.3
8.3
8.2
8.1 | 7.6
7.7
7.7
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6 | 7.4
7.4
7.4
7.4
7.5 | 7.3
7.4
7.4
7.4
7.4 | 7.6
7.8
7.7
7.8
7.8 | 7.5
7.4
7.4
7.5
7.5 | 7.9
8.2
7.7
7.5
7.5 | 7.5
7.6
7.4
7.2
7.2 | | 6
7
8
9
10 | 8.0
8.0
8.0
7.9
7.8 | 8.0
8.0
7.8
7.8
7.8 | 8.2
8.1
8.1
8.0
7.9 | 8.1
8.0
8.0
7.9
7.9 | 7.7
7.7
7.7
7.7
8.0 | 7.6
7.6
7.6
7.6
7.7 | 7.5
7.5
7.4
7.4
7.4 | 7.4
7.4
7.3
7.4
7.3 | 7.8
7.8
7.8
7.8
8.0 | 7.5
7.5
7.6
7.5
7.5 | 7.4
7.4
7.3
7.3 | 7.2
7.2
7.2
7.2
7.3 | | 11
12
13
14
15 | 7.9
8.0
8.0
8.0 | 7.8
7.9
8.0
8.0 | 8.0
8.1
8.1
8.1
8.0 | 7.9
7.9
7.9
8.0
7.9 | 7.9
8.0
8.0
8.0 | 7.8
7.8
7.8
7.9 | 7.4
7.5
7.5
7.3
7.3 | 7.3
7.3
7.3
7.2
7.2 | 7.9
7.7
7.6
7.5
7.6 | 7.5
7.6
7.5
7.5
7.5 | 7.5
7.4
7.4
7.5
7.5 | 7.3
7.2
7.2
7.3
7.3 | | 16
17
18
19
20 | 8.1
8.1
8.1
8.1
8.2 | 8.0
8.0
8.0
8.1
8.1 | 8.1
8.1
7.9
7.9 | 8.0
7.9
7.8
7.8
7.8 | 8.0
7.9
7.6
7.5
7.5 | 7.7
7.5
7.5
7.4
7.4 |

7.6
7.6 |

7.4
7.5 | 7.6
7.5
7.7
8.0
7.7 | 7.5
7.5
7.5
7.5
7.5 | 7.8
7.6
7.4
7.5
7.5 | 7.4
7.4
7.3
7.3
7.3 | | 21
22
23
24
25 | 8.2
8.2
8.2
8.2
8.2 | 8.1
8.2
8.2
8.2 | 7.9
7.9
7.9
7.9 | 7.8
7.8
7.7
7.6
7.5 | 7.5
7.5
7.5
 | 7.3
7.3
7.4
 | 7.7
7.8
7.8
7.8
7.7 | 7.5
7.5
7.6
7.5
7.5 | 7.6
7.7
7.8
7.9
7.9 | 7.5
7.4
7.5
7.6
7.6 | 7.5
7.5
7.5
7.5
7.4 | 7.4
7.4
7.4
7.3
7.3 | | 26
27
28
29
30
31 | 8.2
8.2
8.2
8.3
8.3 | 8.1
8.2
8.2
8.2
8.2 | 7.6
7.6
7.5
7.6
7.6 | 7.4
7.4
7.3
7.4
7.6
7.6 |
7.4
7.5
7.3 | 7.3
7.3
7.3 | 7.7
7.8
7.7
7.8
7.7
7.6 | 7.4
7.4
7.5
7.5
7.5 | 7.8
7.8
7.7
7.6
7.8 | 7.6
7.7
7.6
7.6
7.5 | 7.4
7.3
7.5
 | 7.3
7.2
7.2
7.3 | | MONTH | 8.3 | 7.7 | 8.3 | 7.3 | | | | | 8.0 | 7.4 | | | WATER YEAR 08057448 Trinity River near Wilmer, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | WATE | R TEMPERA | TURE FROM | DCP, in | (DEGREES | C), WATER | YEAR | OCTOBER 2 | 001 TO | SEPTEMBER | 2002 | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|------------------------------|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 25.0
25.0
25.0
25.3
25.2 | 23.8
23.8
23.8
24.2
23.3 | 24.5
24.4
24.5
24.8
24.7 | 21.9
22.9
23.5
23.7
23.6 | 20.8
21.7
22.3
23.0
22.8 | 21.4
22.2
23.0
23.4
23.2 | 14.9
16.9
18.1
19.5
20.5 | 14.5
16.6
18.1 | 14.1
15.6
17.2
18.6
19.8 | 12.7
12.4
11.8
12.0
12.6 | 11.4
10.8
10.7 | 12.3
11.8
11.2
11.3
12.1 | | 6
7
8
9
10 | 23.4
22.1
22.3
23.2
24.4 | 22.0
21.0
21.2
21.9
23.1 | 22.5
21.6
21.7
22.4
23.6 |
23.2
22.6
22.4
22.2
21.3 | 22.3
21.7
21.4
21.3
20.3 | 22.8
22.2
22.0
21.7
20.6 | 21.1
21.0
20.2
17.9
16.3 | 20.2
17.9
16.3 | 20.7
20.8
19.0
16.9
15.9 | 12.9
12.9
13.4
14.7
15.7 | 11.8
12.1
13.0 | 12.6
12.4
12.7
13.8
15.0 | | 11
12
13
14
15 | 24.5
21.8
21.4
20.2 | 21.4
21.0
20.1
19.7 | 23.2
21.3
20.7
20.0 | 20.5
20.6
21.0
21.4
21.2 | 20.0
20.2
20.3
21.0
20.7 | 20.3
20.4
20.7
21.2
21.0 | 15.9
16.1
15.9
15.1
14.4 | 15.6
15.1
14.1 | 15.5
15.8
15.7
14.5
14.1 | 15.7
15.3
14.7
14.2
14.5 | 14.2
12.1 | 15.3
14.6
13.5
13.0
14.1 | | 16
17
18
19
20 | |

 | | 21.2
21.6
21.7
21.6
20.4 | 20.8
20.6
20.6
20.4
18.8 | 20.9
21.0
21.2
21.1
19.5 | 14.5
12.9
12.7
13.2
13.7 | 12.6
12.2
12.7 | 13.4
12.7
12.4
12.9
13.3 | 15.1
15.1
14.9
14.3
14.1 | 14.7
14.1
13.7 | 14.4
14.9
14.3
14.0
13.7 | | 21
22
23
24
25 | |

 |

 | 18.8
18.8
19.9
19.9 | 17.5
17.6
18.6
19.0
18.3 | 18.1
18.2
19.1
19.4
18.8 | 14.1
15.0
14.7
14.6
13.3 | 13.5
13.6
12.7 | 13.8
14.1
14.2
13.6
12.9 | 14.4
14.7
15.7
15.7 | 13.8
14.5
11.4 | 13.7
14.1
15.1
14.5
10.6 | | 26
27
28
29
30
31 | 21.8
21.2
20.8
20.8
21.1 | 20.8
20.3
20.0
19.6
20.0 | 21.3
20.8
20.4
20.3
20.6 | 19.4
19.4

 | 18.4
17.2

 | 18.9
18.4
 | 13.6
12.0
14.2
14.2
13.9
13.0 | 11.3
11.9
13.5
12.8 | 13.1
11.6
12.9
13.9
13.2
12.6 | 11.1
12.8
14.7
16.6
17.8
17.4 | 10.9
12.8
14.7
16.6 | 10.8
12.1
13.7
15.8
17.3
13.6 | | MONTH | | | | | | | 21.1 | 11.3 | 15.0 | 17.8 | 10.3 | 13.5 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 |

11.9 |

9.4 |

11.2 | 14.2
14.0
12.1
11.8
13.3 | 13.1
12.1
10.4
10.0
11.6 | 13.7
13.3
11.1
11.0
12.4 | 18.0
18.2
18.1
16.2
15.8 | 17.9
16.0
15.6 | 17.0
18.0
16.8
15.9 | 23.0
22.8
21.8
22.5
22.5 | 21.8 | 22.6
22.3
21.1
21.9
21.8 | | 6
7
8
9
10 | 9.4
9.3
10.5
11.6
11.6 | 8.4
8.1
9.3
10.5
11.3 | 8.7
8.5
9.8
11.1
11.4 | 14.8
16.3
17.4
17.4
16.7 | 12.6
14.7
16.2
16.7
15.0 | 13.7
15.5
16.7
17.1
15.7 | 15.8
15.4
16.9
17.8
18.9 | 15.1
15.1
16.6 | 15.6
15.2
15.9
17.1
18.0 | 23.4
24.0
24.0
24.0
24.0 | 23.4
23.5
23.6 | 22.7
23.6
23.7
23.7
23.7 | | 11
12
13
14
15 | 12.5
12.2
13.3
13.8
14.4 | 11.1
11.1
12.1
12.7
13.6 | 11.6
11.6
12.9
13.2
14.0 | 15.7
16.5
17.6
19.0
19.6 | 15.2
15.2
15.7
17.0
18.9 | 15.5
15.8
16.7
18.0
19.2 | 19.2
19.1
18.8
18.5
19.7 | 18.3
18.0
17.7 | 18.8
18.7
18.4
18.0
19.2 | 24.2
24.4
23.7
22.6
22.8 | 23.7 | 23.4
24.0
22.9
22.4
22.5 | | 16
17
18
19
20 | 14.5
15.2
15.5
17.0 | 13.6
14.0
14.6
15.2 | 14.1
14.6
15.0
16.2 | 18.9
17.8
18.3
18.2
15.9 | 17.5
17.0
17.7
15.7 | 18.0
17.4
17.9
16.7
15.5 | 19.7
20.4
21.3
21.3
21.0 | 18.9
20.3
21.0 | 19.6
19.6
20.7
21.1
20.9 | 23.1
23.1
22.4
22.1
22.5 | 22.4 | 22.9
22.9
21.9
21.7
22.1 | | 21
22
23
24
25 | |

 | | 15.5
14.7
14.6
15.1
15.3 | 14.4
13.5
13.3
14.2
14.5 | 15.0
14.0
13.9
14.5
15.0 | 21.0
20.2
20.9
21.8
21.6 | 19.5 | 20.6
19.9
20.4
21.3
20.5 | 22.7
22.7
22.7
22.8
23.7 | 21.9
22.1
22.1
22.4
22.4 | 22.3
22.4
22.4
22.6
22.9 | | 26
27
28
29
30
31 | 13.4
 | 12.1
 | 12.8
 | 14.5
14.0
15.1
16.4
17.0
17.0 | 13.7
13.4
14.0
15.1
16.3
16.3 | 14.0
13.8
14.4
15.7
16.6
16.6 | 19.9
20.0
21.5
22.1
22.8 | 19.1
20.0
21.1 | 19.4
19.5
20.7
21.6
22.4 | 25.6
25.4
24.6
25.0
25.6
26.7 | 23.4
24.6
23.8
23.5
24.6
25.3 | 24.3
25.1
24.1
24.2
25.1
25.9 | | MONTH | | | | 19.6 | 10.0 | 15.3 | 22.8 | | 18.9 | 26.7 | 20.7 | 23.1 | | | | | | | | | | | | | | | ## 08057448 Trinity River near Wilmer, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 27.7
27.9
28.0
28.0
27.9 | 26.0
26.6
27.0
27.0
26.9 | 26.8
27.4
27.6
27.6
27.3 | 27.0
26.2
26.6
26.4
27.7 | 25.3
26.0
26.0
26.1
26.3 | 26.1
26.1
26.3
26.3
27.0 | 30.5
31.0
31.6
31.7
31.7 | 29.1
29.5
29.8
30.0
30.1 | 29.9
30.2
30.7
30.9
31.0 | 30.3
30.4
30.7
30.7
30.7 | 28.7
28.4
29.2
29.3
29.3 | 29.5
29.3
30.1
30.1
30.0 | | 6
7
8
9
10 | 27.1
27.8
28.0
27.8
27.5 | 26.3
26.1
27.2
26.9
26.5 | 26.8
26.9
27.6
27.3
27.0 | 28.9
29.4
29.9
30.5
30.7 | 27.1
28.0
28.8
29.2
29.5 | 28.0
28.7
29.3
29.9
30.1 | 31.3
31.5
31.4
30.9
30.4 | 29.9
29.7
30.1
29.5
24.3 | 30.7
30.7
30.7
30.2
28.3 | 30.4
30.0
29.2
28.0
28.4 | 29.3
29.1
28.0
26.4
27.4 | 29.9
29.5
28.5
27.4
27.8 | | 11
12
13
14
15 | 27.8
28.0
28.5
28.0
27.9 | 26.9
27.1
27.4
27.1
26.7 | 27.3
27.5
27.9
27.5
27.3 | 31.0
30.5
29.1
30.0
29.8 | 29.6
27.1
27.5
28.7
28.8 | 30.3
28.4
28.5
29.3
29.3 | 27.8
28.6
29.5
29.5
29.1 | 24.8
27.1
28.2
28.9
28.4 | 26.7
27.8
28.8
29.2
28.7 | 28.6
28.6
28.4
28.7
28.6 | 27.6
27.8
27.5
27.6
26.0 | 28.0
28.2
28.0
28.2
27.5 | | 16
17
18
19
20 | 27.5
26.8
27.7
28.1
28.8 | 26.1
25.7
26.1
26.7
27.5 | 26.6
26.2
26.8
27.4
28.1 | 28.3
29.6
30.4 | 26.1
27.9
29.1 | 27.4
28.8
29.7 | 29.1
29.5
30.5
30.7
30.8 | 28.0
28.3
29.0
29.4
29.6 | 28.5
28.9
29.6
30.0
30.2 | 28.0
28.4
28.6
28.2
26.9 | 24.5
27.4
27.6
26.5
25.3 | 26.7
27.9
28.0
27.6
26.2 | | 21
22
23
24
25 | 29.4
29.8
29.9
 | 27.7
28.4
28.4
 | 28.6
29.1
29.1
 | 30.9
31.1
31.6
31.7
32.0 | 29.4
29.5
29.7
29.9
30.3 | 30.1
30.3
30.6
30.8
31.1 | 30.8
31.1
31.2
31.5
31.3 | 29.7
29.7
29.7
29.9
30.0 | 30.3
30.4
30.5
30.7
30.7 | 26.7
26.9
26.7
26.1
26.1 | 25.9
25.9
25.8
25.0
24.6 | 26.3
26.4
26.2
25.5
25.4 | | 26
27
28
29
30
31 | 29.2
29.0
27.4 | 27.8
27.0
27.0 | 28.5
27.7
27.3 | 31.7
31.4
30.6
29.8
29.9
30.0 | 30.2
29.8
29.0
28.8
28.6
28.9 | 31.0
30.6
29.9
29.4
29.3
29.5 | 31.1
30.7
29.0
29.1
29.3
29.9 | 29.6
26.3
26.3
28.2
28.2
28.4 | 30.4
29.3
27.7
28.6
28.8
29.1 | 26.5
26.9
27.2
 | 25.1
25.4
25.7
 | 25.8
26.2
26.5
 | | MONTH | | | | | | | 31.7 | 24.3 | 29.6 | | | | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08057448 Trinity River near Wilmer, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | U | XYGEN DI | SSOLVED | FROM DCP, | III (MG/I | L), WAIER | YEAR OCTOR | SER ZUUI | IO SEPI | EMBER 2002 | | | |---|--|--|---|--|--|---
---|--|--|--|---|--| | DAY | MAX | MIN | MEAN | | | | 0.0000000 | | | | | - | CEMPER | | | T33#13 D11 | | | | | OCTOBER | | Ŋ | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1 | | 6.2 | 6.4 | 7.4 | | 7.1 | 8.7 | 8.1 | 8.4 | 9.6 | 9.3 | 9.4 | | 2 | 6.5
6.3 | 6.1
5.5 | 6.4
6.0 | 7.2
7.3 | 6.8
6.8 | 7.0
7.0 | 8.3
7.9 | 7.7
7.4 | 8.1
7.6 | 9.8
10.2 | 9.4
9.5 | 9.6
9.9 | | 4 | 6.0 | 5.0 | 5.5 | 7.4 | 6.7 | 7.0 | 7.5 | 7.1 | 7.3 | 10.2 | 9.7 | 10.0 | | 5 | 6.4 | 5.4 | 6.0 | 7.3 | 6.6 | 6.9 | 7.2 | 6.8 | 7.0 | 9.8 | 9.3 | 9.6 | | 6 | 5.9 | 3.4 | 5.2 | 7.5 | 7.0 | 7.2 | 6.9 | 6.7 | 6.8 | 9.6 | 9.2 | 9.4 | | 7 | 6.7 | 5.9 | 6.4 | 7.4 | 7.1 | 7.2 | 6.7 | 6.0 | 6.5 | 9.6 | 9.2 | 9.4 | | 8
9 | 6.8 | 6.6 | 6.7 | 7.4
7.4 | 7.1 | 7.2 | 7.2 | 5.8 | 6.6 | 9.5
9.4 | 8.8 | 9.2 | | 10 | 7.2
7.1 | 6.4
6.2 | 6.8
6.7 | 7.4 | 7.1
7.3 | 7.2
7.4 | 7.7
7.9 | 7.1
7.6 | 7.5
7.7 | 9.4 | 8.8
8.7 | 9.0
9.0 | | | | | | | | - 4 | | | | 0 1 | 0.4 | 0.0 | | 11
12 | 6.8
6.1 | 5.3
5.4 | 6.2
5.9 | 7.5
7.4 | 7.2
6.8 | 7.4
7.2 | 8.0
7.8 | 7.6
7.0 | 7.8
7.5 | 9.1
9.4 | 8.4
8.7 | 8.8
9.1 | | 13 | 6.5 | 5.4 | 6.0 | 7.5 | 7.2 | 7.4 | 7.6 | 7.0 | 7.3 | 10.0 | 8.7 | 9.4 | | 14
15 | 6.4 | 5.8 | 6.1 | 7.6 | 7.3 | 7.5 | 7.9
8.2 | 7.1
7.8 | 7.6
8.0 | 9.8
9.6 | 8.8
8.7 | 9.4
9.1 | | 13 | | | | | | | 0.2 | 7.0 | 0.0 | 5.0 | 0.7 | J. 1 | | 16 | | | | | | | 9.4 | 8.0 | 8.8 | 9.2 | 8.8 | 8.9 | | 17
18 | | | | | | | 8.7
8.3 | 8.3
8.0 | 8.5
8.2 | 9.0
9.0 | 8.7
8.6 | 8.9
8.8 | | 19 | | | | | | | 8.6 | 8.1 | 8.3 | 9.3 | 8.9 | 9.1 | | 20 | | | | | | | 8.8 | 8.6 | 8.8 | 9.8 | 8.9 | 9.4 | | 21 | | | | | | | 8.9 | 8.6 | 8.8 | 9.7 | 9.1 | 9.5 | | 22 | | | | | | | 9.2 | 8.3 | 8.8 | | | | | 23
24 | | | | | | | 9.1
9.6 | 8.5
8.4 | 8.8
9.0 | 11.2 | 9.2 | 10.2 | | 25 | | | | | | | 9.5 | 9.2 | 9.4 | 11.7 | 11.1 | 11.4 | | 26 | | | | | | | 9.9 | 8.9 | 9.1 | 11 6 | 11 1 | 11.3 | | 27 | 7.3 | 7.0 | 7.2 | | | | 10.2 | 9.9 | 10.0 | 11.6
11.5 | $\frac{11.1}{11.1}$ | 11.3 | | 28 | 7.4 | 7.0 | 7.2 | | | | 9.9 | 8.8 | 9.3 | 11.1 | 9.8 | 10.9 | | 29
30 | 7.3
7.4 | 7.1
7.1 | 7.2
7.2 | | | | 8.9
9.2 | 8.7
8.9 | 8.8
9.1 | 10.7
10.3 | 9.8
9.7 | 10.5
9.9 | | 31 | 7.5 | 7.0 | 7.2 | | | | 9.4 | 9.1 | 9.2 | 11.3 | 9.0 | 10.4 | | MONTHE | | | | | | | 10.0 | F 0 | 0 0 | | | | | MONTH | | | | | | | 10.2 | 5.8 | 8.2 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | FEBRUARY | | MAX
11.2
11.5 | | MEAN
10.8
11.0 | | | MEAN
6.3
6.4 | MAX
7.8
7.9 | | 7.5
7.7 | | 1
2
3 | | FEBRUARY

 | | 11.2
11.5
12.1 | MARCH
10.5
10.5
11.2 | 10.8
11.0
11.7 | 6.7
7.7
9.9 | APRIL
6.0
5.9
7.7 | 6.3
6.4
8.3 | 7.8
7.9
8.2 | MAY
7.3
7.5
7.7 | 7.5
7.7
7.9 | | 1
2
3
4 |

 | FEBRUARY

 |

 | 11.2
11.5
12.1
12.1 | MARCH
10.5
10.5
11.2
11.7 | 10.8
11.0
11.7
11.9 | 6.7
7.7
9.9
8.8 | APRIL
6.0
5.9
7.7
8.0 | 6.3
6.4
8.3
8.4 | 7.8
7.9
8.2
8.1 | MAY
7.3
7.5
7.7
7.8 | 7.5
7.7
7.9
7.9 | | 1
2
3
4
5 |

11.8 | FEBRUARY 10.6 |

11.0 | 11.2
11.5
12.1
12.1
11.8 | MARCH
10.5
10.5
11.2
11.7
11.1 | 10.8
11.0
11.7
11.9
11.4 | 6.7
7.7
9.9
8.8
8.5 | APRIL
6.0
5.9
7.7
8.0
8.1 | 6.3
6.4
8.3
8.4
8.2 | 7.8
7.9
8.2
8.1
8.0 | MAY 7.3 7.5 7.7 7.8 6.3 | 7.5
7.7
7.9
7.9
7.3 | | 1
2
3
4
5 |

11.8 | FEBRUARY 10.6 11.8 |

11.0 | 11.2
11.5
12.1
12.1
11.8 | MARCH 10.5 10.5 11.2 11.7 11.1 | 10.8
11.0
11.7
11.9
11.4 | 6.7
7.7
9.9
8.8
8.5 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 | 6.3
6.4
8.3
8.4
8.2 | 7.8
7.9
8.2
8.1
8.0 | MAY 7.3 7.5 7.7 7.8 6.3 | 7.5
7.7
7.9
7.9
7.3 | | 1
2
3
4
5 |

11.8
12.6
12.5
12.0 | FEBRUARY 10.6 11.8 12.0 11.5 |

11.0
12.2
12.3
11.8 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5 | | 1
2
3
4
5
6
7
8
9 |

11.8
12.6
12.5
12.0
11.6 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 |

11.0
12.2
12.3
11.8
11.2 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 5.1 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 5.8 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
6.0 | | 1
2
3
4
5 |

11.8
12.6
12.5
12.0 | FEBRUARY 10.6 11.8 12.0 11.5 |

11.0
12.2
12.3
11.8 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5 | | 1
2
3
4
5
6
7
8
9
10 |

11.8
12.6
12.5
12.0
11.6
11.0 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 |

11.0
12.2
12.3
11.8
11.2
10.9 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.0 9.3 e7.5 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 5.1 4.7 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.5 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
5.8 | | 1
2
3
4
5
6
7
8
9
10 | 11.8
12.6
12.5
12.0
11.6
11.0 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 | 11.0
12.2
12.3
11.8
11.2
10.9 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 5.1 4.7 4.7 5.9 | 6.3
6.4
8.3
8.4
7.9
7.8
6.5
5.4
5.0 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 5.8 5.5 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
6.0
5.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 11.8
12.6
12.5
11.0
11.0
11.2
11.2
10.4
10.2 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8
7.9 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 5.1 4.7 4.7 5.9 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.5 5.6 6.3 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
6.0
5.8 | | 1
2
3
4
5
6
7
8
9
10 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 | 11.0
12.2
12.3
11.8
11.2
10.9 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1
9.0 9.0 9.3 e7.5 7.5 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 4.7 4.7 5.9 6.6 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9 | MAY 7.3 7.5 7.7 6.3 5.4 5.6 5.8 5.5 6.6 6.3 6.6 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
5.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 11.8
12.6
12.5
11.0
11.0
11.2
11.2
10.4
10.2 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.5 7.6 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8
7.9 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
7.0
6.8 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 4.7 4.7 5.9 6.6 6.2 | 6.3
6.4
8.4
8.2
7.9
7.8
6.5
5.4
5.0 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 6.3 6.6 7.1 | 7.5
7.7
7.9
7.9
7.3
5.7
5.8
6.0
6.0
6.0
7.3
7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
11.2
10.4
10.2
9.8
9.6
9.5 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 | 12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2
10
9.5
9.5
9.4 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 7.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
7.0
6.8
6.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0
5.1
6.5
6.6
6.4
6.7
6.3 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4
7.6 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 6.3 6.6 7.1 7.2 7.3 6.8 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.0
7.3
7.4 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
11.2
10.4
10.2
9.6
9.5
9.4 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.5
9.4
9.2 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.5
8.5
7.8
7.9
7.9
7.5
7.4
7.3
6.6 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
7.0
6.8
6.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0
5.1
6.8
6.6
6.4
6.7
6.3
5.8 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4
7.6 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.6 6.3 6.6 7.1 7.2 7.3 6.6 6.6 | 7.5
7.7
7.9
7.9
7.3
5.5
5.8
6.0
6.6
7.0
7.3
7.4
7.4
7.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
11.2
10.4
10.2
9.8
9.6
9.5 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 | 12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2
10
9.5
9.5
9.4 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 7.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
7.0
6.8
6.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0
5.1
6.5
6.6
6.4
6.7
6.3 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4
7.6 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.6 6.3 6.6 7.1 7.2 7.3 6.8 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.0
7.3
7.4 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
10.4
10.2
9.8
9.6
9.5
9.7 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.5
9.4
9.2
9.1 | 11.2
11.5
12.1
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.6
7.0
7.0 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 5.2 6.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.5
8.5
7.8
7.9
7.9
7.5
7.4
7.3
6.6
6.0
6.5 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
7.0
6.8
6.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.7 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 5.9 6.1 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.4
5.0
5.1
6.8
6.6
6.4
6.7
6.3
6.1
6.6 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
7.3
7.4
7.6
7.6
7.6
7.7 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.6 6.3 6.6 7.1 7.2 7.3 6.6 6.6 7.0 | 7.5
7.7
7.9
7.9
7.3
5.7
5.8
6.0
6.0
6.0
7.3
7.4
7.4
7.1
6.0
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 11.8
12.6
12.5
11.0
11.6
11.0
11.2
11.2
10.4
10.2
9.8
9.6
9.5
9.5 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2
10
9.5
9.5
9.4
9.2 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 7.0 6.2 5.2 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.6 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
7.0
6.8
6.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.9 | 6.3
6.4
8.3
8.4
8.2
7.9
7.85
5.4
5.0
5.1
6.5
6.6
6.4
6.7
6.3
5.8 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.4
7.6
7.6
7.4
7.6 | MAY 7.3 7.57 7.8 6.3 5.4 5.4 5.6 6.6 6.6 7.1 7.2 7.3 6.8 6.6 6.6 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
6.0
6.6
7.0
7.3
7.4
7.1
6.8 | | 1 2 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
10.4
10.2
9.8
9.6
9.5
9.4
9.5
9.7
9.9
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.5
9.4
9.2
9.1
9.0
9.4 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.6
7.0
7.0
7.0 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 5.2 6.0 5.7 6.0 6.3 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.6
9.5
8.5
7.8
7.9
7.5
7.5
7.4
7.3
6.6
6.0
6.5
5.9
6.2
6.5 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
7.0
6.8
6.6
6.9
7.1
6.9
7.2
7.5
7.6 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 5.9 6.1 6.6 6.9 7.2 | 6.3
6.4
8.3
8.4
8.2
7.9
7.8
6.5
5.1
6.5
6.6
6.4
6.7
6.3
6.6
6.4
6.7
6.9
7.3
7.4 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4
7.6
7.6
7.2
7.4
7.8
7.9
7.6 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.5 6.3 6.6 7.1 7.2 7.3 6.8 6.6 6.6 7.0 7.3 7.6 7.3 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.0
7.3
7.4
7.4
7.1
6.8
7.0
7.2
7.5
7.7 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
11.2
10.4
10.2
9.8
9.6
9.5
9.7
9.9
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.4 9.4 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2
10
9.5
9.5
9.4
9.2
9.1
9.0 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.0
7.0
7.0
7.0
7.0 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 7.0 6.2 5.2 6.0 5.7 6.0 6.3 6.6 |
10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.0
6.5
5.9 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
7.0
6.8
6.6
6.9
7.1
6.9
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 7 5.1 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.9 6.1 6.6 6.9 7.2 7.0 | 6.3
6.4
8.3
8.4
8.2
7.9
7.85
5.4
5.0
5.1
6.5
6.6
6.4
6.7
6.3
5.1
6.6
6.6
6.9
7.3
7.3 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.4
7.6
7.6
7.2
7.4
7.8
7.9
7.9 | MAY 7.3 7.57 7.8 6.3 5.4 5.4 5.6 5.8 5.5 5.6 6.6 7.1 7.2 7.3 6.8 6.6 7.0 7.3 7.6 7.3 6.8 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.3
7.4
7.4
7.1
6.8
7.0
7.2
7.5
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
10.2
9.8
9.6
9.5
9.4
9.5
9.7
9.8
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.5 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.5
9.4
9.2
9.1
9.4
9.6
9.5
9.7 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.6
7.0
7.0
7.0
6.3
6.4
6.7
7.6
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 5.2 6.0 5.7 6.0 6.3 6.6 7.5 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.6
6.0
6.5
5.9
6.2
6.5
7.3
7.8 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
7.0
6.8
6.6
6.9
7.1
6.0
6.4
6.9
7.2
7.5
7.6
7.8 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 5.9 6.1 6.6 6.9 7.2 7.0 7.2 | 6.3
6.4
8.3
8.4
8.2
7.9
6.5
5.5
6.6
6.4
6.7
6.8
6.6
6.4
6.7
7.3
8.6
6.9
7.4
7.3
7.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4
7.6
7.6
7.2
7.4
7.6
7.2
7.4
7.6
7.2
7.3
6.8 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.5 6.3 6.6 7.1 7.2 7.3 6.8 6.6 7.0 7.3 6.8 6.3 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
6.0
6.6
7.0
7.3
7.4
7.4
7.1
6.8
7.0
7.5
7.7
7.5
7.7 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 11.8
12.6
12.5
11.0
11.6
11.0
11.2
11.2
11.2
10.4
10.2
9.8
9.6
9.5
9.7
9.9
9.8
9.8
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.5 9.4 9.5 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.8
10.2
10
9.5
9.4
9.2
9.1
9.0
9.4
9.5
9.7 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.0
7.0
7.0
7.0
7.0
7.0
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 5.2 6.0 5.7 6.0 6.3 6.6 7.5 8.1 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.0
6.5
7.3
7.8
8.4 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
6.8
6.6
6.9
7.1
6.0
6.4
6.9
7.5
7.6
7.5
7.5
7.6
7.6
7.7
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 7 5.1 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.9 6.1 6.6 6.9 7.2 7.1 | 6.3
6.4
8.4
8.2
7.9
7.85
5.4
5.0
5.1
6.6
6.4
6.7
7.3
7.4
7.5
7.6 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.4
7.6
7.6
7.4
7.6
7.2
7.4
7.8
7.9
7.6
7.3
7.4
7.6
8.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9 | MAY 7.3 7.57 7.8 6.3 5.4 5.4 5.6 6.3 6.6 7.1 7.2 7.3 6.8 6.6 7.0 7.3 6.8 6.3 5.9 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.3
7.4
7.4
7.1
6.8
7.0
7.2
7.5
7.7
7.5
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
10.2
9.8
9.6
9.5
9.4
9.5
9.7
9.8
9.8
9.8
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.5 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.5
9.4
9.2
9.1
9.4
9.6
9.5
9.7 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.6
7.0
7.0
7.0
6.3
6.4
6.7
7.6
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 5.2 6.0 5.7 6.0 6.3 6.6 7.5 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.6
6.0
6.5
5.9
6.2
6.5
7.3
7.8 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
7.0
6.8
6.6
6.9
7.1
6.0
6.4
6.9
7.2
7.5
7.6
7.8 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 5.9 6.1 6.6 6.9 7.2 7.0 7.2 | 6.3
6.4
8.3
8.4
8.2
7.9
6.5
5.0
5.5
6.8
6.4
6.7
6.3
8.6
6.4
6.7
7.4
7.3
7.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.3
7.4
7.6
7.6
7.2
7.4
7.6
7.2
7.4
7.6
7.2
7.3
6.8 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.6 5.8 5.5 6.3 6.6 7.1 7.2 7.3 6.8 6.6 7.0 7.3 6.8 6.3 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
6.0
6.6
7.0
7.3
7.4
7.4
7.1
6.8
7.0
7.5
7.7
7.5
7.7 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 11.8
12.6
12.5
11.6
11.0
11.2
11.2
11.2
10.4
10.2
9.8
9.6
9.5
9.7
9.9
9.8
9.8
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.5 9.4 9.5 9.4 9.5 | 11.0
12.2
12.3
11.3
11.2
10.9
10.8
10.2
10
9.5
9.4
9.2
9.1
9.0
9.4
9.5
9.7
9.6
10.8
10.8 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.6
7.0
7.0
7.0
7.0
7.0
8.3
8.3
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 7.0 6.2 5.2 6.0 5.7 6.0 6.3 6.6 7.5 8.1 8.7 8.5 8.1 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.0
6.5
7.3
7.8
8.4
8.8
8.7
8.3 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
6.9
6.6
6.6
6.9
7.1
6.4
6.9
7.5
7.6
7.7
7.7 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 7 5.1 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 9 6.1 6.6 6.9 7.2 7.1 7.3 7.3 7.4 | 6.3
6.4
8.4
8.2
7.9
7.85
5.4
5.0
5.1
6.6
6.4
6.7
7.3
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.4
7.6
7.6
7.2
7.4
7.8
7.9
7.6
7.3
6.8
6.3
6.3 | MAY 7.3 7.57 7.8 6.3 5.4 5.4 5.6 5.8 5.5 5.6 6.6 7.1 7.2 7.3 6.8 6.6 7.0 7.3 6.8 6.3 5.9 4.7 4.8 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.3
7.4
7.4
7.1
6.8
7.0
7.2
7.5
7.7
7.5
7.0
6.6 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 11.8
12.6
12.5
12.0
11.6
11.0
11.2
10.2
9.8
9.6
9.5
9.4
9.5
9.7
9.8
9.8
9.8
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.5 9.4 9.5 | 12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.5
9.4
9.2
9.1
9.4
9.6
9.5
9.7 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.6
7.0
7.0
7.0
6.3
6.4
6.7
7.6
8.3
8.8
9.0
8.8
8.6
8.3 | MARCH 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 6.2 6.0 6.3 6.6 7.5 8.1 8.7 8.5 8.1 7.0 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.9
7.5
7.4
7.3
6.6
6.5
5.9
6.2
6.5
7.8
8.4
8.7
8.7
8.7 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
7.0
6.8
6.6
6.9
7.1
6.4
6.9
7.2
7.5
7.6
7.4
7.8
7.8 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5 5.9 6.1 6.6 6.9 7.2 7.0 7.3 7.3 | 6.3
6.4
8.4
7.8
6.5
5.0
5.1
6.8
6.4
6.7
7.8
6.6
6.4
7.3
7.5
7.5
7.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.2
5.9
7.3
7.4
7.6
7.4
7.0
7.2
7.4
7.8
7.8
7.6
7.3
6.8 | MAY 7.3 7.5 7.7 8 6.3 5.4 5.6 5.8 5.5 6.3 6.6 7.1 7.2 7.3 6.8 6.6 6.7 7.3 6.8 6.6 7.3 6.8 5.9 4.7 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.0
7.4
7.4
7.1
6.8
7.0
7.5
7.7
7.5
7.7
7.5
7.6
6.6 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
11.8
12.6
12.5
11.0
11.2
11.2
10.4
10.2
9.8
9.6
9.5
9.4
9.5
9.7
9.8
9.8
9.8
9.8
9.8 | FEBRUARY 10.6 11.8 12.0 11.5 11.0 10.7 10.4 10.3 10.0 9.6 9.4 9.3 9.2 8.9 8.6 8.3 9.2 9.1 9.4 9.5 9.4 9.5 | 11.0
12.2
12.3
11.8
11.2
10.9
10.8
10.2
10
9.5
9.4
9.2
9.1
9.0
9.4
9.6
9.7
9.6
10.8
10.8 | 11.2
11.5
12.1
11.8
11.6
11.4
10.1
9.7
9.6
9.4
8.2
8.3
8.4
7.9
7.8
7.6
7.0
7.0
7.0
7.0
7.0
8.3
8.3
8.3 | MARCH 10.5 10.5 11.2 11.7 11.1 10.6 10.1 9.0 9.3 e7.5 7.5 7.6 7.2 7.0 7.0 6.2 5.2 6.0 5.7 6.0 6.3 6.6 7.5 8.1 8.7 8.5 8.1 | 10.8
11.0
11.7
11.9
11.4
11.1
10.5
9.4
9.5
8.5
7.8
7.9
7.5
7.4
7.3
6.0
6.5
7.3
7.8
8.4
8.8
8.7
8.3 | 6.7
7.7
9.9
8.8
8.5
8.2
8.0
7.6
5.7
5.2
5.9
7.0
6.8
6.6
6.9
7.1
6.4
6.9
7.5
7.6
7.6
7.7
7.5 | APRIL 6.0 5.9 7.7 8.0 8.1 7.7 7.5 5.1 4.7 5.9 6.6 6.2 6.3 6.4 5.7 5.5.9 6.1 6.6 6.9 7.2 7.0 7.2 7.1 7.3 7.3 7.4 7.3 | 6.3
6.4
8.4
7.9
7.8
5.4
6.5
5.4
6.6
6.4
6.7
7.3
7.5
7.5
7.5
7.5
7.5
7.5 | 7.8
7.9
8.2
8.1
8.0
6.3
5.8
6.1
6.2
5.9
6.4
6.9
7.4
7.6
7.6
7.4
7.0
7.2
7.4
7.9
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.6 | MAY 7.3 7.5 7.7 7.8 6.3 5.4 5.4 5.8 5.5 6.3 6.6 7.1 7.2 7.3 6.8 6.6 6.7 7.3 7.6 7.3 6.8 6.6 7.0 7.3 7.6 7.3 6.8 6.3 | 7.5
7.7
7.9
7.9
7.3
5.7
5.5
5.8
6.0
6.6
7.0
7.4
7.1
6.8
7.2
7.5
7.7
7.5
7.0
6.6
6.6
6.0
6.6
7.3 | ## 08057448 Trinity River near Wilmer, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | A | AUGUST | | S | SEPTEMBE | R | | 1
2
3
4
5 | |

 |

 | 6.0
6.0
6.2
6.2 | 4.8
5.6
5.4
5.5
5.5 | 5.5
5.8
5.8
5.9
5.7 | 7.1
7.1
7.9
8.3
9.2 | 6.5
6.6
6.5
6.8
6.7 | 6.8
6.8
7.1
7.6
8.0 | 7.2
8.0
7.2
7.0 | 6.2
6.1
5.7
6.1
6.0 | 6.8
6.5
6.6
6.6 | | 6
7
8
9
10 |

 |

 |

 | 5.8
5.8
5.5
6.2
5.8 | 5.4
5.1
5.0
5.5
5.3 | 5.6
5.4
5.3
5.9
5.6 | 8.8
8.9
8.6
8.3
8.2 | 7.9
7.9
7.1
7.4
4.2 | 8.4
8.4
8.0
7.9
6.9 | 7.0
6.4
6.2
6.2
6.1 | 6.1
5.7
5.8
4.9
5.5 | 6.3
6.0
6.0
5.6
5.9 | | 11
12
13
14
15 | 6.4
6.5
6.3
6.1
5.8 | 6.0
5.8
5.9
5.2
5.4 | 6.2
6.2
6.1
5.7
5.6 | 6.3
6.3
5.3
5.5 | 5.3
3.5
4.7
4.9 | 5.8
5.0
5.0
5.2
5.4 | 5.2
5.5
5.9
5.9
6.0 | 2.5
3.6
5.1
5.3
4.9 | 3.8
4.4
5.6
5.6
5.5 | 6.2
6.4
6.0
6.3
9.1 | 5.7
5.8
5.2
5.7
5.9 | 6.0
6.1
5.8
6.0
7.0 | | 16
17
18
19
20 | 6.1
6.4
6.5
6.8 | 3.3
4.6
5.8
6.1
6.1 | 5.0
5.5
6.1
6.3
6.4 |
6.4
6.2
8.0 | 4.8
5.6
6.0 |
5.6
5.9
6.7 | 6.4
6.1
7.0
8.2
6.8 | 4.6
3.7
5.7
5.9
5.0 | 5.3
5.0
6.2
6.8
5.8 | 9.4
7.4
7.6
7.7
7.8 | 6.3
6.9
7.0
6.4
5.3 | 8.0
7.2
7.2
7.3
6.8 | | 21
22
23
24
25 | 6.9
7.1
7.1
 | 6.4
6.4
6.3 | 6.6
6.7
6.6
 | 7.4
7.7
7.5
7.4
7.5 | 6.5
6.7
6.7
6.6
6.7 | 6.9
7.1
7.1
7.0
7.1 | 7.8
7.1
7.3
8.3
7.8 | 5.1
3.0
4.0
4.7
5.4 | 6.5
5.0
5.4
6.1
6.5 | 7.9
7.9
7.6
7.7
7.5 | 7.3
7.3
7.2
7.3
6.9 | 7.6
7.6
7.4
7.5
7.3 | | 26
27
28
29
30
31 |
6.4
5.8
6.2 |
5.2
3.2
4.7 |
6.0
4.7
5.5 | 7.7
8.4
8.7
8.0
7.9
7.3 | 6.9
7.0
7.4
7.3
7.1
6.7 | 7.2
7.7
8.0
7.5
7.5
7.0 | 7.5
8.0
7.0
6.8
6.6
7.3 | 6.6
4.2
4.7
6.1
5.9
5.4 | 7.0
6.4
6.3
6.4
6.3
6.4 | 7.3
7.1
7.2
 | 6.8
6.6
6.7
 | 6.9
6.9
6.9
 | | MONTH | | | | | | | 9.2 | 2.5 | 6.4 | | | | ## e Estimated DAILY MEAN DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER ## 08058900 East Fork Trinity River at McKinney, TX LOCATION.--Lat 33°14′40", long 96°36′30", Collin County, Hydrologic Unit 12030106, at downstream side of highway embankment near left end of main channel bridge on State Highways 5 and 121, 750 ft downstream from Honey Creek, 1.2 mi upstream from Southern Pacific Railway Co. bridge, 1.7 mi upstream from Clemons Creek, 3.3 mi north of McKinney, 26.1 mi upstream from Lavon Dam, and 86.5 mi upstream from mouth. DRAINAGE AREA. -- 164 mi². PERIOD OF RECORD.--Oct. 1975 to current year. Water-quality records.--Chemical data: Oct. 1980 to Sept. 1982, Oct. 1985 to July 1987, Apr. 1993 to Sept. 1995. Biochemical data: Oct. 1980 to Sept. 1982, Oct. 1985 to July 1987, Apr. 1993 to Sept. 1995. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 528.74 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since installation of gage in Oct. 1975, at least 10% of contributing drainage area has been regulated. Small diversions for irrigation above the station are made at times. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1913, about 28 ft in Apr. 1942 (discharge not determined), from information by Texas Department of Transportation. | | | DISCHARGE | FROM DCP, | CUBIC FEE | | OND, WA | | OCTOBER 200 | 1 TO SE | PTEMBER 20 | 02 | | |---|---|---|--|--|--------------------------------------|--|---|---|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.10
0.12
0.10
0.10
0.11 | 5.8
4.8
3.2
1.8
2.2 | 6.5
4.9
4.5
3.5
3.0 | e51
e48
45
46
51 | 1860
727
600
495
479 | 64
66
67
63
63 | 939
653
515
402
318 | 63
46
81
62
50 | 32
29
27
25
25 | 6.2
12
18
15 | 0.0
0.0
0.0
0.0 | 0.02
0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 0.05
0.02
0.02
0.0
0.0 | 1.7
0.99
0.38
6.7
1.7 | 6.5
7.2
5.2
2.8
1.7 | 59
51
48
46
45 | 583
514
393
298
211 | 63
62
62
65
63 | 264
1660
6130
1370
939 | 34 | 37
29
26
24
20 | 6.6
3.7
2.4
2.2
1.1 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.07
0.05
0.0 | | 11
12
13
14
15 | 33
141
723
259
115 | 1.9
2.5
1.9
1.1 | 1.4
2.2
4.3
8.7 | 44
43
41
41
39 | 191
178
125
109
97 | 60
60
59
59
59 | 707
568
528
550
392 | | | 1.3
1.4
1.4
0.55
0.42 | 30
13
4.4
0.64
0.23 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 63
48
43
40
39 | 1.0
0.39
0.35
0.41
0.15 | | 38
37
36
36
36 | | | 335
775
411
305
254 | 47
628
382
167
111 | 17
20
16
14
11 | 0.77
0.95
3.1
4.6
4.1 | 0.54
0.25
0.0
0.0 | 0.0
0.0
0.0
0.0
0.01 | | 21
22
23
24
25 | 31
29
26
24
20 | 0.14
0.12
0.22
0.19
0.10 | | 36
36
41
153
216 | | | | 81
65
53
48
47 | | | 0.0
0.0
0.0
0.0 | | | 26
27
28
29
30
31 | 16
14
11
11
9.4
7.2 | 0.03
0.02
1.3
2.2
6.7 | e54
e48
e46
e56
e56 | 113
86
74
69
66
3670 | 67
63
63

 | 534
409
357
289
2830
2930 | 97
91
78
73
73 | 49
47
45
42
39
36 | 5.4
5.7
7.8
5.3
4.5 | 0.06
0.03
0.0
0.0
0.0 | 0.0
0.19
2.6
2.0
0.27
0.13 | 0.0
0.0
0.0
0.0
0.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1703.22
54.94
723
0.00
3380 | 1.700 | 2369.4
76.43
510
1.4
4700 | 5441
175.5
3670
36
10790 | 7910
282.5
1860
63
15690 | 25215
813.4
7780
58
50010 | 19235
641.2
6130
73
38150 | 4099
132.2
1020
34
8130 | 496.7
16.56
37
4.5
985 | 105.55
3.405
18
0.00
209 | 54.26
1.750
30
0.00
108 | 0.15
0.005
0.07
0.00
0.3 | | STATIS | STICS OF | MONTHLY ME | | | EARS 1976 | | , BY WATE | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 83.93
1022
1982
0.000
1978 | 126.9
1120
1995
0.000
1978 | 152.3
1160
1992
0.000
1978 |
105.3
805
1998
0.000
1978 | 218.1
987
2001
1.37
1976 | 251.9
813
2002
2.30
1976 | 161.4
804
1990
4.08
1980 | 255.1
1704
1982
2.52
1996 | 127.1
737
1989
0.81
1996 | 21.20
213
1994
0.000
1984 | | 6.931
64.0
1994
0.000
1977 | | SUMMAR | RY STATIS | STICS | FOR | 2001 CALEN | DAR YEAR | 1 | FOR 2002 | WATER YEAR | | WATER YEAR | RS 1976 - | 2002 | | ANNUAL HIGHES LOWEST ANNUAL MAXIMU ANNUAL 10 PER 50 PER | דבוותות דב | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | 1 | 68580.91
187.9
6420
0.00
0.00
136000
446
46
0.00 | Feb 16
Jul 16
Jul 16 | | 7780
0.
0.
13600
20.
132300
410
29 | 7 Mar 20 00 Oct 9 00 Jul 28 Mar 20 27 Mar 20 | | 125.7
373
4.6!
26800
0.0!
0.00
61800
22.1'
91030
252
14
0.00 | 5 May 13
0 Aug 18
0 Aug 18
May 13
7 May 13 | 1982
1980
1982
1976
1976
1982
1982 | e Estimated 08058900 East Fork Trinity River at McKinney, TX--Continued 08059400 Sister Grove Creek near Blue Ridge, TX (Flood hydrograph-partial record station) LOCATION.--Lat 33°17'40", long 96°28'58", Collin County, Hydrologic Unit 12030106, on left bank at upstream side of highway embankment of bridge on Farm Road 545, 3.5 mi upstream from Hatler Branch, 4.8 mi west of Blue Ridge, 7.4 mi upstream from Stiff Creek, 14.7 mi upstream from mouth, and 24.7 mi upstream from Lavon Dam. DRAINAGE AREA. -- 83.1 mi². PERIOD OF RECORD.--July 1975 to Sept. 2001 (daily mean discharge). Oct. 2001 to Sept. 2002.(peaks above base discharge) Water-quality records.--Chemical data: Nov. 1985 to June 1987, Oct. 1995 to Sept. 1999. Biochemical data: Nov. 1985 to Jun 1987, Oct. 1995 to Sept. 1999. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 526.29 ft above NGVD of 1929. Prior to June 29, 1988, at datum 10.00 ft higher at same site. Satellite telemeter at station. REMARKS.--Records fair. Since installation of gage in July 1975, at least 10% of contributing drainage area has been affected at times by discharge from the flood-detention pools of 34 floodwater-retarding structures. These structures control runoff from 47.4 mi². Discharge may contain flow released from Lake Texoma and placed into channel 40 miles upstream from site. No flow at times. AVERAGE DISCHARGE.--26 years (water years 1975-2001), $69.5~\mathrm{ft}^3/\mathrm{s}$ (50,340 acre-ft/year). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,300 ft³/s, May 13, 1982, gage height, 32.50 ft. Mimimum discharge, no flow at times, most years. EXTREMES OUTSIDE PERIOD OF RECORD.—A stage of 30.7 ft, present datum, probably occurred in July 1913, from information by the Texas Department of Transportation. The probable date is from published records for Sister Grove Creek near Princeton (station 08059500, discontinued) located 9.7 mi downstream. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $692~{\rm ft}^3/{\rm s}$ and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Dec 17 | 0000 | 709 | 19.15 | Apr 8 | 0915 | 2,690 | 26.94 | | Jan 31 | 2215 | 2,380 | 26.50 | Apr 17 | 1400 | 2,190 | 26.21 | | Mar 20 | 0715 | *2,800 | *27.07 | May 17 | 1830 | 913 | 20.86 | | Mar 30 | 2000 | 2,130 | 26.12 | = | | | | THIS PAGE IS INTENTIONALLY BLANK ## 08060500 Lavon Lake near Lavon, TX LOCATION.--Lat 33°01'54", long 96°28'56", Collin County, Hydrologic Unit 12030106, in right abutment of spillway in dam on East Fork Trinity River, 3,850 ft upstream from St. Louis Southwestern Railway Lines bridge, 4,000 ft upstream from bridge on State Highway 78, 2.9 mi west of Lavon, and 55.9 mi upstream from mouth. DRAINAGE AREA. -- 770 mi². PERIOD OF RECORD.--Sept. 1953 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Lavon Reservoir". Water-quality records.--Chemical data: Oct. 1969 to Sept. 1974, Oct. 1975 to Sept. 1982, Oct. 1995 to Sept. 1999. Biochemical data: Oct. 1969 to Sept. 1974, Oct. 1975 to Sept. 1982, Oct. 1999. REVISED RECORDS -- WSP 1922: Drainage area GAGE .-- Water-stage recorder. Datum of gage is NGVD of 1929. Prior to Jan. 20, 1954, nonrecording gage in the approach channel at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are poor. The lake is formed by a rolled earthfill dam 18,860 ft long, including a 568-foot gated spillway with twelve 40.0- by 28.0-foot tainter gates. The original dam was 9,499 ft long, but conservation capacity was increased to present size in Dec. 1975. Deliberate impoundment began Sept. 14, 1953, and the dam was completed in Oct. 1953. Low-flow outlets consist of five 36-inch-diameter controlled sluice gates. Lake was designed for flood control and water conservation. Water for municipal supply can be released down to elevation 453.0 ft. Flow is affected at times by discharge from the flood-detention pools of 149 floodwater-retarding structures with a combined detention capacity of 69,170 acre-ft. These structures control runoff from 242 mi² in the East Fork Trinity River, Pilot Grove, and Sister Grove Creek drainage basins. The dam is owned by the U.S. Army Corps of Engineers. Conservation pool storage is 456,526 acre-ft. Data regarding dam are given in the following table: | | Elevation (feet) | |---|------------------| | Top of dam | 514.0 | | Design flood | 509.0 | | Top of tainter gates | 503.5 | | Top of conservation pool | | | Crest of spillway (sill of tainter gates) | | | Lowest gated outlet (invert) | 453.0 | COOPERATION .-- Origin of Capacity Table No. 2 unknown; in use since Oct. 1995. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 791,000 acre-ft, May 3, 1990, elevation, 504.93 ft; minimum since lake first filled in 1957, 80,150 acre-ft, Apr. 17, 1976, elevation, 465.96 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 587,700 acre-ft, Apr. 11, elevation, 497.63 ft; minimum contents, 292,600 acre-ft, Dec. 14, elevation, 483.30 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 328600 | 313300 | 296900 | 336200 | 380100 | 437900 | 551000 | 463100 | 462900 | 439000 | 415300 | 383100 | | 2 | 327500 | 313000 | 296400 | 335800 | 397500 | 439500 | 552500 | 463400 | 462000 | 439500 | 414200 | 382100 | | 3 | 326600 | 312500 | 296100 | 335200 | 404400 | 438600 | 546600 | 464000 | 461300 | 439900 | 413100 | 381100 | | 4 | 325400 | 311900 | 295700 | 334600 | 408800 | 437900 | 537400 | 466000 | 460200 | 439800 | 411700 | 380100 | | 5 | 325300 | 311200 | 295500 | 335200 | 413000 | 437500 | 528500 | e466500 | 459900 | 439500 | 410400 | 379000 | | 6 | 324600 | 310500 | 295500 | 335300 | 418800 | 437400 | 520000 | e467900 | 459100 | 439000 | 409100 | 377900 | | 7 | 323300 | 309700 | 295200 | 335300 | 424700 | 437700 | 516600 | 467800 | 458200 | 438400 | 407800 | 376800 | | 8 | 322100 | 309000 | 295500 | 335000 | 429000 | 437900 | 541000 | 467600 | 457100 | 437700 | 406400 | 376600 | | 9 | 321000 | 308400 | 294400 | 334900 | 431600 | 439200 | 571000 | 468100 | 456100 | 436700 | 405000 | 376600 | | 10 | 320500 | 307600 | 293800 | 335100 | 434100 | 438400 | 582000 | 479300 | 455100 | 435600 | 403600 | 375900 | | 11 | 320900 | 307600 | 293200 | 335200 | 434700 | 438200 | 586800 | 495600 | 454200 | 434500 | 403000 | 375100 | | 12 | 320700 | 307400 | 293200 | 335000 | 435500 | 438600 | 581200 | 496400 | 453100 | 433800 | 401800 | 374300 | | 13 | 322400 | 307000 | 293200 | 334200 | 436500 | 438300 | 571900 | 495400 | 452500 | 433800 | 400300 | 373300 | | 14 | 324100 | 306600 | 292900 | 334500 | 436600 | 438200 | 564600 | 489800 | 452600 | 433200 | 399700 | 372300 | | 15 | 325600 | 306100 | 292800 | 334100 | 437500 | 439100 | 556600 | 483600 | 451500 | 432400 | 399100 | 371500 | | 16 | 325500 | 305600 | 303600 | 333800 | 437800 | 439200 | 548400 | 475300 | 451400 | 431600 | 397800 | 370100 | | 17 | 324900 | 305100 | 319300 | 333900 | 438100 | 439100 | 548800 | 471400 | 450700 | 431100 | 396300 | 368700 | | 18 | 323800 | 304400 | 329800 | 333700 | 438100 | 440100 | 554300 | 476800 | 449800 | 431600 | 395200 | 367100 | | 19 | 323300 | 304400 | 334400 | 333700 | 438700 | 447000 | 550800 | 478700 | 448800 | 430800 | 394100 | 367000 | | 20 | 322900 | 303200 | 335900 | 332900 | 439100 | 496700 | 542900 | 480100 | 447900 | 429900 | 392900 | 367000 | | 21 | 322500 | 302400 | 336800 | 333000 | 439600 | 536100 | 533600 | 478400 | 447000 | 429000 | 391800 | 366000 | | 22 | 321800 | 301500 | 337700 | 333000 | 439300 | 547500 | 523800 | 472800 | 446000 | 427900 | 390700 | 365100 | | 23 | 321100 | 300700 | 338300 | 333200 | 439100 | 553700 | 513200 | 466000 | 445200 | 426900 | 389500 | 363700 | | 24 | 320800 | 300700 | 338300 | 335400 | 438500 | 558800 | 503100 | 464000 | 444100 | 425900 | 388200 | 362300 | | 25 | 320100 | 300000 | 338100 | 338200 |
439500 | 560600 | 492900 | 463900 | 443000 | 424800 | 387300 | 361000 | | 26
27
28
29
30
31 | 319100
318300
317000
316000
315200
314200 | 299400
299400
299100
298000
297200 | 338000
337500
337500
337800
337100
336600 | 341000
342100
342700
343300
343700
353400 | 439800
438500
438000
 | 554300
544100
533200
523300
519200
535200 | 482500
476100
471500
466800
463800 | 464900
465200
465000
464800
464200
463700 | 441900
441300
440300
439500
438900 | 423200
421600
420000
418700
417900
416700 | 386700
386900
386700
386100
385200
384100 | 359900
358600
357400
356600
355600 | | TOTAL
MEAN
MAX
MIN | 9985100
322100
328600
314200 | 9162900
305400
313300
297200 | 9757000
314700
338300
292800 | 10432600
336500
353400
332900 | 429500
439800
380100 | 14802500
477500
560600
437400 | 532700
586800
463800 | 14649700
472600
496400
463100 | 451100
462900
438900 | 13360400
431000
439900
416700 | 12340000
398100
415300
384100 | 370100
383100
355600 | | (+) | 484.57 | 483.57 | 485.85 | 486.77 | 491.12 | 495.48 | 492.34 | 492.33 | 491.16 | 490.06 | 488.41 | 486.90 | | (@) | -15500 | -17000 | +39400 | +16800 | +84600 | +97200 | -71400 | -100 | -24800 | -22200 | -32600 | -28500 | | CAL YR | : 200I | MAX 65950 | 0 MIN 2 | 9∠8UU (@) | -130500 | | | | | | | | MAX 659500 MIN 292800 (@) -130500 MAX 586800 MIN 292800 (@) +25900 WTR YR 2002 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in Contents, in acre-feet. 08060500 Lavon Lake near Lavon, TX--Continued ## 08061540 Rowlett Creek near Sachse, TX LOCATION.--Lat 32°57′35", long 96°36′51", Dallas County, Hydrologic Unit 12030106, on right bank at downstream side of railroad embankment of Gulf, Colorado, and Santa Fe Railway Co., 100 ft downstream from Spring Creek, 150 ft upstream from State Highway 78, and 1.5 mi southwest of Sachse. DRAINAGE AREA.--120 \mbox{mi}^2 . PERIOD OF RECORD. -- Mar. 1968 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 450.00 ft above NGVD of 1929. Mar. 1968 to Aug. 25, 1993, at site on left bank 150 ft downstream. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation or diversions. The North Texas Municipal Water District returns wastewater effluent into a tributary above this station. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1942, 35.4 ft in 1942, from information by Texas Department of Transportation. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | 1 | DISCHARGE | FROM DCP, | CORIC LEE | | OND, WAI
MEAN VA | | OCTOBER 200 | I TO SE | PTEMBER 200. | 2 | | |--|--------------------------------------|--------------------------------------|---|-------------------------------------|---|--|--|---------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 53 | 77 | 57 | 71 | 468 | 76 | 240 | 106 | 74 | 225 | 53 | 44 | | 2 | 48 | 72 | 52 | 70 | 204 | 94 | 177 | 108 | 68 | 219 | 53 | 43 | | 3 | 48 | 72 | 53 | 71 | 154 | 92 | 145 | 415 | 66 | 140 | 50 | 40 | | 4 | 53 | 75 | 54 | 69 | 125 | 90 | 126 | 180 | 67 | 85 | 51 | 39 | | 5 | 79 | 73 | 54 | 116 | 694 | 86 | 121 | 800 | 76 | 60 | 48 | 36 | | 6 | 56 | 76 | 122 | 66 | 527 | 84 | 146 | e200 | 72 | 54 | 42 | 37 | | 7 | 45 | 63 | 60 | 69 | 311 | 82 | 1730 | 97 | 59 | 51 | 41 | 37 | | 8 | 43 | 52 | 54 | 65 | 189 | 87 | 3260 | 90 | 58 | 48 | 54 | 511 | | 9 | 41 | 49 | 52 | 60 | 151 | 147 | 335 | 95 | 67 | 50 | 47 | 457 | | 10 | 43 | 52 | 52 | 63 | 120 | 89 | 221 | 1740 | 60 | e47 | 212 | 99 | | 11 | 429 | 187 | 69 | 61 | 111 | 100 | 184 | 131 | 55 | 49 | 75 | 69 | | 12 | 135 | 91 | 95 | 58 | 105 | 91 | 159 | 83 | 52 | 286 | 50 | 62 | | 13 | 801 | 73 | 112 | 62 | 99 | 84 | 317 | 100 | 112 | 140 | 45 | 61 | | 14 | 105 | 62 | 86 | 61 | 92 | 81 | 226 | 70 | 122 | 75 | 340 | 59 | | 15 | 84 | 58 | 72 | 58 | 88 | 83 | 160 | 65 | 61 | 65 | 93 | 76 | | 16 | 88 | 63 | 4290 | 58 | 83 | 84 | 829 | 64 | 303 | 64 | 47 | 57 | | 17 | 88 | 61 | 576 | 58 | 77 | 88 | 536 | 895 | 79 | 108 | 40 | 54 | | 18 | 85 | 57 | 158 | 59 | 78 | 524 | 157 | 178 | 60 | 72 | 39 | 53 | | 19 | 79 | 60 | 122 | 55 | 84 | 3260 | 135 | 117 | 57 | 56 | 39 | 211 | | 20 | 78 | 56 | 101 | 52 | 75 | 5540 | 141 | 102 | 51 | 50 | 39 | 81 | | 21 | 76 | 53 | 93 | 50 | 70 | 383 | 143 | 96 | 47 | 46 | 41 | 61 | | 22 | 85 | 55 | 91 | 67 | 71 | 239 | 134 | 89 | 50 | 47 | 43 | 57 | | 23 | 84 | 59 | 84 | 105 | 75 | 199 | 125 | 96 | 49 | 45 | 41 | 52 | | 24 | 80 | 85 | 79 | 860 | 74 | 175 | 117 | 89 | 48 | 44 | 38 | 51 | | 25 | 69 | 53 | 71 | 156 | 75 | 156 | 111 | 83 | 48 | 42 | 43 | 50 | | 26
27
28
29
30
31 | 71
72
74
69
71
76 | 49
48
164
79
63 | 69
68
81
74
72
73 | 95
77
68
69
76
5230 | e77
73
77

 | 133
125
121
116
1090
1420 | 193
133
114
103
113 | 506
104
154
174
90
75 | 48
60
50
63
76 | 42
42
42
44
45 | 52
683
87
58
50
47 | 46
42
48
44
43 | | TOTAL | 3308 | 2137 | 7146 | 8155 | 4427 | 15019 | 10631 | 7192 | 2158 | 2426 | 2641 | 2620 | | MEAN | 106.7 | 71.23 | 230.5 | 263.1 | 158.1 | 484.5 | 354.4 | 232.0 | 71.93 | 78.26 | 85.19 | 87.33 | | MAX | 801 | 187 | 4290 | 5230 | 694 | 5540 | 3260 | 1740 | 303 | 286 | 683 | 511 | | MIN | 41 | 48 | 52 | 50 | 70 | 76 | 103 | 64 | 47 | 42 | 38 | 36 | | AC-FT | 6560 | 4240 | 14170 | 16180 | 8780 | 29790 | 21090 | 14270 | 4280 | 4810 | 5240 | 5200 | | MEAN
MAX
(WY)
MIN
(WY) | 132.7
610
1982
4.88
1979 | 128.5
586
1995
7.63
1976 | 167.9
898
1992
7.52
1978 | OR WATER Y 115.0 617 1998 6.72 1976 | EARS 1968
169.6
680
2001
7.83
1976 | - 2002,
195.4
484
2002
11.9
1971 | 165.2
573
1990
23.8
1972 | 228.2
1039
1982
18.8
1972 | 145.3
566
1981
4.60
1971 | 50.29
241
1994
1.91
1972 | 37.82
120
2001
1.78
1972 | 56.78
180
1974
3.75
1969 | | SUMMARY | STATIST | rics | FOR | 2001 CALEN | DAR YEAR | F | OR 2002 | WATER YEAR | | WATER YEARS | S 1968 - | 2002 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 79903
218.9
7570
41
43
158500
350
86
48 | Feb 16
Aug 9
Jul 20 | | 67860
185.
5540
36
39
18500
27.
134600
225
75
46 | 9
Mar 20
Sep 5
Sep 1
Mar 20
33 Mar 20 | | 132.4
269
22.2
14900
0.00
32200
29.62
95900
212
49
8.5 | Aug 24
Jan 5 | 1969
1969
1998 | | e Estimated ## 08061540 Rowlett Creek near Sachse, TX--Continued ## 08061550 Lake Ray Hubbard near Forney, TX LOCATION.--Lat 32°48′00", long 96°29′45", Kaufman County, Hydrologic Unit 12030106, near right end of spillway on Forney Dam on East Fork Trinity River, 0.5 mi upstream from Duck Creek, 1.8 mi upstream from bridge on U.S. Highway 80, 3.8 mi northwest of Forney, 24.0 mi downstream from Lavon Dam, and 31.8 mi upstream from mouth. DRAINAGE AREA. -- 1,071 mi². PERIOD OF RECORD. -- Jan. 1968 to Dec. 1993, Oct. 1996 to current year. Water-quality records.--Chemical data: Oct. 1969 to Sept. 1979. GAGE. -- Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records poor. The lake is formed by a rolled earthfill dam 12,500 ft long, including a 664-foot gated spillway with fourteen 40- by 28-foot tainter gates. Impoundment began in Sept. 1967, but all gates were not closed until Mar. 22, 1978. Low-flow releases are made through three 4.5- by 6.75-ft sluiceways. The lake was built by the city of Dallas for municipal water supply. Conservation pool storage is 490,000 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |---|-----------| | | (feet) | | Top of dam | 450.0 | | Design flood | 440.5 | | Top of conservation pool | 438.8 | | Top of tainter gates | 437.5 | | Crest of spillway (sill of tainter gates) | 409.5 | | Lowest gated outlet (invert) | 388.0 | | | | COOPERATION.--Capacity table No. 2 was provided by Forrest and Cotton, Consulting Engineers, for the city of Dallas, and put in use on Oct. 1, 1997. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 544,100 acre-ft, May 4, 1990, elevation, 437.81 ft; minimum contents since first appreciable filling, 311,800 acre-ft, Sept. 30, 2000, elevation, 430.26 ft; minimum elevation, 429.72 ft, Oct. 15, 2000, contents unknown. EXTREMES FOR CURRENT YEAR.--Maximum contents, 431,100 acre-ft, Mar. 20, elevation, 436.30 ft; minimum contents, 353,700 acre-ft, Sept. 30, elevation, 432.57 ft. RESERVOIR STORAGE
FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 376300 | 379100 | 379200 | 415200 | 423400 | 411700 | 414200 | 412400 | 415100 | 397000 | 385300 | 367100 | | 2 | 375200 | 379600 | 379100 | 414900 | 415700 | 415100 | 413600 | 413400 | 414200 | 397200 | 384700 | 366300 | | 3 | 374400 | 379700 | 379000 | 414000 | 414400 | 413300 | 415100 | 414000 | 413500 | 397900 | 383800 | 365500 | | 4 | 373700 | 379700 | 378900 | 413100 | 414800 | 411500 | 414200 | 414500 | 412900 | 397400 | 382800 | 364700 | | 5 | 376400 | 379600 | 378900 | 414400 | 416300 | 410900 | 414700 | 419000 | 413000 | 397000 | 382100 | 364000 | | 6 | 377200 | 379000 | 380000 | 414600 | 415900 | 411200 | 415200 | 414600 | 412400 | 396600 | 381100 | 363100 | | 7 | 375400 | 378500 | 379700 | 414200 | 415400 | 411300 | 413600 | 412900 | 411700 | 396000 | 380200 | 362200 | | 8 | 374700 | 378700 | 380500 | 413400 | 413900 | 411900 | 418100 | 412800 | 410800 | 395500 | 379300 | 362400 | | 9 | 373900 | 379200 | 379000 | 413400 | 413700 | 414400 | 415200 | 413800 | 409900 | 394800 | 378200 | 364800 | | 10 | 374100 | 378600 | 378400 | 414200 | 415500 | 412600 | 414000 | 414600 | 409000 | 394200 | 377400 | 365000 | | 11 | 379000 | 379700 | 378300 | 414400 | 413900 | 412300 | 414100 | 415500 | 408300 | 393700 | 377500 | 364500 | | 12 | 381200 | 381200 | 379100 | 414200 | 413600 | 413000 | 414400 | 414100 | 407600 | 397200 | 376500 | 363700 | | 13 | 385600 | 381000 | 379700 | 412900 | 414300 | 411900 | 416200 | 414900 | 407300 | 398000 | 375300 | 363000 | | 14 | 386300 | 381000 | 379600 | 413600 | 413300 | 411400 | 417000 | 413500 | 407900 | 397700 | 375300 | 362300 | | 15 | 386800 | 381000 | 380100 | 412900 | 414000 | 413100 | 414400 | 412800 | 406300 | 396800 | 375300 | 362100 | | 16 | 386600 | 380600 | 398700 | 412800 | 413600 | 412900 | 412900 | 412900 | 407100 | 397000 | 374600 | 360900 | | 17 | 385400 | 380400 | 412500 | 413300 | 413600 | 412400 | 416400 | 416900 | 406700 | 397300 | 373600 | 359700 | | 18 | 384500 | 379800 | 413900 | 413000 | 413200 | 413200 | 415100 | 416100 | 405600 | 398000 | 372900 | 358200 | | 19 | 384500 | 381300 | 416100 | 413300 | 413800 | 417000 | 413800 | 414400 | 404900 | 397500 | 372100 | 360300 | | 20 | 384400 | 379800 | 415400 | 411900 | 413900 | 428000 | 413100 | 414100 | 404100 | 396800 | 371200 | 363300 | | 21 | 384300 | 379600 | 414100 | 412100 | 414400 | 423100 | 412600 | 415000 | 403500 | 395900 | 370100 | 362300 | | 22 | 383900 | 379600 | 414900 | 411700 | 414000 | 414900 | 412300 | 414200 | 402900 | 395200 | 369500 | 362300 | | 23 | 383500 | 379300 | 415600 | 412100 | 413100 | 413600 | 412000 | 413500 | 402100 | 394400 | 368600 | 360900 | | 24 | 383900 | 380300 | 415600 | 415600 | 412200 | 413600 | 413600 | 413900 | 401200 | 393700 | 367600 | 359900 | | 25 | 383800 | 379500 | 415200 | 414400 | 414200 | 416100 | 415200 | 413900 | 400300 | 392700 | 367300 | 358900 | | 26
27
28
29
30
31 | 383100
382500
381600
380900
380800
379800 | 379800
381100
381700
379900
378800 | 415800
414900
415400
416600
415600
415300 | 412800
412400
412400
412500
412800
419800 | 414900
412100
411600
 | 415900
416100
416500
416200
419700
417600 | 415900
412900
413100
413000
412600 | 414500
414500
414800
416600
416200
415800 | 399100
398500
397600
396400
396400 | 391300
389900
388500
388100
387300
386200 | 367200
368500
369800
369300
368700
368000 | 358200
356900
356100
355300
354400 | | MEAN | 380800 | 379900 | 397300 | 413600 | 414400 | 414600 | 414300 | 414500 | 406200 | 394700 | 374600 | 361600 | | MAX | 386800 | 381700 | 416600 | 419800 | 423400 | 428000 | 418100 | 419000 | 415100 | 398000 | 385300 | 367100 | | MIN | 373700 | 378500 | 378300 | 411700 | 411600 | 410900 | 412000 | 412400 | 396400 | 386200 | 367200 | 354400 | | (+) | 433.90 | 433.85 | 435.58 | 435.79 | 435.41 | 435.69 | 435.46 | 435.60 | 434.70 | 434.21 | 433.30 | 432.60 | | (@) | +2400 | -1000 | +36500 | +4500 | -8200 | +6000 | -5000 | +3200 | -19400 | -10200 | -18200 | -13600 | CAL YR 2001 MAX 434800 MIN 366700 (@) -3000 WTR YR 2002 MAX 428000 MIN 354400 (@) -23000 ⁽⁺⁾ Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. 08061550 Lake Ray Hubbard near Forney, TX--Continued ## 08061750 East Fork Trinity River near Forney, TX LOCATION.--Lat 32°46'27", long 96°30'12", Kaufman County, Hydrologic Unit 12030106, on right bank 25 ft downstream from bridge on U.S. Highway 80, 0.2 mi downstream from Duck Creek, 1.9 mi downstream from Lake Ray Hubbard Dam, 2.5 mi upstream from Texas and Pacific Railroad Co. bridge, 2.6 mi northwest of Forney, and 30.8 mi upstream from mouth. DRAINAGE AREA.--1,118 mi², of which 1,071 mi² is above Lake Ray Hubbard. PERIOD OF RECORD.--Jan. 1973 to current year. Water-quality records.--Chemical data: Nov. 1981 to Jan. 1993. Biochemical data: Nov. 1981 to Jan. 1993. Specific conductance: Oct. 1981 to Jan. 1993. ph: Aug. 1986 to Jan. 1993. Water temperature: Oct. 1981 to Jan. 1993. Dissolved oxygen: Aug. 1986 to Jan. 1993. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 374.86 ft above NGVD of 1929. Prior to Aug. 26, 1975, recording gage at 3 ft higher datum located at site 126 ft upstream. From Aug. 26, 1975, to May 12, 1977, recording gage at 3 ft higher datum located at site 105 ft downstream. From May 13, 1977, to Sept. 30, 1984, recording gage at 3 ft higher datum at current site. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Since installation of gage in Jan. 1973, at least 10% of contributing drainage area has been regulated. Low flow is sustained by wastewater effluent discharge from the city of Garland into Duck Creek, which enters the East Fork Trinity River 0.2 mi upstream from this station. 08061750 East Fork Trinity River near Forney, TX--Continued ### 08062000 East Fork Trinity River near Crandall, TX LOCATION.--Lat 32°38'19", long 96°29'06", Kaufman County, Hydrologic Unit 12030106, on right bank 15 ft downstream from downstream eastbound bridge on U.S. Highway 175, 0.7 mi downstream from Mustang Creek, 1.8 mi northwest of Crandall, 4.0 mi upstream from Buffalo Creek, and 11.0 mi upstream from mouth. DRAINAGE AREA. -- 1,256 mi². PERIOD OF RECORD. -- June 1949 to current year. Water-quality records.--Chemical data: Jan. to Apr. 1964, May 1966 to Sept. 1981, June 1986 to Sept. 2000. Biochemical data: Jan. to Apr. 1964, May 1966 to Sept. 2000. Pesticide data: Mar. 1977 to July 1981. Sediment data: Apr. to Sept. 1964. Specific conductance: Oct. 1967 to Sept. 1981, May 1886 to Sept. 2000. ph: Mar. to Sept. 1977, May 1986 to Sept. 2000. Water temperature: Oct. 1967 to Sept. 1981, May 1986 to Sept. 2000. Dissolved oxygen: Mar. to Sept. 1977, May 1986 to Sept 2000 REVISED RECORDS. -- WSP 1922: Drainage area. WDR TX-75-1: 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 338.69 ft above NGVD of 1929. Prior to Feb. 21, 1983, at datum 5.00 ft higher. Satellite telemeter at station. MARKS.--Records fair, except those for estimated daily mean discharges, which are poor. Since Sept. 1953, at least 10% of contributing drainage area has been regulated by major reservoirs. The city of Forney discharges wastewater effluent into a tributary below Lake Ray Hubbard and above this station. The North Texas Municipal Water District discharges wastewater effluent into tributaries above this station from their Mesquite and Changler's Landing wastewater treatment plants. Flow is also affected at times by discharge from the flood-detention pools of 20 floodwater-retarding structures. These structures control runoff from a 39.2 mi² area above this station. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--4 years (water years 1950-53) prior to regulation by Lavon Lake, 652 ft³/s (472,400 acre-ft/vr). EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS, 1950-53).--Maximum discharge, 16,400 ft³/s May 2, 1953 (gage height, 19.87 ft); no flow at times. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY ОСТ NOV DEC TAN FEB MAR APR MAY .TTTN .TTTT. ATIG SEP e5200 e210 e4850 e180 e5200 e6240 e240 e6550 e180 e6530 e4000 e6570 e4420 e7740 7300 e1760 e2220 e1390 e390 e300 e6790 e650 e327 e2540 e840 e1710 e2860 e6000 e3780 e7910 e4030 e8410 e3280 e8770 e2900 e2550 e8830 e9250 e3140 e9080 e2900 e8720 e1510 e11100 e8230 e10800 e8020 e7700 e7590 e1900 e6920 e262 e6400 e3040 e6240 e6000 e6390 e5270 e8250 e3610 --e8580 e2640 e10900 e1510 e11500 ___ TOTAL MEAN 287.1 111.4 798.1 281.2 75.30 148.8 112.9 143.3 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1954 - 2002z, BY WATER YEAR (WY) MEAN 375.0 473.9 695.2 616.7 864.0 412.8 158.2 201.2 MAX (WY) 3.57 1.58 3.78 7.77 7.47 17.8 0.000 0.000 MIN 23.1 10.6 42.1 3.84 ## 08062000 East Fork Trinity River near Crandall, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | NDAR YEAR | FOR 2002 WAT | ER YEAR | WATER YEARS | 1954 | - 200 | 02z | |--------------------------|----------------|-----------
--------------|---------|-------------|------|-------|-----| | ANNUAL TOTAL | 625821 | | 417919 | | | | | | | ANNUAL MEAN | 1715 | | 1145 | | 732.3 | | | | | HIGHEST ANNUAL MEAN | | | | | 2209 | | 199 | 95 | | LOWEST ANNUAL MEAN | | | | | 38.4 | | 19 | 55 | | HIGHEST DAILY MEAN | 20700 | Feb 17 | 11500 | Mar 31 | 48800 | May | 5 199 | 90 | | LOWEST DAILY MEAN | 74 | Aug 8 | 63 | Jun 19 | 0.00 | Oct | 1 19 | 53 | | ANNUAL SEVEN-DAY MINIMUM | 77 | Aug 4 | 65 | Jun 19 | 0.00 | Oct | 1 19 | 53 | | MAXIMUM PEAK FLOW | | | 12700 | Mar 31 | 59900 | May | 5 199 | 90 | | MAXIMUM PEAK STAGE | | | 15.44 | Mar 31 | 27.17 | May | 5 199 | 90 | | ANNUAL RUNOFF (AC-FT) | 1241000 | | 828900 | | 530600 | | | | | 10 PERCENT EXCEEDS | 6810 | | 5200 | | 2170 | | | | | 50 PERCENT EXCEEDS | 144 | | 113 | | 98 | | | | | 90 PERCENT EXCEEDS | 82 | | 80 | | 21 | | | | Estimated Period of regulated streamflow. ## 08062000 East Fork Trinity River near Crandall, TX--Continued #### PRECIPITATION RECORDS PERIOD OF RECORD. -- Oct. 2001 to Sept. 2002 (discontinued). GAGE.--Tipping-bucket rain gage (no wind shields used) with satellite telemetry. Datum of gage is 338.69 ft above NGVD of 1929. REMARKS.--Records fair. EXTREMES FOR CURRENT YEAR. -- Maximum daily rainfall, 3.339 inches, Aug. 10. PRECIPITATION FROM DCP, in INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e0.00 e0.00 e0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.09 0.00 0.00 1 2 e0.00 e0.00 ---0.00 0.00 0.04 0.00 0.00 0.00 1.02 0.00 0.00 3 e0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 e0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5 --e0.00 ---1.30 0.85 0.00 0.00 1.45 0.00 0.00 0.00 0.00 0.00 0.00 6 7 e0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.06 e0.00e0.00 ---0.00 0.06 8 e0.00 e0.00 e0.00 ---0.00 0.00 e0.00 e0.00 0.00 e0.00 0.01 0.00 0.01 0.37 0.00 0.00 0.02 10 ___ 0.00 e0.00 0.00 0.00 1.56 0.00 0.00 3.33 0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 11 12 ___ ___ 0.00 0.00 0.00 0.00 0.29 0.00 0.35 0.00 0.00 13 --e0.00 ---0.00 0.00 0.00 0.00 0.00 0.09 e0.00 0.00 0.00 15 e0.00 ___ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 16 e0.00 e0.00 ---0.00 0.00 0.00 0.00 0.59 0.95 0.00 0.00 e0.00 e0.00 e0.00 e0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.15 0.00 0.00 17 18 0.00 e0.00 e0.00 0.00 0.09 0.00 1.48 0.00 0.00 0.00 0.00 19 20 e0.00 e0.00 0.00 0.00 0.00 0.09 0.01 0.00 0.00 0.00 0.00 0.00 21 e0.00 e0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22 23 e0.00 e0.00 e0.00 0.28 0.09 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24 e0.00 e0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 25 e0.00 e0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.12 0.00 26 e0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.00 0.00 e0.00 e0.00 ___ 0.00 0.00 0.16 0.00 0.00 0.94 0.00 27 0.00 0.00 0 00 28 ---0.00 0.00 0.00 29 e0.00 ---0.00 0.00 ---0.00 0.00 1.60 0.04 0.01 0.00 0.00 ___ 30 e0.00 0.00 0.04 1.30 0.00 0.00 0.63 0.00 0.00 0.00 31 e0.00 ___ 0.00 1.71 ___ 0.00 0.00 0.00 0.00 3.44 6.30 4.54 TOTAL ___ 3.81 4.46 1.67 2.60 1.27 ------ e Estimated 08062000 East Fork Trinity River near Crandall, TX--Continued #### 08062500 Trinity River near Rosser, TX LOCATION.--Lat 32°25'35", long 96°27'46", Ellis County, Hydrologic Unit 12030105, on right bank at downstream side of right pier of bridge on State Highway 34, 2.5 mi south of Rosser, 8.5 mi downstream from East Fork Trinity River, and at mile 451.4. DRAINAGE AREA. -- 8,147 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1924 to Sept. 1925, Oct. 1938 to current year. Monthly discharge only for some periods, published in WSP 1312 REVISED RECORDS.--WRD TX-77-1: 1942(M), drainage area. WDR TX-89-1: 1988. WDR TX-92-1: 1991. GAGE.--Water-stage recorder. Datum of gage is 297.65 ft above NGVD of 1929. Oct. 1938 to Sept. 1994 at present site and datum 5.00 ft higher. July 25, 1924, to Sept. 30, 1925, nonrecording gage at abandoned lock and dam No. 7, 1.7 mi upstream from present site at datum 11.94 ft higher. Satellite telemeter at station. REMARKS.--Records fair except those for period from Mar. 28 to Apr. 29 and estimated daily discharges, which are poor. Since installation of gage in July 1924, at least 10% of contributing drainage area has been regulated. A levee system, constructed in 1916, extends several miles upstream and downstream from the station. The cities of Fort Worth, Dallas, and several smaller cities divert considerable water for their municipal use, of which about 60 percent is returned as wastewater effluent that sustains low flows at this site. Flow may also be affected at times by discharge from the flood-detention pools of 38 flood- water retarding structures in the drainage basin above this station. These structures control runoff from 76.7 mi² above this station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1908 reached a stage of about 38 ft (present site and datum), from information by U.S. Army Corps of Engineers. Discharge believed to have been about the same as that of Apr. 23, 1942. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN MAR MAY JUN AUG SEP e15700 e1130 e2980 e18500 e19400 e2420 e2100 e17000 e1370 e1850 e8840 e6460 e1750 e11000 e16000 e1690 e15900 e13200 e1600 e9000 e6150 e4200 e3120 e2640 e1720 e1620 e1500 e1050 e1450 e1040 e1490 e1040 e1680 e1560 2.2 2.7 e1570 e13300 ---e4470 e5530 e26600 e3600 TOTAL MEAN 950.2 млч MTN AC-FT 116900 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1925 - 2002h, BY WATER YEAR (WY) MEAN MAX (WY) MTN 32.8 49 5 50 4 61 0 72 7 54 6 62 6 37 1 89 1 (WY) ## 08062500 Trinity River near Rosser, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 WAT | TER YEAR | WATER YEARS | 1925 - 2002h | |--------------------------|----------------|-----------|--------------|----------|--------------|--------------| | ANNUAL TOTAL | 1825931 | | 1528261 | | | | | ANNUAL MEAN | 5003 | | 4187 | | 3150
9702 | 1000 | | HIGHEST ANNUAL MEAN | | | | | 9702
280 | 1992
1956 | | HIGHEST DAILY MEAN | 35300 | Feb 18 | 28900 | Dec 17 | 133000 | Apr 23 1942 | | LOWEST DAILY MEAN | 703 | Sep 30 | 673 | Sep 30 | 32 | Oct 4 1924 | | ANNUAL SEVEN-DAY MINIMUM | 768 | Sep 29 | 761 | Aug 3 | 32 | Oct 14 1924 | | MAXIMUM PEAK FLOW | | | 40500 | Apr 3 | 150000 | Apr 23 1942 | | MAXIMUM PEAK STAGE | | | 36.91 | Apr 3 | 41.55 | Apr 22 1942 | | ANNUAL RUNOFF (AC-FT) | 3622000 | | 3031000 | | 2282000 | | | 10 PERCENT EXCEEDS | 15000 | | 12800 | | 8830 | | | 50 PERCENT EXCEEDS | 1900 | | 1370 | | 956 | | | 90 PERCENT EXCEEDS | 849 | | 800 | | 243 | | Estimated See PERIOD OF RECORD paragraph. e h ### 08062500 Trinity River near Rosser, TX--Continued ### PRECIPITATION RECORDS PERIOD OF RECORD. -- Oct. 2001 to Sept. 2002 (discontinued). GAGE.--Tipping-bucket rain gage (no wind shields used) with satellite telemetry. Datum of gage is 297.65 ft above NGVD of 1929. REMARKS.--Records fair. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 5.43 inches, Dec. 16. | | | PRECIPI | TATION FRO | OM DCP, in | | WATER YEA | | 2001 TO | SEPTEMBE | R 2002 | | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|---|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.01 | 0.00
0.00
0.00
0.76
0.09 | 0.00
0.00
0.00
0.02 | 0.01
0.03
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.87
0.00
0.16 | 0.00
0.00
0.00
0.00
0.00 | 0.68
0.17
0.38
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.58
0.36
0.01 | 0.07
0.15
0.00
0.00
0.00 | 0.09
0.05
0.07
0.14
0.14 |

 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
1.42 | 0.00
0.00
0.13
0.50
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.34 | 0.00
0.25
0.27
0.00
0.00 | | 11
12
13
14
15 | 0.49
0.00
2.12
0.03
0.00 |

0.00
0.11 | 0.47
0.02
0.33
0.00
1.33 |

 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.22
0.00
0.00 | 0.00
0.17
0.11
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.06
0.00
0.05
0.01 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.00
0.00
0.00
0.00 | 0.01
0.00
0.00
0.71
0.00 | e5.43
e0.69
0.00
0.00 | 0.14

 | 0.00
0.00
0.00
0.23
0.00 | 0.00
0.00
e0.22
e0.88
e0.23 | 0.37
0.00
0.00
0.00
0.00 | 0.00
0.64
0.00
0.00 | 0.51
0.00
0.00
0.00
0.00 | 1.28
0.02
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.88
0.00 | | 21
22
23
24
25 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.24
0.01
0.00 | 0.00
0.06
0.00
0.00 |

0.33
0.01 | 0.00
0.00
0.00
0.00
0.00 |
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 |
0.00
0.00
0.01
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.03
0.27
0.62
0.28
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.01
0.65 | 0.00
0.00
0.00
 | 0.00
0.00
0.00
0.00
0.00 | 0.41
0.00
0.00
0.00
0.00 | 0.05
0.13
0.00
1.13
0.00
0.00 | 0.00
0.00
0.01
0.00
0.35 | 0.00
0.00
0.00
0.11
0.01
0.00 | 0.04
0.16
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL | 2.64 | | 8.56 | | | | 1.00 | 4.68 | 1.50 | 2.77 | 0.55 | 1.40 | e Estimated ## 08062500 Trinity River near Rosser, TX--Continued ### 08062500 Trinity River near Rosser, TX--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1954 to current year. DESIGNMENT DATA: Jan. 1968 to current year. PESTICIDE DATA: Jan. 1968 to July 1981. SEDIMENT DATA: Oct. 1963 to Sept. 1964, Apr. 1972 to Apr. 1975. PERIOD OF DAILY RECORD . -- RIOD OF DAILY RECORD.— SPECIFIC CONDUCTANCE: Oct. 1954 to current year. pH: Mar. 1977 to current year. WATER TEMPERATURE: Oct. 1954 to current year. DISSOLVED OXYGEN: Mar. 1977 to current year. INSTRUMENTATION. -- Water-quality monitor since Mar. 1977. REMARKS.--Records good. Interruptions in the record were caused by malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous water years using the daily records of specific conductance and regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. EXTREMES FOR PERIOD OF DAILY RECORD. -- CREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,990 microsiemens/cm, Oct. 13, 1956; minimum, 122 microsiemens/cm, Sept. 30, 1981. pH: Maximum, 9.9 units, July 12, 1982; minimum, 6.5 units, Apr. 12, 2002. WATER TEMPERATURE: Maximum, 36.0°C, July 1, 1955; minimum, 1.0°C, on many days during winter months. DISSOLVED OXYGEN: Maximum, 13.6 mg/L, Feb. 18, 1996 and Jan. 11, 25, 2001; minimum, 0.0 mg/L, on several days during 1979-81. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 775 microsiemens/cm, Mar. 11; minimum, 254 microsiemens/cm, Apr. 18. PH: Maximum, 8.6 units, on several days; minimum, 6.5 units, Apr. 12. WATER TEMPERATURE: Maximum, 32.2°C, July 11, Aug. 4; minimum, 6.9°C, Jan. 5. DISSOLVED OXYGEN: Maximum, 13.4 mg/L, Mar. 5; minimum, 2.8 mg/L, Oct. 12, 13. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |--|---|---|--|--|--|---|---|---|---|--|--|--|--| | NOV
01 | 1035 | 799 | 716 | 7.8 | 19.5 | 7.7 | 84 | <2.0 | 160 | 61 | 56.2 | 5.70 | 69.0 | | MAR
28 | 0950 | 13500 | 394 | 7.9 | 15.0 | 9.9 | 99 | 2.3 | 140 | 32 | 50.0 | 4.06 | 23.8 | | MAY | | | | | | | | | | | | | | | 01
JUN | 0950 | 6660 | 418 | 8.0 | 22.5 | 7.7 | 92 | <2.0 | 130 | 27 | 46.7 | 4.33 | 27.3 | | 27
JUL | 0900 | 1170 | 700 | 7.8 | 29.0 | 6.4 | 86 | 2.2 | 170 | 63 | 57.8 | 6.05 | 67.6 | | 17
SEP | 1045 | 2080 | 610 | 7.6 | 27.5 | 6.8 | 88 | 3.0 | 160 | 61 | 55.8 | 5.56 | 53.8 | | 03 | 1045 | 908 | 688 | 7.7 | 29.0 | 7.7 | 100 | 2.2 | Date | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | NOV
01 | AD-
SORP-
TION
RATIO | PERCENT | SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE WATER DIS IT FIELD MG/L AS CO3 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | | NOV
01
MAR
28 | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | NOV
01
MAR
28
MAY
01 | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | NOV
01
MAR
28
MAY
01
JUN
27 | AD-
SORP-
TION
RATIO
(00931) | PERCENT
(00932)
46
26 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
104
110 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
83.1
46.0 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
71.7
22.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
8.0
4.0 | SUM OF
CONSTITUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 11.6 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | NOV
01
MAR
28
MAY
01
JUN | AD-
SORP-
TION
RATIO
(00931)
2
.9 | PERCENT (00932) 46 26 30 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
9.86
4.32
4.69 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 <1 <1 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
126
133 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
104
110 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
83.1
46.0 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
71.7
22.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
8.0
4.0 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
424
226
230 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
11.6
1.19
2.04 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
.079 | ## 08062500 Trinity River near Rosser, TX--Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | |-----------|--|--|--|--|--|--|--| | NOV | | | | | | | | | 01 | 11.7 | .07 | .87 | .93 | 2.02 | 1.88 | 5.77 | | MAR
28 | 1.21 | . 05 | .39 | .44 | .12 | .12 | .371 | | Z8
MAY | 1.21 | .05 | . 39 | .44 | .12 | .12 | .3/1 | | 01 | 2.06 | E.03 | | .54 | . 26 | .23 | .711 | | JUN | | | | | | | | | 27 | 8.40 | .06 | .70 | .76 | 1.59 | 1.59 | 4.88 | | JUL | 6.04 | D 04 | | 7.5 | 0.4 | 0.77 | 2 22 | | 17
SEP | 6.94 | E.04 | | .75 | .94 | .97 | 2.98 | | 03 | 9.30 | <.04 | | .79 | 1.72 | 1.62 | 4.97 | Remark codes used in this report: < -- Less than E -- Estimated value SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|---------|------|-----|--------|------|-----|---------|------| | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | • | | 1 | 698 | 640 | 666 | 724 | 711 | 720 | 681 | 620 | 637 | | | | | 2 | 716 | 698 | 711 | 719 | 711 | 715 | 634 | 626 | 629 | | | | | 3 | 718 | 712 | 716 | 732 | 708 | 721 | 647 | 628 | 640 | 620 | 600 | 608 | | 4 | 716 | 708 | 712 | 716 | 707 | 711 | 674 | 647 | 665 | 628 | 620 | 624 | | 5 | 718 | 709 | 712 | 722 | 710 | 717 | 699 | 674 | 688 | 635 | 622 | 628 | | 6 | 731 | 541 | 662 | 731 | 718 | 726 | 708 | 691 | 699 | 655 | 634 | 641 | | 7 | 613 | 428 | 500 | 731 | 718 | 724 | 726 | 701 | 710 | 664 | 653 | 657 | | 8 | 564 | 445 | 532 | 725 | 701 | 718 | 725 | 701 | 714 | 660 | 646 | 653 | | 9 | 618 | 564 | 589 | 706 | 703 | 704 | 711 | 684 | 701 | 662 | 648 | 656 | | 10 | 671 | 618 | 649 | 722 | 703 | 714 | 684 | 653 | 671 | 669 | 658 | 664 | | 11 | 685 | 474 | 662 | | | | 678 | 655 | 672 | 676 | 667 | 672 | | 12 | 502 | 360 | 411 | | | | 708 | 676 | 692 | 675 | 666 | 671 | | 13 | 412 | 281 | 383 | | | | 713 | 697 | 708 | 699 | 668 | 682 | | 14 | 396 | 276 | 303 | 653 | 619 | 635 | 700 | 684 | 694 | | | | | 15 | 377 | 278 | 352 | 689 | 631 | 664 | 687 | 585 | 622 | | | | | 16 | 428 | 377 | 401 | 678 | 602 | 636 | | | | 728 | 623 | 683 | | 17 | 483 | 428 | 459 | 617 | 602 | 611 | | | | 730 | 725 | 728 | | 18 | 530 | 483 | 498 | 644 | 617 | 630 | | | | | | | | 19 | 561 | 530 | 552 | 676 | 644 | 662 | | | | | | | | 20 | 588 | 538 | 562 | 704 | 676 | 692 | | | | | | | | 21 | 604 | 588 | 599 | 723 | 704 | 712 | | | | | | | | 22 | 626 | 589 | 609 | 723 | 668 | 694 | | | | | | | | 23 | 643 | 623 | 631 | 668 | 653 | 658 | | | | | | | | 24 | 662 | 643 | 655 | 698 | 664 | 678 | | | | | | | | 25 | 669 | 662 | 667 | 700 | 693 | 697 | | | | | | | | 26 | 677 | 666 | 670 | 708 | 698 | 704 | | | | | | | | 27 | 691 | 677 | 684 | 719 | 699 | 710 | | | | | | | | 28 | 692 | 670 | 680 | 701 | 690 | 697 | | | | | | | | 29 | 703 | 692 | 699 | 704 | 674 | 692 | | | | | | | | 30 | 718 | 703 | 713 | 681 | 642 | 661 | | | | | | | | 31 | 729 | 712 | 721 | | | | | | | | | | | MONTH | 731 | 276 | 592 | | | | | | | | | | 08062500 Trinity River near Rosser, TX--Continued SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPECIF | IC CONDUC | CIANCE | FROM DCP, | III US/CM | @ 25C, | WAIER YEAR | COCTOBER | 2001 10 | SEPTEMBER | 2002 | | |---|---|--|---|---|---|---|--|---|---|---|--|---| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 726 | 719 | 700 | | | | 400 | 200 | 202 | | 2 | | | | 730 | 720 | 723
726 | | | | 416 | 388
396 | 393
405 | | 3 | | | | 734 | 716 | 724 | | | | 417 | 407 | 412 | | 4 | | | | 743 | 716 | 733 | | | | 418 | 404 | 408 | | 5 | | | | 722 | 705 | 713 | | | | 448 | 270 | 402 | | 6 | | | | 726 | 711 | 710 | | | | 321 | 262 | 206 | | 6
7 | | | | 726
732 | 711
712 | 719
722 | | | | 347 | 263
321 | 296
333 | | 8 | | | | 756 | 722 | 745 | | | | 371 | 345 | 358 | | 9 | | | | 760 | 753 | 757 | | | | 430 | 371 | 398 | | 10 | | | | 759 | 749 | 755 | | | | 439 | 288 | 374 | | 11 | | | | 775 | 750 | 7.00 | | | | 400 | 222 | 200 | | 11
12 | | | | 775
752 | 752
732 | 766
739 | | | | 402
379 | 333
333 | 366
371 | | 13 | 591 | 567 | 579 | 760 | 745 | 757 | 415 | 401 | 409 | 401 | 369 | 381 | | 14 | 656 | 591 | 633 | 762 | 750 | 756 | 403 | 399 | 401 | 388 | 374 | 384 | | 15 | 664 | 648 | 654 | 770 | 749 | 756 | 412 | 401 | 408 | 409 | 382 | 395 | | 1.0 | 605 | | 600 | | 7.66 | 5.60 | 106 | 205 | 407 | 410 | 400 | 400 | | 16 | 685 | 664 | 679
693 | 771
769 | 766
758 | 769 | 406
402 | 397
272 | 401
353 | 410
428 | 408
409 | 409
416 | | 17
18 | 701
719 | 684
693 | 704 | 771 | 763 | 763
767 | 359 | 254 | 300 | 428 | 378 | 397 | | 19 | 728 | 709 | 716 | | | | 346 | 299 | 318 | 398 | 354 | 380 | | 20 | 728 | 706 | 719 | | | | 360 | 340 | 350 | 430 | 398 | 417 | | | | | | | | | | | | | | | | 21 | 747 | 725 | 735 | | | | 385 | 356 | 369 | 437 | 430 | 434 | | 22
23 | 731
703 | 661
673 | 678
688 | | | | 385
387 | 378
380 | 381
383 | 438
425 | 422
421 | 433
423 | | 24 | 703 | 703 | 710 | | | | 388 | 380 | 383 | 468 | 420 | 436 | | 25 | 735 | 721 | 731 | | | | 383 | 374 | 381 | 507 | 468 | 493 | | | | | | | | | | | | | | | | 26 | 745 | 735 | 738 | | | | 382 | 367 | 374 | 541 | 507 | 524 | | 27
28 | 754
746 | 745
717 | 749
731 | | | | 385
390 | 371
376 | 378
383 | 598
591 | 541
522 | 573
541 | | 29 | | 717 | 731 | | | | 390 | 384 | 388 | 578 | 449 | 538 | | 30 | | | | | | | 392 | 381 | 387 | | | | | 31 | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBI | | | | MAX | | MEAN | | JULY | | | AUGUST | | | SEPTEMBI | ER | | DAY
1
2 | | JUNE | | MAX
566
527 | | MEAN
510
470 | MAX
763
759 | | MEAN
751
730 | MAX
630
685 | | | | 1
2
3 | | JUNE

 | | 566
527
473 | JULY
453
436
405 | 510
470
425 | 763
759
668 | AUGUST
741
668
645 | 751
730
654 | 630
685
708 | SEPTEMBI
571
630
685 | ER
604
660
698 | | 1
2
3
4 | | JUNE

 |

 | 566
527
473
457 | JULY 453 436 405 391 | 510
470
425
424 | 763
759
668
684 | 741
668
645
650 | 751
730
654
670 | 630
685
708
723 | 571
630
685
708 | 604
660
698
717 | | 1
2
3 | | JUNE

 | | 566
527
473 | JULY
453
436
405 | 510
470
425 | 763
759
668 | AUGUST
741
668
645 | 751
730
654 | 630
685
708 | SEPTEMBI
571
630
685 | ER
604
660
698 | | 1
2
3
4
5 | | JUNE

 |

 | 566
527
473
457
450 | JULY 453 436 405 391 382 | 510
470
425
424
400 |
763
759
668
684
703 | 741
668
645
650
672 | 751
730
654
670
687 | 630
685
708
723
720 | 571
630
685
708
708 | 604
660
698
717
716 | | 1
2
3
4 |

 | JUNE

 |

 | 566
527
473
457 | JULY 453 436 405 391 | 510
470
425
424 | 763
759
668
684 | 741
668
645
650 | 751
730
654
670 | 630
685
708
723 | 571
630
685
708 | 604
660
698
717 | | 1
2
3
4
5 |

721 | JUNE 712 |

717 | 566
527
473
457
450
456
549
569 | JULY 453 436 405 391 382 410 456 542 | 510
470
425
424
400
431
498
555 | 763
759
668
684
703
711
730
737 | 741
668
645
650
672
696
711
726 | 751
730
654
670
687
702
724
732 | 630
685
708
723
720
738
742
744 | 571
630
685
708
708
713
736
720 | 604
660
698
717
716
722
740
735 | | 1
2
3
4
5
6
7
8
9 |

721 | JUNE 712 689 |

717
717 | 566
527
473
457
450
456
549
569
558 | JULY 453 436 405 391 382 410 456 542 512 | 510
470
425
424
400
431
498
555
524 | 763
759
668
684
703
711
730
737
740 | 741
668
645
650
672
696
711
726
726 | 751
730
654
670
687
702
724
732
736 | 630
685
708
723
720
738
742
744
736 | 571
630
685
708
708
713
736
720
610 | 604
660
698
717
716
722
740
735
705 | | 1
2
3
4
5 |

721 | JUNE 712 |

717 | 566
527
473
457
450
456
549
569 | JULY 453 436 405 391 382 410 456 542 | 510
470
425
424
400
431
498
555 | 763
759
668
684
703
711
730
737 | 741
668
645
650
672
696
711
726 | 751
730
654
670
687
702
724
732 | 630
685
708
723
720
738
742
744 | 571
630
685
708
708
713
736
720 | 604
660
698
717
716
722
740
735 | | 1
2
3
4
5
6
7
8
9 |

721
734
689 | JUNE 712 689 580 |

717
717
619 | 566
527
473
457
450
456
549
569
558 | JULY 453 436 405 391 382 410 456 542 512 521 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760 | 741
668
645
650
672
696
711
726
726
735 | 751
730
654
670
687
702
724
732
736
748 | 630
685
708
723
720
738
742
744
736
668 | 571
630
685
708
708
713
736
720
610
498 | 604
660
698
717
716
722
740
735
705
551 | | 1
2
3
4
5
6
7
8
9 |

721 | JUNE 712 689 |

717
717 | 566
527
473
457
450
456
549
569
558 | JULY 453 436 405 391 382 410 456 542 512 | 510
470
425
424
400
431
498
555
524 | 763
759
668
684
703
711
730
737
740 | 741
668
645
650
672
696
711
726
726 | 751
730
654
670
687
702
724
732
736 | 630
685
708
723
720
738
742
744
736 | 571
630
685
708
708
713
736
720
610 | 604
660
698
717
716
722
740
735
705 | | 1
2
3
4
5
6
7
8
9
10 |

721
734
689
580
617
619 | JUNE 712 689 580 553 553 558 |

717
717
619
568
589
585 | 566
527
473
457
450
456
549
569
558
585 | JULY 453 436 405 391 382 410 456 542 512 521 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760
742
529
446 | 741
668
645
650
672
696
711
726
726
735
311
370
391 | 751
730
654
670
687
702
724
732
736
748
460
409
421 | 630
685
708
723
720
738
742
744
736
668
575
567
575 | 571
630
685
708
708
713
736
720
610
498
520
526
535 | 604
660
698
717
716
722
740
735
705
551 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

721
734
689
580
617
619
593 | JUNE 712 689 580 553 553 558 556 |

717
719
568
589
585
571 | 566
527
473
457
450
456
549
569
558
585 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617 | 571
630
685
708
708
713
736
720
610
498
520
526
535
575 | 604
660
698
717
716
722
740
735
551
553
541
551
603 | | 1
2
3
4
5
6
7
8
9
10 |

721
734
689
580
617
619 | JUNE 712 689 580 553 553 558 |

717
717
619
568
589
585 | 566
527
473
457
450
456
549
569
558
585 | JULY 453 436 405 391 382 410 456 542 512 521 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760
742
529
446 | 741
668
645
650
672
696
711
726
726
735
311
370
391 | 751
730
654
670
687
702
724
732
736
748
460
409
421 | 630
685
708
723
720
738
742
744
736
668
575
567
575 | 571
630
685
708
708
713
736
720
610
498
520
526
535 | 604
660
698
717
716
722
740
735
705
551
553
541
551 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

721
734
689
580
617
619
593
618 | JUNE 712 689 580 553 558 556 589 |

717
717
619
568
589
585
571
604 | 566
527
473
457
450
456
549
569
558
585 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652 | 571
630
685
708
708
736
720
610
498
520
526
535
575
616 | 604
660
698
717
716
722
740
735
705
551
553
541
551
603
631 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

721
734
689
580
617
619
593 | JUNE 712 689 580 553 553 558 556 |

717
719
568
589
585
571 | 566
527
473
457
450
456
549
558
585
622
 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
609
 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617 | 571
630
685
708
708
713
736
720
610
498
520
526
535
575 | 604
660
698
717
716
722
740
735
551
553
541
551
603 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

721
734
689
580
617
619
593
616
641
544 | JUNE 712 689 580 553 558 556 589 594 530 489 |

717
717
619
568
589
585
571
604 | 566
527
473
457
450
456
549
558
585
622
 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616
646
577
550 | 741
668
645
650
672
696
711
726
735
311
370
391
446
518 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
609
545
526 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730 | SEPTEMBI 571 630 685 708 708 736 720 610 498 520 526 535 575 616 652 681 712 | 604
660
698
717
716
722
740
735
705
551
553
541
551
603
631
660
704
723 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

721
734
689
580
617
619
593
618
616
641
544
541 | JUNE 712 689 580 553 558 556 589 594 530 489 524 |

717
717
619
568
589
585
571
604
598
581
527 | 566
527
473
457
450
456
549
569
558
585
622
 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
760
742
529
446
518
616 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744 | SEPTEMBI 571 630 685 708 708 713 736 720 610 498 520 526 535 575 616 652 681 712 730 | 604
6608
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

721
734
689
580
617
619
593
616
641
544 | JUNE 712 689 580 553 558 556 589 594 530 489 |

717
717
619
568
589
585
571
604 | 566
527
473
457
450
456
549
558
585
622
 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616
646
577
550 | 741
668
645
650
672
696
711
726
735
311
370
391
446
518 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
609
545
526 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730 | SEPTEMBI 571 630 685 708 708 736 720 610 498 520 526 535 575 616 652 681 712 | 604
660
698
717
716
722
740
735
705
551
553
541
551
603
631
660
704
723 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 |

721
734
689
580
617
619
593
618
616
641
544
541
569 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 |

717
717
619
568
589
585
571
604
598
581
524
527
546 | 566
527
473
457
450
456
549
569
558
622

571 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 | 510
470
425
424
400
431
498
555
524
544
609

495 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616
646
577
550
605
638 | 741
668
645
650
672
696
711
726
735
311
370
391
446
518
564
515
505
524
605 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
609
545
526
568
624 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744
747 | SEPTEMBI 571 630 685 708 708 736 720 610 498 520 526 535 575 616 652 681 712 730 434 | 604
660
698
717
716
722
740
735
705
551
553
541
551
603
631
600
704
723
737
592 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

721
734
689
580
617
619
593
618
616
641
544
541 | JUNE 712 689 580 553 558 556 589 594 530 489 524 |

717
717
619
568
589
585
571
604
598
581
527 | 566
527
473
457
450
456
549
569
558
585
622
 | JULY 453 436 405 391 382 410 456 542 512 521 585 | 510
470
425
424
400
431
498
555
524
544 | 763
759
668
684
703
711
730
760
742
529
446
518
616 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744 | SEPTEMBI 571 630 685 708 708 713 736 720 610 498 520 526 535 575 616 652 681 712 730 | 604
660
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |

721
734
689
580
617
619
593
618
616
641
544
541
545
608
664
704 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 |

717
619
568
589
585
571
604
598
524
527
546
590
638 | 566
527
473
457
450
456
549
569
558
585
622

571 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 | 510
470
425
424
400
431
498
555
524
544
609

495 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616
646
577
550
605
638
693
669
675 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518
564
515
505
524
605 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
609
545
526
526
624 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744
747 | SEPTEMBI 571 630 685 708 708 736 720 610 498 520 526 535 575 616 652 681 712 730 434 410 530 571 | 604
660
698
717
716
722
740
735
705
551
553
541
551
603
631
660
704
723
737
592
446
589 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

721
734
689
580
617
619
593
618
616
641
541
569
608
668
6704
704 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 704 |

717
717
619
568
589
585
571
604
598
581
527
546
590
634
687
721 | 566
527
473
457
450
456
549
558
585
622

571
618
646
668 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661 | 763 759 668 684 703 711 730 737 740 760 742 529 446 577 550 638 693 669 675 678 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518
564
515
505
524
605 | 751
730
654
670
687
702
734
736
748
460
409
421
480
549
609
545
526
624
671
657
672
666 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744
747 | SEPTEMBI 571 630 685 708 708 713 736 610 498 520 526 535 575 616 652 681 712 730 434 410 530 571 574 | 604
6604
6608
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
592
446
582
582
590 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |

721
734
689
580
617
619
593
618
616
641
544
541
545
608
664
704 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 |

717
619
568
589
585
571
604
598
524
527
546
590
638 | 566
527
473
457
450
456
549
569
558
585
622

571
618
646
668 | JULY 453 436 405 391 382 410 456 542 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616
646
577
550
605
638
693
669
675 | 741
668
645
650
672
696
711
726
735
311
370
391
446
518
564
515
505
524
605 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
545
526
568
624
671
657
672 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744
747 | SEPTEMBI 571 630 685 708 708 736 720 610 498 520 526 535 575 616 652 681 712 730 434 410 530 571 | 604
660
698
717
716
722
740
735
705
551
553
541
551
603
631
660
704
723
737
592
446
589 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |

721
734
689
580
617
619
593
618
616
641
544
541
569
608
664
704
741
748 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 704 741 |

717
619
568
589
585
571
604
598
581
524
527
546
590
634
687
721
745 | 566
527
473
457
450
456
549
558
585
622

571
618
646
668 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661 | 763
759
668
684
703
711
730
760
742
529
446
518
616
646
577
550
605
638
693
669
675
678
702 |
741
668
645
650
672
696
711
726
735
311
370
391
446
518
564
515
505
524
605 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
545
526
568
624
671
657
672
666
687 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744
747
530
611
617
600
646 | \$\$\text{SEPTEMBI}\$\$ \$711 630 685 708 708 713 736 720 610 498 \$\$526 535 575 616 652 681 712 730 434 410 530 571 574 600 | 604
660
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
592
446
582
589
590
628 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

721
734
689
580
617
619
593
618
616
641
541
569
608
668
6704
704 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 704 |

717
717
619
568
589
585
571
604
598
581
527
546
590
634
687
721 | 566
527
473
457
450
456
549
558
585
622

571
618
646
668
 | JULY 453 436 405 391 382 410 456 542 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661
 | 763 759 668 684 703 711 730 737 740 760 742 529 446 577 550 638 693 669 675 678 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518
564
515
505
524
605 | 751
730
654
670
687
702
734
736
748
460
409
421
480
549
609
545
526
624
671
657
672
666 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
744
747 | SEPTEMBI 571 630 685 708 708 713 736 610 498 520 526 535 575 616 652 681 712 730 434 410 530 571 574 | 604
660
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
592
446
582
582
589
628 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |

721
734
689
580
617
619
593
618
616
641
544
541
569
608
664
704
741
748
744
710
738 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 704 741 684 694 708 |

717
717
619
568
589
585
571
604
598
581
524
527
546
590
634
687
721
745
702
698
719 | 566
527
473
457
450
456
549
558
585
622

571
618
646
668
 | JULY 453 436 405 391 382 410 456 542 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661
 | 763
759
668
684
703
711
730
737
740
760
742
529
446
518
616
646
577
550
605
638
693
669
675
678
702
722
754
754 | 741
668
645
645
672
696
711
726
735
311
370
391
446
518
564
515
505
524
605
637
661
667
661
672 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
545
526
568
624
671
672
666
687
714
730
644 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
632
681
714
730
744
747
600
646
670
646 | SEPTEMBI 571 630 685 708 708 713 736 720 610 498 526 535 575 616 652 681 712 730 434 410 530 571 574 600 644 661 689 | 604
660
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
592
446
582
589
590
628
666
668
668 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

721
734
689
580
617
619
593
618
616
641
541
569
608
664
741
748
744
710
738
716 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 704 741 684 694 708 581 |

717
717
619
568
589
585
571
604
598
581
524
527
546
590
634
687
721
745 | 566
527
473
457
450
456
549
558
585
622

571
618
646
668
668 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 618 646 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661
 | 763 759 668 684 703 711 730 760 742 529 446 577 550 638 693 669 675 678 702 722 754 512 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518
564
515
505
524
605
637
661
667
661
678 | 751
730
654
670
687
702
724
736
748
460
409
421
480
549
609
545
526
658
624
671
657
672
666
687
714
730 | 630
685
708
723
720
738
742
744
736
668
575
567
617
652
681
714
730
744
747
530
611
617
600
646 | SEPTEMBI 571 630 685 708 708 713 736 610 498 520 526 535 575 616 652 681 712 730 434 410 530 571 574 600 644 661 689 709 | 604
6604
6608
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
592
446
582
582
582
582
582
582
668
703
720 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 |

721
734
689
580
617
619
593
618
616
641
544
544
541
569
608
664
704
748
748
710
738
716
581 | JUNE 712 689 580 553 553 558 556 589 594 530 489 524 527 569 608 664 704 741 684 694 708 581 433 |

717
717
619
568
589
585
571
604
598
581
524
524
524
524
524
524
721
745 | 566
527
473
457
450
456
549
569
558
585
622

571
618
646
668
 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661
 | 763 759 668 684 703 711 730 737 740 760 742 529 446 518 616 646 577 550 605 638 693 669 675 678 702 722 754 754 754 512 515 | 741
668
645
650
672
696
711
726
735
311
370
391
446
518
564
515
505
637
651
667
661
678 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
609
545
526
667
672
666
687
714
730
644
479
501 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
611
617
600
646
670
689
710
726
728 | SEPTEMBI 571 630 685 708 708 713 736 720 610 498 520 526 5375 616 652 681 712 730 434 410 530 571 574 600 644 661 689 709 717 | 604
660
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
737
592
446
582
589
590
628 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

721
734
689
580
617
619
593
618
616
641
541
569
608
664
741
748
744
710
738
716 | JUNE 712 689 580 553 558 556 589 594 530 489 524 527 569 608 664 704 741 684 694 708 581 |

717
717
619
568
589
585
571
604
598
581
524
527
546
590
634
687
721
745 | 566
527
473
457
450
456
549
558
585
622

571
618
646
668
668 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 618 646 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661
 | 763 759 668 684 703 711 730 760 742 529 446 577 550 638 693 669 675 678 702 722 754 512 | 741
668
645
650
672
696
711
726
726
735
311
370
391
446
518
564
515
505
524
605
637
661
667
661
678 | 751
730
654
670
687
702
724
736
748
460
409
421
480
549
609
545
526
658
624
671
657
672
666
687
714
730 | 630
685
708
723
720
738
742
744
736
668
575
567
617
652
681
714
730
744
747
530
611
617
600
646 | SEPTEMBI 571 630 685 708 708 713 736 610 498 520 526 535 575 616 652 681 712 730 434 410 530 571 574 600 644 661 689 709 | 604
6604
6608
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
592
446
582
582
582
582
582
582
668
703
720 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 |

721
734
689
580
617
619
593
618
616
641
544
544
541
569
608
664
704
748
748
710
738
716
581 | JUNE 712 689 580 553 553 558 556 589 594 530 489 524 527 569 608 664 704 741 684 694 708 581 433 |

717
717
619
568
589
585
571
604
598
581
524
524
524
524
524
524
721
745 | 566
527
473
457
450
456
549
569
558
585
622

571
618
646
668
 | JULY 453 436 405 391 382 410 456 542 512 521 585 411 571 618 646 | 510
470
425
424
400
431
498
555
524
544
609

495
598
632
661
 | 763 759 668 684 703 711 730 737 740 760 742 529 446 518 616 646 577 550 605 638 693 669 675 678 702 722 754 754 754 512 515 | 741
668
645
650
672
696
711
726
735
311
370
391
446
518
564
515
505
637
651
667
661
678 | 751
730
654
670
687
702
724
732
736
748
460
409
421
480
549
609
545
526
667
672
666
687
714
730
644
479
501 | 630
685
708
723
720
738
742
744
736
668
575
567
575
617
652
681
714
730
611
617
600
646
670
689
710
726
728 | SEPTEMBI 571 630 685 708 708 713 736 720 610 498 520 526 5375 616 652 681 712 730 434 410 530 571 574 600 644 661 689 709 717 | 604
660
698
717
716
722
740
735
551
553
541
551
603
631
660
704
723
737
737
592
446
582
589
590
628 | 229 08062500 Trinity River near Rosser, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------|----------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | OCT | OBER | NOVEM | IBER | DECEM | IBER | JANU | JARY | FEBR | UARY | MAI | RCH | | 1
2
3
4
5 | 8.1
8.2
8.1
8.1
7.9 | 7.9
7.9
7.9
7.9
7.8 | 7.9
7.9
7.8
7.8
7.8 | 7.8
7.8
7.7
7.7 | 7.5
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.4 |

 | |

 | | 8.5
8.4
8.5
8.5
8.6 | 8.2
8.2
8.3
8.2
8.2 | | 6
7
8
9
10 | 7.8
7.7
7.8
7.9
7.9 | 7.7
7.6
7.7
7.8
7.8 | 7.9
7.9
7.9
7.9
7.9 | 7.7
7.7
7.7
7.7
7.8 | 7.6
7.5
7.5
7.6
7.7 | 7.5
7.5
7.5
7.5
7.6 |

 | |

 |

 | 8.6
8.5
8.1
8.2
8.1 | 8.2
8.1
8.0
7.9 | | 11
12
13
14
15 | 7.9
7.7
7.7
7.6
7.5 | 7.5
7.5
7.6
7.4
7.4 |

8.0 |

7.9 | 7.6
7.6
7.6
7.6
7.6 | 7.6
7.5
7.5
7.5
7.5 |

 |

 | 8.1
8.1
8.2 | 8.1
8.1
8.1 | 8.0
8.1
8.2
8.4
8.4 | 7.9
7.9
7.9
7.9
8.0 | | 16
17
18
19
20 | 7.5
7.7
7.7
7.7
7.8 | 7.5
7.5
7.6
7.7
7.7 | 7.9
7.6
7.6
7.6
7.7 | 7.6
7.5
7.6
7.6 |

 |

 |

 | | 8.2
8.2
8.2
8.2
8.2 | 8.2
8.2
8.1
8.1 | 8.3
8.1
8.0
 | 8.0
8.0
8.0 | | 21
22
23
24
25 | 7.8
7.9
8.0
8.0 | 7.7
7.8
7.9
7.9
7.9 | 7.7
7.8
7.8
7.7
7.7 | 7.6
7.7
7.7
7.6
7.6 |

 |

 |

 | | 8.2
8.3
8.3
8.4
8.4 | 8.1
8.1
8.2
8.2
8.2 |

 |

 | | 26
27
28
29
30
31 | 7.8
7.8
7.9
7.8
7.8
7.9 | 7.6
7.6
7.7
7.7
7.7 | 7.8
7.7
7.7
7.6
7.5 | 7.6
7.6
7.5
7.4 |

 |

 |

 |

 | 8.5
8.6
8.6
 | 8.3
8.4
8.3
 |

 |

 | | MONTH | 8.2 | 7.4 | | | | | | | | | | | 08062500 Trinity River near Rosser, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------|---------------------------------| | | APF | RIL | MA | Y | JUN | Œ | JUL | Y | AUGU | JST | SEPTE | MBER | | 1
2
3
4
5 | | | 8.1
8.1
7.9
7.9
8.0 | 7.9
7.7
7.7
7.6
7.6 | 7.8
7.8
7.9
8.0 | 7.6
7.7
7.7
7.8
7.7 | 7.8
7.7
7.6
7.6
7.6 | 7.7
7.6
7.5
7.5
7.5 | 8.1
8.2
8.2
8.3
8.4 | 7.8
7.9
7.8
7.9
7.9 | 8.0
8.0
8.1
8.1 | 7.6
7.7
7.7
7.8
7.8 | | 6
7
8
9
10 | | | 8.2
7.7
8.0
7.9
8.1 | 7.5
7.0
7.2
7.2
7.8 | 7.9
7.8
7.6
7.6
7.5 | 7.7
7.5
7.4
7.5
7.4 | 7.7
7.7
7.7
7.7
7.8 | 7.6
7.6
7.6
7.6
7.7 | 8.5
8.4
8.2
8.2
8.1 | 8.0
8.0
7.9
7.8
7.6 | 8.1
8.0
8.0
7.8
7.6 | 7.8
7.7
7.8
7.5
7.5 | | 11
12
13
14
15 |
7.4
7.5
7.4 |
6.9
7.0 | 8.2
8.3
8.3
8.4
8.4 | 7.4
8.1
8.1
8.2
8.2 | 7.7
8.2
8.3
7.8
7.6 | 7.5
7.7
7.6
7.6
7.4 | 7.9

 | 7.7

 | 7.7
7.5
7.7
7.8
7.9 | 7.4
7.3
7.5
7.7
7.8 | 7.8
7.9
8.0
7.9
8.0 | 7.6
7.7
7.8
7.8
7.8 | | 16
17
18
19
20 | 7.3
8.2
8.2
8.2
8.2 | 6.9
6.8
7.4
7.6
7.7 | 8.6
8.5
8.5
8.3
8.4 | 8.3
8.3
8.0
8.0 | 7.7
8.4
7.9
7.9
8.1 | 7.4
7.6
7.6
7.8
7.9 |

7.9
8.0 |

7.7
7.7 | 7.8
7.8
7.8
8.0
8.4 | 7.6
7.7
7.7
7.7
7.9 | 8.0
8.1
8.1
7.9
7.8 | 7.8
7.9
7.8
7.8
7.6 | | 21
22
23
24
25 | 8.2
8.1
8.1
8.1
8.1 | 8.0
8.0
7.9
7.9 | 8.5
8.4
8.4
8.3
8.3 | 8.2
8.2
8.2
8.2
8.1 | 8.2
8.3
8.2
8.3
8.3 | 8.0
8.2
8.1
8.1
8.2 | 8.2
8.4
8.6
 | 7.9
8.0
8.2 | 8.6
8.6
8.4
8.3 | 8.2
8.1
8.0
7.8
7.8 | 7.7
7.8
8.0
8.0 | 7.6
7.7
7.8
7.8
7.9 | | 26
27
28
29
30
31 | 8.1
8.0
8.1
8.1
8.0 | 7.8
7.8
7.9
7.8
7.9 | 8.2
8.2
8.2
8.2
8.1
7.7 | 8.1
8.2
8.1
8.1
7.6
7.4 | 8.2
8.0
8.0
7.8 | 8.0
8.0
8.0
7.8
7.6 |

8.2 |

7.9 | 8.0
7.8
7.5
7.5
7.6
7.9 | 7.7
7.5
7.3
7.3
7.5
7.6 | 8.1
8.1
8.1
8.0 | 7.9
7.9
7.9
7.9
7.9 | | MONTH | | | 8.6 | 7.0 | 8.4 | 7.4 | | | 8.6 | 7.3 | 8.2 | 7.5 | TRINITY RIVER BASIN 231 08062500 Trinity River near Rosser, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|---|--|---|--|--|---|--| | | | OCTOBER | | | NOVEMBER | | 1 | DECEMBER | | | JANUARY | | | 1 2 | 24.6
24.7 | 23.2
23.2 | 23.9
24.0 | 20.6
21.5 | 19.2
20.6 | 19.9
21.1 | 12.5
13.9 | 11.6
12.5 | 12.0
13.3 | | | | | 3 | 24.5 | 23.3 | 24.0 | 22.3 | 21.2 | 21.8 | 15.3 | 13.9 | 14.8 | | | | | 4
5 | 24.9
24.7 | 23.6
23.4 | 24.2 | 22.6
22.5 | 21.8 | 22.2 | 17.4
18.7 | 15.3 | 16.4 | | | | | | | | 24.3 | | 21.7 | 22.1 | | 17.4 | 18.1 | | | | | 6
7 | 23.4
22.2 | 21.9
21.1 | 22.4
21.4 | 22.4
21.8 | 21.5
21.0 | 21.9
21.4 | 19.8
20.3 | 18.7
19.8 | 19.4
20.1 | | | | | 8 | 21.5 | 20.9 | 21.2 | 21.5 | 20.6 | 21.0 | 20.2 | 18.0 | 19.3 | | | | | 9
10 | 21.7
23.0 | 20.9
21.6 | 21.3
22.3 | 21.1
20.1 | 20.1
19.5 | 20.7
19.7 | 18.0
16.1 | 16.1
14.7 |
16.9
15.4 | | | | | 10 | 23.0 | 21.0 | 22.3 | 20.1 | 19.5 | 19.7 | 10.1 | 17./ | 13.4 | | | | | 11
12 | 23.4
21.9 | 21.8
20.9 | 23.0
21.4 | | | | 14.7
14.8 | 13.8 | 14.2
14.2 | | | | | 13 | 21.7 | 19.3 | 21.4 | | | | 14.0 | 13.7
14.0 | 14.5 | | | | | 14 | 21.4 | 18.9 | 19.4 | 20.5 | 19.8 | 20.2 | 14.3 | 13.7 | 14.0 | | | | | 15 | 20.0 | 18.9 | 19.5 | 20.6 | 20.2 | 20.4 | 14.2 | 13.3 | 13.6 | | | | | 16 | 19.9 | 18.8 | 19.3 | 20.4 | 19.9 | 20.2 | | | | | | | | 17
18 | 19.3
19.2 | 18.6
18.6 | 19.0
18.8 | 20.4 | 19.8
20.0 | 20.1
20.1 | | | | | | | | 19 | 20.2 | 19.2 | 19.5 | 20.3 | 19.1 | 19.9 | | | | | | | | 20 | 21.0 | 20.1 | 20.5 | 19.1 | 17.9 | 18.5 | 12.5 | 11.6 | 11.9 | | | | | 21 | 21.7 | 20.9 | 21.3 | 17.9 | 17.1 | 17.5 | | | | | | | | 22 | 22.7 | 21.5 | 22.1 | 17.4 | 16.7 | 17.1 | | | | | | | | 23
24 | 23.9
24.2 | 22.5
23.5 | 23.3
23.8 | 18.2
18.3 | 17.1
17.7 | 17.6
18.0 | | | | | | | | 25 | | | | 17.8 | 17.0 | 17.5 | | | | | | | | 26 | | | | 17.9 | 17.2 | 17.5 | | | | | | | | 27 | 21.5 | 20.5 | 21.0 | 17.8 | 15.6 | 16.8 | | | | | | | | 28
29 | 20.5
19.6 | 19.5
18.8 | 19.9
19.2 | 15.6
13.2 | 13.2
12.5 | 14.3
12.7 | | | | | | | | 30 | 19.4 | | 18.9 | 12.5 | 11.6 | 12.0 | | | | | | | | 31 | 19.5 | 18.6 | 19.1 | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY
1 | | | MEAN | MAX
12.3 | MARCH | MEAN | | | MEAN | MAX
23.6 | | MEAN
23.1 | | 1
2 | | FEBRUARY | | 12.3
12.1 | MARCH
11.8
10.4 | 12.0
11.5 | | APRIL | | 23.6
23.3 | MAY
22.5
22.2 | 23.1
22.7 | | 1
2
3 | | FEBRUARY | | 12.3
12.1
10.4 | MARCH
11.8
10.4
9.4 | 12.0
11.5
9.7 | | APRIL | | 23.6
23.3
22.2 | MAY
22.5
22.2
20.9 | 23.1
22.7
21.5 | | 1
2 | | FEBRUARY | | 12.3
12.1 | MARCH
11.8
10.4 | 12.0
11.5 |
 | APRIL | | 23.6
23.3 | MAY
22.5
22.2 | 23.1
22.7 | | 1
2
3
4
5 |

 | FEBRUARY |

 | 12.3
12.1
10.4
10.2
10.8 | MARCH 11.8 10.4 9.4 9.8 10.0 | 12.0
11.5
9.7
10.0
10.4 | | APRIL |

 | 23.6
23.3
22.2
22.3
22.7 | MAY 22.5 22.2 20.9 20.7 21.6 | 23.1
22.7
21.5
21.4
22.2 | | 1
2
3
4
5 |

 | FEBRUARY | | 12.3
12.1
10.4
10.2
10.8 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7 |

 | APRIL | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5 | | 1
2
3
4
5 |

 | FEBRUARY |

 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8 | MARCH
11.8
10.4
9.4
9.8
10.0
10.7
12.6
14.3 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2 |

 | APRIL |

 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8 | | 1
2
3
4
5 |

 | FEBRUARY | | 12.3
12.1
10.4
10.2
10.8 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7 |

 | APRIL | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7 | MARCH
11.8
10.4
9.4
9.8
10.0
10.7
12.6
14.3
15.5
14.7 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9 | | APRIL | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.4 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY |

 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9 |

 | APRIL | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY 10.6 | | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.2
15.2
15.3
14.8
15.7 |

18.7 | APRIL 17.6 |

18.3 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.4
24.2
24.5
24.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
23.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 |

11.3 | FEBRUARY 10.6 11.3 |

11.0 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.6
16.5 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0 |

18.7 | APRIL 17.6 17.3 |

18.3 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.4
24.2
24.5
24.0
22.6 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.6 23.5 22.6 23.4 23.7 22.3 21.8 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
23.1
23.1
23.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

11.3
12.1
12.6 | FEBRUARY 10.6 11.3 12.1 |

11.0
11.7
12.3 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0 | APRIL 17.6 17.3 18.0 |

18.3
17.6
18.6 | 23.6
23.3
22.2
22.3
22.7
23.8
24.0
24.4
24.2
24.5
24.0
22.6
23.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
22.2
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 |

11.3
12.1
12.6 | FEBRUARY 10.6 11.3 12.1 12.4 |

11.0
11.7
12.3 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
16.5
18.0
19.3 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4 | APRIL 17.6 17.3 18.0 |

18.3
17.6
18.6 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.4
24.2
24.5
24.0
22.6
23.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
23.1
22.2
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

11.3
12.1
12.6
13.1
13.4
13.9 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 |

11.0
11.7
12.3 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4
19.5
20.2
20.8 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 |

18.3
17.6
19.1
19.3
20.3 | 23.6
23.3
22.2
22.3
22.7
23.8
24.0
24.4
24.4
24.5
24.5
24.0
22.6
23.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
22.2
22.5
23.0
23.1
22.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 13.9 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4
19.5
20.2
20.8
20.8 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 |

18.3
17.6
18.6
19.1
19.3
20.3
20.7 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.2
24.5
24.5
22.6
23.0
23.6
23.5
22.7 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.6 23.5
22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
22.2
22.5
23.0
23.1
22.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 13.9 15.2 |

11.0
11.7
12.3
12.7
13.5
14.8
15.5 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
19.4
19.5
20.2
20.8
21.0 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 |

18.3
17.6
19.1
19.3
20.3
20.7
20.7 | 23.6
23.3
22.2
22.3
22.7
23.8
24.0
24.4
24.4
24.5
24.0
22.6
23.0
23.6
23.5
22.7
22.3
23.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.1
22.2
22.5
23.0
23.1
22.2
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 13.9 15.2 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
15.5 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 |

18.3
17.6
18.6
19.1
19.3
20.3
20.7
20.7 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.2
24.5
24.5
22.6
23.0
23.6
23.5
22.7
22.3
23.0 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
24.1
23.1
22.2
22.5
23.0
23.1
22.2
22.5
23.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0
16.3 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 13.9 15.2 15.4 14.5 14.4 |

11.0
11.7
12.3
12.7
13.5
14.8
15.5 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5
 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.2
15.3
14.8
15.7
17.0
18.6
17.6
17.6 |

18.7
19.4
19.5
20.2
20.8
20.8
21.0 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 |

18.3
17.6
19.1
19.3
20.3
20.7
20.7 | 23.6
23.3
22.2
22.3
22.7
23.8
24.0
24.4
24.4
24.5
24.5
24.0
22.6
23.0
23.6
23.5
22.7
22.3
23.8 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.1
22.2
22.5
23.0
23.1
22.2
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 13.9 15.2 15.4 14.5 14.4 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
15.5 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0
21.1
20.4
21.2 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 20.3 19.7 20.2 21.2 |

18.3
17.6
18.6
19.1
19.3
20.3
20.7
20.7
20.8
20.0
20.6
21.6 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.2
24.5
24.5
22.6
23.0
23.6
23.5
22.7
22.3
23.0
23.3
23.4
23.4 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
24.1
23.1
22.2
22.5
23.0
23.1
22.2
22.5
23.6
23.8
23.9
24.1
23.1
22.2
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0
16.3 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 13.9 15.2 15.4 14.5 14.4 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
15.5
15.9
14.8 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5
 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.2
15.3
14.8
15.7
17.0
18.6
17.6
17.6 |

18.7
19.4
19.5
20.2
20.8
20.8
21.0 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 |

18.3
17.6
19.1
19.3
20.3
20.7
20.7
20.8
20.0
20.6 | 23.6
23.3
22.2
22.3
22.7
23.8
24.0
24.4
24.4
24.5
24.5
24.0
22.6
23.0
23.6
23.5
22.7
22.3
23.8 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.1
22.2
22.5
23.0
21.8
22.2
22.6
22.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0
16.3
15.4
15.5
16.5 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 12.1 12.4 14.5 14.5 14.5 14.5 14.5 14.7 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
15.5
15.9
14.8
14.7
15.1
15.8 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5
 | MARCH 11.8 10.4 9.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0
21.1
20.4
21.2
22.2
22.2 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 20.3 19.7 20.2 21.2 20.3 |

18.3
17.6
18.6
19.1
19.3
20.3
20.7
20.7
20.8
20.0
20.6
21.6
21.4 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.2
24.5
24.5
22.6
23.0
23.6
23.5
22.7
22.3
23.0
23.3
23.4
23.3
23.4 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 22.0 22.2 23.3 21.4 22.9 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.9
23.3
23.9
24.1
23.1
22.2
22.5
23.0
23.1
22.2
22.5
22.5
23.6
23.9
23.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 |

11.3
12.1
12.6
13.1
13.4
13.9
16.0
16.3
15.4
15.1
15.5
16.5 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 12.1 14.4 14.6 15.3 12.7 12.1 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
14.5
15.5
15.9
14.8
14.7
15.8 | 12.3
12.1
10.4
10.2
10.8
12.6
14.4
15.8
16.3
15.7
15.6
15.4
16.5
18.0
19.3
17.5
 | MARCH 11.8 10.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 11.8 17.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.2
15.3
14.8
15.7
17.0
18.6
17.6
17.2 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0
21.1
20.4
21.2
22.2
22.2 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 20.3 19.7 20.2 21.2 20.3 |

18.3
17.6
19.1
19.3
20.3
20.7
20.7
20.8
20.0
20.6
21.6
21.4 | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.4
24.5
24.5
24.5
22.6
23.0
23.6
23.5
22.7
23.3
23.4
23.4
23.4
23.4
23.4
23.4
23.4 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 22.0 22.2 22.3 22.2 22.3 22.4 22.9 |
23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
22.2
22.5
23.0
23.1
22.2
22.5
22.5
23.6
23.7
23.9
24.1
22.2
22.5
23.5
23.5
23.5
23.5
23.5
23.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0
16.3
15.4
15.5
16.5 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 12.1 12.4 13.0 13.3 13.9 15.2 15.4 14.5 14.5 14.6 15.3 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
15.5
15.9
14.8
14.7
15.1
15.8 | 12.3 12.1 10.4 10.2 10.8 12.6 14.4 15.8 16.3 15.7 15.6 15.4 16.5 18.0 19.3 17.5 | MARCH 11.8 10.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.5 14.7 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1 | 12.0 11.5 9.7 10.0 10.4 11.6 13.7 15.2 15.9 15.2 15.3 14.8 15.7 17.0 18.6 17.6 17.6 17.6 17.2 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0
21.1
20.4
21.2
22.2
22.2
22.2 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 20.3 19.7 20.2 21.2 20.3 18.8 18.8 20.1 21.8 | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.2
24.5
24.5
22.6
23.0
23.6
23.5
22.7
22.3
23.0
23.3
23.3
23.4
23.3
24.3 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 22.0 22.2 23.3 21.4 22.9 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.9
23.3
23.9
24.1
22.2
22.5
23.0
23.1
22.2
22.5
22.5
23.0
23.1
22.2
22.5
23.5
23.9
24.1
22.2
22.5
23.5
23.5
23.9
23.9
24.1
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 |

11.3
12.1
12.6
13.1
13.4
13.9
16.0
16.3
15.4
15.1
15.5
16.5 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 12.1 12.4 13.0 13.3 12.1 12.1 12.4 13.0 13.3 12.1 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
14.5
15.5
15.9
14.8
14.7
15.8 | 12.3 12.1 10.4 10.2 10.8 12.6 14.4 15.8 16.3 15.7 15.6 15.4 16.5 18.0 19.3 17.5 | MARCH 11.8 10.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.0 16.1 18.0 17.0 | 12.0
11.5
9.7
10.0
10.4
11.6
13.7
15.2
15.9
15.2
15.3
14.8
15.7
17.0
18.6 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0
21.1
20.4
21.2
22.2
22.2
22.2
22.3
20.1
21.8
20.1
21.1
21.8 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 20.3 19.7 20.2 21.2 20.3 18.8 18.8 20.1 21.8 22.5 | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.4
24.5
22.6
23.0
23.6
23.5
22.7
23.3
23.4
23.3
23.4
23.4
23.4
23.4
23.4 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 22.0 22.2 22.3 22.4 22.9 24.0 25.2 24.9 23.8 24.1 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.8
23.9
23.3
23.9
24.1
22.2
22.5
23.0
23.1
22.2
22.5
22.5
23.6
23.9
23.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

11.3
12.1
12.6
13.1
13.4
13.9
15.4
16.0
16.3
15.4
15.5
16.5 | FEBRUARY 10.6 11.3 12.1 12.4 13.0 13.3 12.1 12.4 13.0 13.3 13.9 15.2 15.4 14.5 14.5 14.6 15.3 |

11.0
11.7
12.3
12.7
13.1
13.5
14.8
15.5
15.9
14.8
14.7
15.1
15.8 | 12.3 12.1 10.4 10.2 10.8 12.6 14.4 15.8 16.3 15.7 15.6 15.4 16.5 18.0 19.3 17.5 | MARCH 11.8 10.4 9.8 10.0 10.7 12.6 14.3 15.5 14.7 14.6 14.3 15.5 14.7 17.0 17.0 17.0 17.0 17.0 17.0 17.0 1 | 12.0 11.5 9.7 10.0 10.4 11.6 13.7 15.2 15.9 15.2 15.3 14.8 15.7 17.0 18.6 17.6 17.6 17.6 17.2 |

18.7
18.0
19.4
19.5
20.2
20.8
21.0
21.1
20.4
21.2
22.2
22.2
22.2 | APRIL 17.6 17.3 18.0 18.8 18.7 20.1 20.6 20.4 20.3 19.7 20.2 21.2 20.3 18.8 18.8 20.1 21.8 | | 23.6
23.3
22.2
22.3
22.7
23.3
23.8
24.0
24.4
24.2
24.5
24.5
22.6
23.0
23.6
23.5
22.7
22.3
23.0
23.3
23.3
23.4
23.3
24.3 | MAY 22.5 22.2 20.9 20.7 21.6 21.5 23.2 23.6 23.5 22.6 23.4 23.7 22.3 21.8 22.0 22.5 22.7 21.7 21.3 21.5 22.0 22.2 23.3 21.4 22.9 | 23.1
22.7
21.5
21.4
22.2
22.5
23.5
23.9
23.3
23.9
24.1
22.2
22.5
23.0
23.1
22.2
22.5
22.5
23.0
23.1
22.2
22.5
23.5
23.9
24.1
22.2
22.5
23.5
23.5
23.9
23.9
24.1
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08062500 Trinity River near Rosser, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 27.7
28.3
28.6
28.7
28.5 | 26.5
27.6
28.0
28.1
27.7 | 27.0
27.9
28.3
28.4
28.2 | 27.4
26.7
27.4
27.6
27.8 | 26.6
25.9
26.2
26.5
26.6 | 27.0
26.3
26.7
27.1
27.2 | 30.5
31.3
32.0
32.2
32.0 | 29.6
29.8
30.3
30.6
30.7 | 30.0
30.5
31.1
31.4
31.4 | 30.0
30.5
30.5
30.7
30.9 | 28.5
28.7
29.1
29.5
29.7 | 29.2
29.6
29.9
30.1
30.3 | | 6
7
8
9
10 | 28.3
28.5
28.5
28.7
28.7 | 27.3
27.7
28.1
28.2
27.8 | 27.8
28.1
28.3
28.4
28.3 | 29.0
30.0
30.5
31.0
31.5 | 27.8
28.6
29.6
30.0
30.4 | 28.3
29.2
30.0
30.5
31.0 | 31.9
31.9
31.5
31.3
31.0 | 30.6
30.7
30.6
29.9
29.3 | 31.4
31.4
31.1
30.7
30.3 | 30.6
30.2
29.5
28.1
28.1 | 29.7
29.4
28.1
27.6
26.8 | 30.2
29.8
28.8
27.9
27.6 | | 11
12
13
14
15 | 28.7
28.7
29.0
28.8
28.6 | 27.9
27.9
28.3
27.9
27.6 | 28.3
28.3
28.6
28.4
28.1 | 32.2

 | 30.8 | 31.4

 | 29.3
28.1
28.7
28.7
29.0 | 25.1
26.4
27.9
28.4
28.2 | 26.6
27.5
28.3
28.6
28.6 | 28.3
28.8
28.6
28.7
28.4 | 27.7
28.0
27.9
27.8
27.7 | 28.1
28.3
28.3
28.2
28.1 | | 16
17
18
19
20 | 28.1
27.8
27.8
28.4
29.4 | 27.5
26.5
26.7
27.4
28.2 | 27.7
27.2
27.3
27.9
28.7 |

30.2 |

29.1 |

29.6 | 28.8
29.0
29.7
30.3
30.8 | 28.0
28.4
28.6
29.0
29.5 | 28.4
28.7
29.1
29.6
30.1 | 28.1
28.1
28.2
27.6
27.1 | 27.4
27.1
27.4
27.0
25.7 | 27.7
27.7
27.7
27.4
26.3 | | 21
22
23
24
25 | 29.9
30.3
30.3
30.7
30.9 | 28.5
29.1
29.3
29.4
29.8 | 29.1
29.6
29.8
30.1
30.2 | 31.1
31.6
32.1
 | 29.9
30.3
30.6
 | 30.5
30.9
31.3
 | 30.8
31.0

31.4
31.5 | 29.7
29.7

30.1
30.2 | 30.2
30.3

30.7
30.8 | 26.0
26.2
26.1
25.5
25.8 | 24.7
25.8
25.3
24.6
24.4 | 25.4
26.0
25.6
25.0
25.1 | | 26
27
28
29
30
31 | 30.7
29.4
29.9
29.8
28.8 | 29.4
28.7
29.1
28.8
26.9 | 29.9
29.0
29.5
29.4
27.7 |

30.7 |

29.4 |

30.0 | 31.3
30.8
29.0
28.3
28.9
29.5 | 29.8
29.0
27.5
27.2
28.1
28.2 | 30.6
30.0
28.4
27.7
28.4
28.8 | 25.9
25.9
26.5
26.9
27.0 | 24.6
24.5
25.1
25.7
26.1 | 25.2
25.3
25.8
26.4
26.6 | | MONTH | 30.9 | 26.5 | 28.5 | | | | | | | 30.9 | 24.4 | 27.6 | TRINITY RIVER BASIN 233 08062500 Trinity River near Rosser, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | OXYGEN DIS | SOLVED | FROM DCP, | in (MG/I | L), WATER | YEAR OCTO | BER 2001 | TO SEPTI | EMBER 2002 | | | |----------|--------------|--------------|--------------|--------------|---------------------|--------------|--------------|--------------|--------------|------------|------------|------------| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | | NOVEMBER | | D | ECEMBER | | | JANUARY | 7 | | | 0.1 | | | | | | 10.6 | | 10.0 | | | | | 1
2 | 8.1
7.8 | 7.5
7.3 | 7.8
7.6 | 8.7
8.3 | 8.1
7.8 | 8.4
8.0 | 10.6
10.3 | 9.9
9.8 | 10.3
10.0 | | | | | 3 | 7.3 | 6.3 | 6.8 | 8.1 | 7.5 | 7.8 | 9.9 | 9.1 | 9.4 | | | | | 4
5 | 6.3
6.2 | 6.0
5.9 | 6.1
6.0 | 8.0
7.9 | 7.4
7.3 | 7.7
7.6 | 9.2
9.5 | 8.4
8.2 | 8.8
8.8 | | | | | | | | | | | | | | | | | | | 6
7 | 6.1
6.5 | 5.8
6.1 | 5.9
6.6 | 8.2
8.1 | 7.4
7.2 | 7.7
7.7 | 9.3
8.8 | 8.5
8.4 | 8.9
8.6 | | | | | 8 | 6.7 | 6.4 | 6.6 | 8.3 | 7.6 | 7.9 | 9.0 | 8.4 | 8.8 | | | | | 9
10 | 6.9
6.6 | 6.5
6.0 | 7.2
6.3 | 8.0
8.1 | 7.6
7.5 | 7.8
7.9 | 9.7
10.3 |
8.9
9.4 | 9.4
10 | | | | | | | | | | | | 10.6 | 10.0 | 10.4 | | | | | 11
12 | 6.8
5.4 | 5.1
2.8 | 6.2
4.5 | | | | 10.6
10.4 | 10.0
10.1 | 10.4
10.3 | | | | | 13 | 5.5 | 2.8 | 4.4 | | | | 10.2 | 9.8 | 10.1 | | | | | 14
15 | 5.2
4.4 | 3.5
3.5 | 3.8
4.1 | | | | 10.3
10.4 | 9.8
9.9 | 10.1
10.2 | | | | | 1.0 | - 0 | | 4.0 | | 0.0 | 0.4 | | | | | | | | 16
17 | 5.2
5.6 | 4.4
5.2 | 4.9
5.4 | 7.0
8.4 | 8.2
8.1 | 8.4
8.2 | | | | | | | | 18 | 5.9 | 5.5 | 5.7 | 8.5 | 8.1 | 8.2 | | | | | | | | 19
20 | 6.1
6.4 | 5.8
5.8 | 5.9
6.0 | 8.5
8.9 | 8.1
8.3 | 8.2
8.6 | 21
22 | 6.7
7.0 | 6.2
6.6 | 6.5
6.8 | 9.2
9.5 | 8.8
9.1 | 9.0
9.3 | | | | | | | | 23 | 7.0 | 6.6 | 6.8 | 9.4 | 8.8 | 9.2 | | | | | | | | 24
25 | 7.5
7.7 | 6.9
7.4 | 7.2
7.5 | 9.5
9.4 | 8.8
8.9 | 9.1
9.1 | 26
27 | 8.3
8.7 | 7.9
7.8 | 8.1 | 9.5
9.6 | 8.9
8.9 | 9.1
9.2 | | | | | | | | 28 | 8.8 | 8.1 | 8.4 | 10.0 | 9.3 | 9.7 | | | | | | | | 29
30 | 8.8
9.1 | 8.3
8.4 | 8.6
8.7 | 10.2
10.3 | 9.7
10.0 | 9.9
10.1 | | | | | | | | 31 | 8.9 | 8.3 | 8.6 | | | | | | | | | | | MONTH | 9.1 | 2.8 | 6.6 | | | | | | | | | | | HONTH | J.± | 2.0 | 0.0 | | | | | | | | | | | DAY | MAX | MIN | MEAN | | 2111 | | | | | | | | | | **** | | 112121 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 11.7 | 10.7 | 11.2 | | | | 7.6 | 7.4 | 7.5 | | 2
3 | | | | 11.8
12.6 | $\frac{10.2}{11.1}$ | 11.1
11.9 | | | | 7.7
7.8 | 7.5
7.4 | 7.6
7.7 | | 4 | | | | 12.8 | 11.5 | 12.2 | | | | 7.6 | 7.3 | 7.5 | | 5 | | | | 13.4 | 11.6 | 12.4 | | | | 7.7 | 5.9 | 7.1 | | 6 | | | | 12.4 | 11.3 | 11.8 | | | | 6.2 | 5.6 | 5.8 | | 7
8 | | | | 12.4
11.4 | 10.6
10.1 | 11.4
10.8 | | | | 5.7
6.3 | 5.5
5.6 | 5.6
5.9 | | 9 | | | | 11.5 | 9.4 | 10.5 | | | | 6.7 | 6.3 | 6.5 | | 10 | | | | 11.3 | 9.9 | 10.6 | | | | 6.6 | 5.4 | 6.0 | | 11 | | | | 10.5 | 9.6 | 10.1 | | | | 6.1 | 5.8 | 5.9 | | 12
13 | 10.7 | 10.1 | 10.5 | 11.2
11.4 | 9.4
9.4 | 10.2
10.4 | 8.1 | 7.8 | 7.9 | 6.6
6.8 | 6.0
6.4 | 6.3
6.6 | | 14 | 10.1 | 9.8 | 9.9 | 11.4 | 9.4 | 10.4 | 8.1 | 7.9 | 8.0 | 7.2 | 6.5 | 6.9 | | 15 | 10.0 | 9.7 | 9.8 | 11.1 | 9.0 | 9.9 | 8.1 | 7.6 | 7.8 | 7.4 | 6.9 | 7.1 | | 16 | 9.9 | 9.6 | 9.7 | 10.3 | 8.6 | 9.4 | 8.1 | 7.7 | 7.9 | 7.4 | 7.1 | 7.2 | | 17
18 | 9.8
9.8 | 9.5
9.6 | 9.7
9.7 | 9.4
8.9 | 8.4
8.2 | 8.9
8.4 | 8.0
7.8 | 7.3
7.1 | 7.6
7.4 | 7.2
7.1 | 7.0
6.6 | 7.1
6.8 | | 19 | 9.6 | 9.2 | 9.4 | | | | 7.9 | 7.3 | 7.6 | 7.3 | 7.0 | 7.1 | | 20 | 9.7 | 9.1 | 9.4 | | | | 8.2 | 7.6 | 7.8 | 7.7 | 7.1 | 7.5 | | 21 | 9.5 | 9.2 | 9.3 | | | | 8.3 | 7.4 | 7.8 | 8.0 | 7.5 | 7.8 | | 22
23 | 10.4
10.5 | 9.5
9.7 | 10
10.2 | | | | 8.5
8.6 | 7.7
7.7 | 7.9
8.2 | 7.9
7.7 | 7.6
7.4 | 7.8
7.6 | | 24 | 10.7 | 9.8 | 10.2 | | | | 8.5 | 7.6 | 8.0 | 7.6 | 7.3 | 7.4 | | 25 | 10.5 | 9.4 | 10.1 | | | | 8.4 | 7.7 | 8.0 | 7.4 | 6.6 | 6.8 | | 26 | 11.3 | 9.7 | 10.5 | | | | 8.6 | 7.7 | 8.1 | 6.6 | 6.2 | 6.5 | | 27
28 | 11.8
12.5 | 10.5
10.7 | 11.2
11.6 | | | | 8.0
8.1 | 7.6
7.5 | 7.8
7.7 | 6.8
6.9 | 6.3
5.9 | 6.6
6.4 | | 29 | | | | | | | 7.8 | 7.5 | 7.6 | 6.7 | 6.3 | 6.5 | | 30
31 | | | | | | | 7.8 | 7.3 | 7.5 | | | | | | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | DAILY MEAN DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER 08062500 Trinity River near Rosser, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | P | AUGUST | | S | SEPTEMBE: | R | | 1
2
3
4
5 |

 |

 |

 | 6.8
6.6
6.5
6.7 | 6.1
5.7
6.3
6.0
6.1 | 6.5
6.2
6.5
6.3 | 8.8
8.7
8.8
9.1
9.3 | 7.4
7.5
7.5
7.5
7.5 | 8.0
8.1
8.1
8.2
8.3 | 9.1
9.1
8.9
9.2
9.4 | 8.1
7.7
7.7
7.9
7.7 | 8.6
8.4
8.4
8.5
8.5 | | 6
7
8
9
10 | 7.7
7.5
7.3 | 7.1
7.0
6.8 | 7.3
7.2
7.1 | 6.8
7.0
7.1
7.0
7.2 | 6.5
6.8
6.7
6.7 | 6.6
6.9
6.9
6.8 | 9.7
8.9
8.5
8.8 | 7.7
7.5
7.3
7.3
7.2 | 8.6
8.3
7.9
8.1
7.5 | 9.0
8.7
8.3
8.1
7.9 | 7.9
7.6
7.6
7.6
6.5 | 8.3
8.1
8.0
7.8
7.0 | | 11
12
13
14
15 | 7.2
7.1
7.1
7.4
7.4 | 6.8
6.5
6.7
6.9
6.4 | 7.0
6.8
6.9
7.1
7.0 | 7.4

 | 6.6

 | 7.0

 | 7.2
6.0
7.1
7.7
8.1 | 4.7
4.5
6.0
7.1
7.3 | 5.4
5.3
6.6
7.4
7.8 | 8.0
8.2
8.7
8.7
9.2 | 6.9
7.5
7.7
7.7
8.0 | 7.4
7.9
8.1
8.3
8.6 | | 16
17
18
19
20 | 7.1
7.2
6.2
6.7
6.9 | 6.5
5.4
5.8
5.7
6.4 | 6.8
6.4
6.0
6.0 |

7.3 |

6.8 |

7.1 | 7.9
8.0
8.0
8.4
9.6 | 7.3
7.2
7.3
7.3
7.7 | 7.6
7.7
7.6
7.7
8.6 | 9.0
8.9
8.9
8.5
8.6 | 8.3
7.9
7.7
7.7
6.9 | 8.7
8.5
8.4
8.1
7.6 | | 21
22
23
24
25 | 7.6
7.8
8.0
7.8
7.4 | 6.6
7.4
7.4
7.3
6.8 | 7.1
7.6
7.7
7.5
7.0 | 8.0
8.4
8.6
 | 7.1
7.3
7.5
 | 7.5
7.8
8.0
 | 10.1
10.4
9.9
9.9
9.5 | 8.0
7.8
8.0
8.1
8.1 | 9.0
9.0
9.0
8.9
8.8 | 7.7
8.2
8.5
8.8
9.4 | 7.1
7.5
7.8
7.8
8.0 | 7.4
7.9
8.1
8.3
8.6 | | 26
27
28
29
30
31 | 6.8
6.7
6.7
6.7
6.1 | 6.4
6.4
6.3
5.4
4.8 | 6.6
6.6
6.4
5.4 |

8.8 |

7.5 |

8.0 | 9.2
8.4
8.1
7.7
8.1
8.9 | 7.8
7.3
6.5
6.5
7.0
7.7 | 8.4
7.9
7.4
7.2
7.7
8.2 | 9.7
9.3
9.1
8.9
8.9 | 8.0
8.3
8.2
7.9
8.1 | 8.7
8.8
8.6
8.4
8.4 | | MONTH | | | | | | | 10.4 | 4.5 | 7.9 | 9.7 | 6.5 | 8.2 | THIS PAGE IS INTENTIONALLY BLANK ## 08062700 Trinity River at Trinidad, TX LOCATION.--Lat 32°08'05", long 96°06'20", Henderson County, Hydrologic Unit 12030105, on left bank at pumping station of Texas Power and Light Co., near southwest boundary of Trinidad, 0.5 mi downstream from St. Louis Southwestern Railway Lines bridge, 0.9 mi downstream from bridge on State Highway 31, 8.0 mi upstream from Cedar Creek, and at mile 391.2. DRAINAGE AREA.--8,538 mi², not including 1,007 mi² upstream from Cedar Creek Reservoir. PERIOD OF RECORD.--Oct. 1964 to current year. Records of gage height collected in this vicinity for period Oct. 1913 to Sept. 1915 are contained in reports of U.S. Army Corps of Engineers, and records collected since Oct. 1915 are contained in reports of the National Weather Service. Water-quality records.--Chemical data: May 1966 to June 1994. Biochemical data: May 1966 to June 1994. Pesticide data: Nov. 1977 to June 1982. Sediment data: Nov. 1977 to June 1982. Sediment data: Nov. 1977 to June 1984. Specific conductance: Sept. 1967 to Sept. 1981, May 1986 to Sept. 2000. pH: Sept. 1967 to Oct. 1969, May 1986 to Sept. 2000. Water temperature: Sept. 1967 to Sept. 1981, May 1986 to Sept. 2000. Dissolved oxygen: Sept. 1967 to Oct. 1969, May 1986 to Sept. 2000. REVISED RECORDS. -- WDR TX-89-1: 1988. WDR TX-90-1: 1989. GAGE.--Water-stage recorder. Datum of gage is 239.21 ft above NGVD of 1929. Prior to May 3, 1967, at site 0.9 mi upstream at datum 1.28 ft higher. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since installation of gage in Oct. 1964, at least 10% of contributing drainage area has been regulated. The cities of Fort Worth, Dallas, and several smaller cities divert considerable water for their municipal use, of which about 60 percent is returned as wastewater effluent that sustains low flows at this site. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stages since at least 1908, 49.8 ft Apr. 25, 1942, and 48.3 ft date unknown (present site and datum), from records of the National Weather Service. | | | DISCHARGE | FROM DCP, | CUBIC F | | ECOND, WA
LY MEAN V | | OCTOBER 2001 | TO SE | PTEMBER 2002 | | | |----------------------------------|---|------------------------------------|--|--|--------------------------|--|---|--|-------------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 952 | 938 | 1680 | 1560 | 7520 | 1250 | 18400 | 8580 | 2350 | 1920 | 1110 | 995 | | 2 | 932 | 939 | 1270 | e1520 | 13600 | 1220 | 20800 | 6610 | 1770 | 3010 | 1140 | 938 | | 3 | 925 | 949 | 1110 | 1460 | 15700 | 1240 | 25300 | 5750 | 1560 | 4520 | 983 | 906 | | 4 | 914 | 963 | 1050 | 1450 | 17200 | 1400 | 26900 | 6300 | 1480 | 4510 | 950 | 896 | | 5 | 924 | 951 | 1040 | 1420 | 16600 | 1440 | 24400 | 6920 | 1390 | 4600 | 883 | 911 | | 6 | 1020 | 940 | 1030 | 1420 | 14500 | 1320 | 21600 | 9730 | 1310 | 3460 | 840 | 877 | | 7
| 1910 | 963 | 1020 | 1470 | 17100 | 1290 | 19200 | 14300 | 1250 | 1930 | 845 | 874 | | 8 | 1320 | 946 | 1290 | 1480 | 18400 | 1230 | 18900 | 16300 | 1340 | 2050 | 852 | 883 | | 9 | 1040 | 938 | 1290 | 1420 | 16800 | 1200 | 19200 | 17100 | 1490 | 1550 | 828 | 893 | | 10 | 969 | 935 | 1090 | 1370 | 11400 | 1210 | 19800 | 14000 | 1860 | 1240 | 856 | 2080 | | 11 | 955 | 1040 | 1020 | 1330 | 7070 | 1350 | 21000 | 11400 | 2040 | 1210 | 1850 | 2240 | | 12 | 2640 | 1070 | 1130 | 1310 | 4100 | 1210 | 23300 | 12200 | 2150 | 1120 | 4560 | 1490 | | 13 | 7040 | 1520 | 1210 | 1290 | 2610 | 1160 | 25000 | 13100 | 2180 | 3000 | 3910 | 1140 | | 14 | 10800 | 1630 | 1440 | 1540 | 2040 | 1170 | 24000 | 13800 | 1780 | 3870 | 1670 | 1030 | | 15 | 10200 | 1440 | 2080 | 1320 | 1860 | 1140 | 22000 | 14500 | 1730 | 2010 | 1180 | 978 | | 16 | 5150 | 1160 | 11800 | 1220 | 1730 | 1150 | 20300 | 12800 | 1940 | 2710 | 1510 | 933 | | 17 | 3210 | 1100 | 31000 | 1180 | 1630 | 1160 | 19000 | 11200 | 1930 | 10600 | 1860 | 832 | | 18 | 2270 | 1110 | 49800 | 1160 | 1550 | 1190 | 18500 | 11300 | 2990 | 7350 | 1250 | 1010 | | 19 | 1600 | 1080 | 49100 | 1160 | 1760 | e1310 | 19200 | 12400 | 2130 | 4610 | 1090 | 1090 | | 20 | 1440 | 1200 | 42000 | 1160 | 2650 | e4000 | 20100 | 11900 | 1380 | 2810 | 972 | 1320 | | 21 | 1340 | 1120 | 34600 | 1150 | 2730 | e7000 | e20400 | 7660 | 1180 | 1520 | 1020 | 2570 | | 22 | 1250 | 1020 | 24600 | 1130 | 1690 | e12000 | e20300 | 5820 | 1110 | 1220 | 1020 | 1920 | | 23 | 1180 | 977 | 16000 | 1130 | 1420 | e20000 | 19300 | 5790 | 1180 | 1090 | 974 | 1280 | | 24 | 1100 | 960 | 9270 | 1320 | 1350 | e25700 | 17600 | 5570 | 1160 | 1030 | 916 | 1110 | | 25 | 1070 | 953 | 7090 | 3950 | 1290 | e29500 | 15700 | 3920 | 1020 | 990 | 892 | 1030 | | 26
27
28
29
30
31 | 1040
987
963
932
942
954 | 957
938
1010
1130
1680 | 4330
3370
2520
2020
2800
1920 | 7100
5790
2430
1560
1450
2000 | 1260
1270
1320
 | 28700
24400
19200
16200
15100
16600 | 14100
13300
13300
12400
10500 | 2740
2150
2370
3290
4370
3790 | 981
1050
1210
1400
2230 | 961
924
917
898
897
909 | 871
892
1400
2330
1560
1140 | 928
886
865
860
855 | | TOTAL | 67969 | 32557 | 310970 | 56250 | 188150 | 242040 | 583800 | 277660 | 48571 | 79436 | 42154 | 34620 | | MEAN | 2193 | 1085 | 10030 | 1815 | 6720 | 7808 | 19460 | 8957 | 1619 | 2562 | 1360 | 1154 | | MAX | 10800 | 1680 | 49800 | 7100 | 18400 | 29500 | 26900 | 17100 | 2990 | 10600 | 4560 | 2570 | | MIN | 914 | 935 | 1020 | 1130 | 1260 | 1140 | 10500 | 2150 | 981 | 897 | 828 | 832 | | AC-FT | 134800 | 64580 | 616800 | 111600 | 373200 | 480100 | 1158000 | 550700 | 96340 | 157600 | 83610 | 68670 | | STATIS | TICS OF | MONTHLY MI | EAN DATA F | OR WATER | YEARS 196 | 55 - 2002 | , BY WATE | ER YEAR (WY) | | | | | | MEAN | 2583 | 3855 | 4891 | 3713 | 5405 | 6921 | 6246 | 9034 | 6280 | 2454 | 1353 | 1252 | | MAX | 11390 | 20160 | 24320 | 20490 | 20550 | 28360 | 20550 | 47120 | 26790 | 11800 | 6886 | 3347 | | (WY) | 1974 | 1975 | 1992 | 1992 | 1992 | 2001 | 1997 | 1990 | 1989 | 1982 | 1982 | 1974 | | MIN | 417 | 403 | 460 | 415 | 424 | 542 | 798 | 693 | 526 | 394 | 394 | 448 | | (WY) | 1976 | 1967 | 1967 | 1967 | 1967 | 1967 | 1978 | 1971 | 1972 | 1972 | 1967 | 1972 | ## 08062700 Trinity River at Trinidad, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALE | IDAR YEAR | FOR 2002 WAT | CER YEAR | WATER YEARS | 1965 | - 2002 | |--------------------------|---------------|-----------|--------------|----------|-------------|------|--------| | ANNUAL TOTAL | 2703384 | | 1964177 | | | | | | ANNUAL MEAN | 7407 | | 5381 | | 4493 | | | | HIGHEST ANNUAL MEAN | | | | | 11400 | | 1992 | | LOWEST ANNUAL MEAN | | | | | 854 | | 1978 | | HIGHEST DAILY MEAN | 49800 | Dec 18 | 49800 | Dec 18 | 94100 | May | 7 1990 | | LOWEST DAILY MEAN | 839 | Jul 31 | 828 | Aug 9 | 312 | Aug | 9 1972 | | ANNUAL SEVEN-DAY MINIMUM | 851 | Aug 6 | 865 | Aug 4 | 326 | Jul | 7 1972 | | MAXIMUM PEAK FLOW | | | 52600 | Dec 18 | 94500 | May | 7 1990 | | MAXIMUM PEAK STAGE | | | 41.94 | Dec 18 | 48.11 | May | 7 1990 | | ANNUAL RUNOFF (AC-FT) | 5362000 | | 3896000 | | 3255000 | | | | 10 PERCENT EXCEEDS | 21000 | | 17900 | | 12500 | | | | 50 PERCENT EXCEEDS | 2220 | | 1470 | | 1310 | | | | 90 PERCENT EXCEEDS | 934 | | 938 | | 520 | | | ## e Estimated ### 08062730 New Terrell City Lake near Terrell, TX $\label{location.--Lat 32°43'42", long 96°10'24", Kaufman County, Hydrologic Unit 12030107, on intake structure on Muddy Cedar Creek, approximately 1.0 mi northwest of Elmo, and 5.0 mi east of Terrell.$ DRAINAGE AREA. -- 14.33 mi². PERIOD OF RECORD.--Apr. 1999 to current year. GAGE.--Water data recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by an earthfill embankment 4,700 ft long. The dam was begun in Feb. 1955 and completed in Nov. of the same year. Deliberate impoundment began when the construction was completed but the lake did not fill until May, 1957. A 40 foot uncontrolled concrete weir spillway and chute are located near the left (east) end of the embankment. The emergency spillway is an earth trench cut through natural ground and is located at the right(west) end of the embankment. The dam was built by the city of Terrell to impound water for municipal use. Conservation pool storage is 8,580 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |-----------------------------|-----------| | | (feet) | | Top of dam | 514.2 | | Crest of spillway | 508.8 | | Crest of emergency spillway | 507.0 | COOPERATION.--The capacity table was provided by the Texas Water Development Board on Apr. 15, 1999. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 11,840 acre-ft, June 10, 2002, elevation, 507.31 ft; minimum contents, 3,800 acre-ft, Apr. 30, 2000, elevation, 497.29 ft. EXTREMES FOR CURRENT YEAR. -- Maximum contents, 11,840 acre-ft, June 10, elevation, 507.31 ft; minimum contents, 6,210 acre-ft, Oct. 11, elevation, 501.04 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | DAI | LY MEAN V | ALUES | | | | | | |------|--------|---------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 6430 | 7170 | e6760 | 9030 | 9100 | 8720 | 9390 | 8800 | 9750 | 8960 | 7750 | 7050 | | 2 | 6410 | 7150 | e6750 | 8990 | 9070 | 8720 | 9250 | 8810 | 9820 | 8960 | 7720 | 7020 | | 3 | 6390 | 7140 | e6740 | 8960 | 9040 | 8700 | 9150 | 8850 | e8750 | 9060 | 7690 | 6990 | | 4 | 6360 | 7140 | e6750 | 8940 | 9010 | 8670 | 9060 | 8880 | e8730 | 9020 | 7660 | 6960 | | 5 | 6340 | 7120 | e6730 | 8930 | 9070 | 8650 | 8990 | 9160 | e8700 | 8970 | 7620 | 6930 | | 6 | 6310 | 7090 | 6740 | 8920 | 9220 | 8650 | 8930 | 9380 | e8680 | 8930 | 7590 | 6900 | | 7 | 6280 | 7080 | 6730 | 8890 | 9240 | 8630 | 8890 | 9370 | e8650 | 8880 | 7560 | 6880 | | 8 | 6260 | 7060 | 6720 | 8870 | 9200 | 8620 | 8920 | 9360 | e8640 | 8830 | 7530 | 6860 | | 9 | 6230 | 7060 | 6690 | 8860 | 9160 | 8600 | 8760 | 9370 | e8630 | 8770 | 7490 | 6850 | | 10 | 6220 | 7040 | 6680 | 8840 | 9120 | 8570 | 8640 | 9400 | 10370 | 8720 | 7460 | 6820 | | 11 | 6260 | 7040 | 6670 | 8830 | 9080 | 8540 | 8630 | 9400 | 10290 | 8670 | 7430 | 6800 | | 12 | 6280 | 7060 | 6690 | 8820 | 9040 | 8520 | 8620 | 9400 | 10210 | 8620 | 7400 | 6770 | | 13 | 7390 | 7050 | 6700 | 8790 | 9020 | 8490 | 8620 | 9640 | 10130 | 8620 | 7370 | 6750 | | 14 | 7580 | 7040 | 6740 | 8780 | 8980 | 8470 | 8630 | 9650 | 10050 | 8560 | 7410 | 6720 | | 15 | 7550 | 7020 | 6780 | 8760 | 8960 | 8460 | 8630 | 9630 | 9960 | 8500 | 7400 | 6700 | | 16 | 7520 | 7010 | 9560 | 8750 | 8940 | 8420 | 8630 | 9620 | 9910 | 8460 | 7380 | 6680 | | 17 | 7490 | 6990 | 11300 | 8740 | 8920 | 8400 | 8660 | 9860 | 9830 | 8430 | 7350 | 6650 | | 18 | 7460 | 6970 | 10920 | 8730 | 8900 | 8410 | 8670 | 10090 | 9740 | 8380 | 7320 | 6620 | | 19 | 7440 | 6990 | 10590 | 8720 | 8900 | 8440 | 8670 | 10050 | 9660 | 8320 | 7290 | 6650 | | 20 | 7420 | 6990 | 10290 | 8710 | 8890 | 8820 | 8680 | 9440 | 9580 | 8250 | 7260 | 6660 | | 21 | 7400 | 6970 | 10060 | 8710 | 8870 | 8850 | 8690 | 9110 | 9500 | 8180 | 7230 | 6630 | | 22 | 7380 | 6950 | 9880 | 8700 | 8850 | 8810 | 8690 | 9130 | 9410 | 8110 | 7200 | 6610 | | 23 | 7360 | 6940 | 9710 | 8720 | 8830 | 8770 | 8690 | 9150 | 9320 | 8050 | 7170 | 6570 | | 24 | 7340 | 6940 | 9560 | 8910 | 8810 | 8740 | 8700 | 9180 | 9240 | 8020 | 7130 | 6540 | | 25 | 7320 | 6920 | 9440 | 9030 | 8800 | 8730 | 8710 | 9220 | 9180 | 7980 | 7110 | 6520 | | 26 | 7290 | 6910 | 9330 | 9000 | 8770 | 8700 | 8730 | 9290 | 9150 | 7950 | 7090 | 6490 | | 27 | 7270 | e6900 | 9240 | 8980 | 8740 | 8670 | 8740 | 9350 | 9120 | 7910 | 7130 | 6460 | | 28 | 7240 | e6890 | 9190 | 8960 | 8730 | 8640 | 8760 | 9430 | 9070 | 7860 | 7150 | 6440 | | 29 | 7220 | e6870 | 9150 | 8950 | | 8630 | 8780 | 9560 | 9010 | 7830 | 7130 | 6410 | | 30 | 7200 | e6860 | 9100 | 8940 | | 9150 | 8790 | 9630 | 8970 | 7810 | 7100 | 6390 | | 31 | 7180 | | 9060 | 9010 | | 9530 | | 9690 | | 7780 | 7070 | | | MEAN | 6960 | 7010 | 8300 | 8860 | 8970 | 8670 | 8790 | 9380 | 9400 | 8430 | 7360 | 6710 | | MAX | 7580 | 7170 | 11300 | 9030 | 9240 | 9530 | 9390 | 10090 | 10370 | 9060 | 7750 | 7050 | | MIN | 6220 | 6860 | 6670 | 8700 | 8730 | 8400 | 8620 | 8800 | 8630 | 7780 | 7070 | 6390 | | (+) | 502.30 | e501.82 | 504.71 | 504.63 | 504.20 | 505.27 | 504.30 | 505.42 | 504.58 | 503.04 | 502.16 | 501.27 | | (@) | +770 | -320 | +2200 | -50 | -280 | +800 | -740 | +900 | -720 | -1190 | -710 | -680 | MAX 11300 MIN 5990 CAL YR 2001 (@) +1230 WTR YR 2002 MAX 11300 MIN 6220 (@) e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet.
08062730 New Terrell City Lake near Terrell, TX--Continued ### 08063010 Cedar Creek Reservoir near Trinidad, TX LOCATION.--Lat $32^{\circ}14'35$ ", long $96^{\circ}08'26$ ", Henderson County, Hydrologic Unit 12030107, inside pumphouse on lower level, 1,000 ft north of spillway, 5.5 mi upstream from Joe B. Hogsett Dam on Cedar Creek, and 8.0 mi northwest of Trinidad. DRAINAGE AREA. -- 1,007 mi². PERIOD OF RECORD. -- Jan. 1965 to current year. Water-quality records. --Chemical data: Oct. 1969 to Sept. 1985. Biochemical data: Oct. 1969 to Sept. 1985. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to May 15, 1972, at unfinished pumphouse at same site and datum. May 16, 1972 to Sept. 8, 1975, at site 0.25 mi north and upstream from pumphouse at same datum. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily contents, which are poor. The reservoir is formed by a rolled earthfill dam 17,539 ft long. The spillway is located on the right bank 5.5 mi upstream from the dam and discharges into the Trinity River through a cut channel 2.0 mi long. Deliberate impoundment began July 2, 1965, and the dam was completed in Feb. 1966. The spillway is 474 ft long and has eight 40- by 24-ft radial gates and two automatically operated 40- by 8.5-ft hinged gates. Low-flow releases may be made downstream through a 5.0 foot diameter conduit through the dam. The dam is the property of Tarrant Regional Water District and was built for municipal and industrial supply and for recreational purposes. Water is diverted from the reservoir for municipal and industrial uses by lakeside developments and by the cities of Arlington, Fort Worth, Mansfield, Kemp, Trinidad, and Maba. Conservation pool storage is 637,050 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |-------------------------------------|-----------| | | (feet) | | Top of dam | 340.0 | | Top of radial gates | 325.0 | | Top of automatic gates | 322.5 | | Top of conservation pool | | | Crest of spillway (automatic gates) | 314.0 | | Crest of spillway (radial gates) | 302.0 | | Lowest gated outlet (invert) | 263.5 | | | | COOPERATION.--Records of diversions are maintained by the Tarrant Regional Water District. Capacity Table 1-C was provided by Freese and Nichols, consulting engineers for the Tarrant Regional Water District. A new capacity table, Table 2-C, provided by the Texas Water Development Board was put into effect Oct. 1, 1995. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 722,000 acre-ft, June 4, 1973, elevation, 323.24 ft; minimum contents since first appreciable storage in 1966, 332,900 acre-ft, Mar. 19, 1967, elevation, 309.42 ft using Table 1-C. EXTREMES FOR CURRENT YEAR.--Maximum contents, 686,200 acre-ft, Dec. 17, elevation, 323.45 ft; minimum contents, 587,900 acre-ft, Oct. 10, elevation, 320.40 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1 | 596000 | 630300 | 626700 | 636900 | 639800 | 633900 | 643600 | 634500 | 637200 | 625800 | 626600 | e605600 | | 2 | 595200 | 630600 | 626400 | 637100 | 641200 | 637000 | 650400 | 635400 | 636400 | 628000 | 626400 | e605000 | | 3 | 594200 | 630700 | 626800 | 636400 | 642800 | 634800 | 649300 | 637000 | 636100 | 632300 | 625900 | e604700 | | 4 | 593300 | 630700 | 626600 | 635600 | 641700 | 632800 | 643900 | 637200 | 636100 | 633500 | 625100 | e603900 | | 5 | 594200 | 630100 | 626500 | 637000 | 643000 | 632200 | 640700 | 637300 | 636200 | 633800 | 624100 | 603400 | | 6
7
8
9
10 | 593300
591100
589900
588800
588900 | 629600
628600
628100
629100
628200 | 626800
626900
629500
628000
627300 | 637300
637200
636500
636600
637000 | 647400
648700
648200
644100
642500 | 632100
631900
632200
634600
632200 | 637800
636200
639600
641500
640900 | 638200
640700
642000
641900
641900 | 636300
635600
634800
634100 | 633900
634400
633900
633300
632600 | 623300
622800
622600
621500
620500 | 602600
601800
601800
601700
601200 | | 11 | 590900 | 628200 | 627600 | 637700 | 638400 | 631700 | 638900 | 644400 | 633700 | 631800 | 620000 | 600300 | | 12 | 591200 | 628200 | 630200 | 637800 | 636600 | 632300 | 636700 | 646100 | 633400 | 632000 | 618800 | 599000 | | 13 | 604800 | 627800 | 631700 | 636700 | 637100 | 631500 | 636300 | 648000 | 633600 | 632100 | 617200 | 598100 | | 14 | 616000 | 627300 | 631700 | 637300 | 636800 | 631000 | 636800 | 644800 | 633300 | 630800 | 616900 | 597800 | | 15 | 629900 | 627200 | 634200 | 636900 | 637200 | 632500 | 636500 | 641900 | 631900 | 629800 | 615800 | 597400 | | 16 | 638600 | 627100 | 655000 | 636600 | 637100 | 632100 | 636400 | 639400 | 632800 | 639000 | 615000 | 596600 | | 17 | 638500 | 626600 | 680300 | 637300 | 637100 | 632700 | 637600 | 640100 | 631700 | 645200 | 614300 | 596100 | | 18 | 637000 | 626100 | 663100 | 637200 | 636500 | 635900 | 639000 | 639800 | 630300 | 641200 | 613700 | 594900 | | 19 | 637100 | 627200 | 650300 | 637800 | 637900 | 639500 | 638400 | 638500 | 629600 | 639000 | 612600 | 596300 | | 20 | 637400 | 626000 | 644400 | 636600 | 637600 | 651500 | 636800 | 637000 | 628800 | 637200 | 611800 | 597600 | | 21 | 637000 | 625000 | 640300 | 637200 | 636900 | 656000 | 636800 | 636400 | 628500 | 636600 | 610700 | 596800 | | 22 | 636800 | 624100 | 640300 | 637300 | 636800 | 654000 | 636700 | 635000 | 627800 | 635900 | 610100 | 596900 | | 23 | 636200 | 623200 | 637700 | 637600 | 636200 | 648600 | 636200 | 634700 | 627300 | 635200 | 609700 | 595600 | | 24 | 636500 | 624500 | 638500 | 639500 | 635700 | 644200 | 636100 | 634700 | 626400 | 634700 | 608900 | 594500 | | 25 | 636300 | 623200 | 637800 | 638300 | 637400 | 643300 | 636600 | 634900 | 625300 | 634000 | 608200 | 593700 | | 26
27
28
29
30
31 | 635400
634800
633500
632800
632200
630900 | 623300
624600
627200
626400
626100 | 637900
637100
638100
639500
637500
636600 | 638400
637300
637000
637300
637900
639500 | 638800
635500
634300
 | 639900
637200
636000
636500
637900
639700 | 636400
635200
635800
635700
635100 | 634700
634500
634100
637600
636900
637000 | 624600
624300
623700
623300
623000 | 632600
631100
629600
629300
628700
627800 | 607400
609200
609100
608500
e607700
e606800 | 593000
591600
590800
590100
589400 | | MEAN | 617100 | 627200 | 636800 | 637300 | 639400 | 637300 | 638600 | 638600 | 631000 | 633400 | 615800 | 597900 | | MAX | 638600 | 630700 | 680300 | 639500 | 648700 | 656000 | 650400 | 648000 | 637200 | 645200 | 626600 | 605600 | | MIN | 588800 | 623200 | 626400 | 635600 | 634300 | 631000 | 635100 | 634100 | 623000 | 625800 | 606800 | 589400 | | (+) | 321.80 | 321.64 | 321.98 | 322.07 | 321.91 | 322.08 | 321.93 | 321.99 | 321.54 | 321.70 | e321.02 | 320.45 | | (@) | +33800 | -4800 | +10500 | +2900 | -5200 | +5400 | -4600 | +1900 | -14000 | +4800 | -21000 | -17400 | CAL YR 2001 MAX 680300 MIN 584700 (@) -16100 WTR YR 2002 MAX 680300 MIN 588800 (@) -7700 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08063010 Cedar Creek Reservoir near Trinidad, TX--Continued ### 08063045 Richland Creek near Irene, TX LOCATION.--Lat 31°58'37", long 96°48'52", Navarro County, Hydrologic Unit 12030108, at bridge on Farm Road 744, 0.3 mi northeast of intersection of Farm Road 744 and 1946, 2.4 mi upstream of Hackberry Creek, and 3.5 mi southeast of Irene. DRAINAGE AREA. -- 69 mi². PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1998 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | WAILER | QUALITI L | MIN, WALL | ik IBAK OC | TODER 200 | I TO DEFT | EMDER 200 | 2 | | | | |------------------|--|--|--|--|--|--|---|--|---|--|---|--|--| | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) |
PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | FEB | 1200 | 35 | 441 | 7.9 | 8.5 | 8.6 | 75 | <2.0 | 220 | 25 | 83.3 | 1 00 | 7.78 | | 13
MAY | | | | | | | | | | | | 1.89 | | | O1
JUL | 1100 | 14 | 387 | 7.9 | 23.0 | 7.0 | 82 | 3.1 | 180 | | 69.1 | 2.00 | 10.0 | | 10
AUG | 0945 | 1.0 | 418 | 7.6 | 26.5 | 7.6 | 95 | 2.6 | 180 | 28 | 65.1 | 3.03 | 21.6 | | 01 | 1145 | .04 | 392 | 7.9 | 30.0 | 5.3 | 70 | 2.1 | 150 | 16 | 55.9 | 2.90 | 19.1 | | Date | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | FEB 13 | .2 | 7 | 1.14 | 2 | 229 | 190 | 20.4 | 7.32 | .3 | 5.77 | 250 | 246 | 44 | | MAY
01 | .3 | 11 | 1.27 | 2 | 219 | 182 | 21.9 | 10.0 | .3 | 8.94 | 234 | 235 | 34 | | JUL
10 | .7 | 21 | 2.13 | 1 | 177 | 146 | 31.1 | 19.8 | .4 | 9.53 | 235 | 241 | 44 | | AUG
01 | .7 | 21 | | 1 | 164 | 135 | 25.0 | 19.1 | . 4 | 10.3 | 228 | 217 | <10 | | 01 | . / | 21 | 2.12 | 1 | 104 | 133 | 25.0 | 19.1 | .4 | 10.3 | 220 | 217 | <10 | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | | FEB
13
MAY | .90 | .019 | .92 | <.04 | | .18 | E.004 | <.02 | 2.6 | 7 | .08 | <2 | 49 | | 01
JUL | | E.005 | .46 | <.04 | | .24 | .009 | <.04 | 4.7 | 2 | .14 | E2 | 57 | | 10 | | E.004 | .11 | .04 | .42 | .47 | .012 | <.02 | 4.0 | <1 | .15 | 2 | 65 | | AUG
01 | | E.005 | .05 | .06 | .33 | .39 | .010 | <.02 | 4.8 | 2 | .20 | 3 | 61 | | Date | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | | FEB
13
MAY | <.06 | <.04 | <.8 | .20 | 1.0 | <10 | <.08 | 4.6 | E.01n | .5 | .43 | <2 | <1 | | 01 | <.06 | .06 | <.8 | .33 | 1.4 | <10 | E.06 | 16.4 | <.01 | .6 | 2.08 | <2 | <1 | | JUL
10 | <.06 | E.02 | <.8 | .41 | 2.3 | <10 | <.08 | 41.1 | .01 | .9 | 2.92 | <2 | <1 | | AUG
01 | <.06 | E.02 | <.8 | .36 | 1.1 | <10 | E.05 | 91.3 | .03 | 1.0 | 2.47 | <2 | <1 | ## 08063045 Richland Creek near Irene, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |-----------|---|---| | FEB 13 | 2 | 1.26 | | MAY
01 | 2 | .96 | | JUL
10 | 1 | .68 | | AUG
01 | 4 | .57 | Remark codes used in this report: <-- Less than E -- Estimated value Value qualifier codes used in this report: $\ensuremath{\text{n}}$ -- Below the NDV ### 08063050 Navarro Mills Lake near Dawson, TX LOCATION.--Lat 31°57'27", long 96°41'21", Navarro County, Hydrologic Unit 12030108, in left abutment of spillway of Navarro Mills Dam on Richland Creek, 1.7 mi upstream from bridge on State Highway 31, 3.0 mi upstream from St. Louis Southwestern Railway Lines bridge, 4.2 mi upstream from Post Oak Creek, 4.6 mi north of Dawson, and 63.9 mi upstream from mouth. DRAINAGE AREA. -- 320 mi². #### WATER-CONTENT RECORDS PERIOD OF RECORD.--Aug. 1962 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Navarro Mills Reservoir". GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 8, 1962, nonrecording gage in low-water channel at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 7,570 ft long, including a 240-foot off-channel gated spillway with six 40.0- by 29.0-foot tainter gates. From Aug. 27, 1962, to Mar. 14, 1963, lake was operated as a detention basin only. Deliberate impoundment began Mar. 15, 1963, and dam was completed in Sept. 1963. Low-flow outlet works consist of two 36-inch-diameter gate-controlled conduits. Lake was built for flood control and water conservation. Capacity table prior to Sept. 1976 is based on survey made in Feb. 1956 by U.S. Army Corps of Engineers. Capacity table after Aug. 31, 1976, is based on a sedimentation survey made in Sept. 1972. Flow is affected at times by discharge from the flood-detention pools of 51 floodwater-retarding structures with a combined detention capacity of 26,160 acre-ft. These structures control runoff from 86.9 mi² in the Richland Creek drainage basin. The dam is owned by the U.S. Army Corps of Engineers. An unknown amount of water is diverted for municipal and industrial uses. Conservation pool storage is 56,963 acre-ft. Data regarding dam are given in the following table: | | Elevation | |--|-----------| | | (feet) | | Top of dam | 457.0 | | Design flood | | | Top of gates (top of flood-control storage pool) | 443.0 | | Top of conservation pool | 424.5 | | Crest of spillway | 414.0 | | Lowest gated outlet (invert) | 400.0 | | | | COOPERATION.--Capacity table furnished by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 183,300 acre-ft, May 18, 1968, elevation, 440.36 ft; minimum since initial filling in May 1965, 32,490 acre-ft, Dec. 28, 1978, elevation, 418.89 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 115,000 acre-ft, Dec. 25, elevation, 433.44 ft; minimum contents, 45,340 acre-ft, Oct. 12, elevation, 422.07 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|---------|------------|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 1 | 46320 | 56490 | 59320 | 96120 | 58070 | 57320 | 61450 | 58090 | 60690 | e58630 | 56770 | 52730 | | 2 | 46230 | 56400 | 59300 | 92560 | 58060 | 57580 | 61850 | 57940 | 60650 | e58970 | 56620 | 52610 | | 3 | 46130 | 56380 | 59280 | 88930 | 58050 | 57300 | 61890 | 57900 | 60560 | e59160 | 56470 | 52460 | | 4 | 46000 | 56330 | 59210 | 85410 | 58020 | 57250 | 61430 | 57830 | 60480 | 59140 | 56330 | 52330 | | 5 | 46000 | 56280 | 59260 | 82110 | 58580 | 57170 | 60870 | 57800 | 60380 | 59120 | 56210 | 52190 | | 3 | 10000 | 30200 | 33200 | OZIIO | 30300 | 37170 | 00070 | 37000 | 00300 | 37120 | 30210 | 32130 | | 6 | 45760 | 56270 | 59240 | 78840 | 62640 | 57120 | 60540 | 57790 | 60330 | 59100 | 56060 | 52040 | | 7 | 45680 | 56180 | 59210 | 75470 | 64470 | 57100 | 60300 | 57730 | 60230 | 59020 | 55920 | 51820 | | 8 | 45590 | 56110 | 59430 | 72250 | 64680 | 57150 | 61220 | 57620 | 60110 | 58930 | 55730 | 51820 | | 9 | 45520 | 56160 | 59360 | 69110 | 63730 | 57150 | 61960 | 57630 | 60020 | 58820 | 55650 | 51940 | | 10 | 45520 | 56140 | 59300 | 66090 | 62480 | 57080 | 62310 | 57520 | 59960 | 58710 | 55610 | 51880 | | | | | | | | | | | | | | | | 11 | 45570 | 56130 | 59210 | 63210 | 61050 | 57170 | 62590 | 57480 | 59860 | 58590 | 55510 | 51810 | | 12 | 45490 | 56480 | 59430 | 61550 | 59740 | 57190 | 62700 | 57390 | 59730 | 58460 | 55380 | 51730 | | 13 | 48800 | 57170 | 59590 | 60060 | 59050 | 57190 | 62440 | 57440 | 59620 | 58380 | 55270 | 51620 | | 14 | 55270 |
57320 | 59640 | 58680 | 58530 | 57240 | 62220 | 57260 | 59530 | 58360 | 55130 | 51530 | | 15 | 56390 | 57420 | 59870 | 58000 | 58330 | 57310 | 61880 | 57140 | 59390 | 58250 | 54920 | 51430 | | | | | | | | | | | | | | | | 16 | 56830 | 58140 | 78420 | 57910 | 58250 | 57200 | 61530 | 57050 | 59480 | 58930 | 54820 | 51310 | | 17 | 57130 | 58600 | 103000 | 57910 | 58220 | 57350 | 61170 | 57110 | 59360 | 59910 | 54680 | 51250 | | 18 | 57260 | 58730 | 106800 | 57820 | 58120 | 57490 | 60800 | 57210 | 59260 | 59980 | 54540 | 51180 | | 19 | 57280 | 58980 | 109200 | 57940 | 58320 | 57550 | 60380 | 57100 | 59120 | 59840 | 54400 | 51460 | | 20 | 57280 | 59410 | 110700 | 57860 | 58280 | 58690 | 59920 | 57010 | 59070 | 59420 | 54250 | 51590 | | | | | | | | | | | | | | | | 21 | 57220 | 59520 | 112000 | 57810 | 58180 | 59330 | 59510 | 56910 | 59120 | 58970 | 54130 | 51440 | | 22 | 57220 | 59470 | 113100 | 57790 | 58140 | 59430 | 59070 | 56780 | 59010 | 58560 | 53980 | 51280 | | 23 | 57250 | 59560 | 113900 | 57800 | 58020 | 59510 | 58880 | 56660 | 58910 | 58330 | 53850 | 51110 | | 24 | 57280 | 59680 | 114500 | 57900 | 57930 | 59580 | 58680 | 56560 | 58770 | 58170 | 53730 | 50970 | | 25 | 57050 | 59440 | 114800 | 57850 | 57830 | 59710 | 58310 | 56540 | 58640 | 58010 | 53550 | 50830 | | | | | | | | | | | | | | | | 26 | 56920 | 59370 | 115000 | 57800 | 57730 | 59680 | 58230 | 56560 | 58550 | 57840 | 53410 | 50760 | | 27 | 56870 | 59260 | 114300 | 57750 | 57500 | 59640 | 58280 | 56720 | 58570 | 57650 | 53290 | 50650 | | 28 | 56720 | 59470 | 110900 | 57730 | 57440 | 59610 | 58230 | 57230 | 58480 | 57460 | 53180 | 50530 | | 29 | 56650 | 59610 | 107200 | 57730 | | 59590 | 58210 | 58530 | 58340 | 57280 | 53070 | 50440 | | 30 | 56570 | 59390 | 103400 | 57700 | | 59520 | 58170 | 60480 | 58310 | 57130 | 52950 | 50350 | | 31 | 56520 | | 99770 | 58000 | | 60820 | | 60640 | | 56940 | 52810 | | | | | | | | | | | | | | | | | TOTAL | 1622320 | 1735890 | 2617640 | 2033690 | 1659440 | 1803020 | 1815020 | 1783650 | 1784530 | 1816060 | 1698220 | 1545090 | | MEAN | 52330 | 57860 | 84440 | 65600 | 59270 | 58160 | 60500 | 57540 | 59480 | 58580 | 54780 | 51500 | | MAX | 57280 | 59680 | 115000 | 96120 | 64680 | 60820 | 62700 | 60640 | 60690 | 59980 | 56770 | 52730 | | MIN | 45490 | 56110 | 59210 | 57700 | 57440 | 57080 | 58170 | 56540 | 58310 | 56940 | 52810 | 50350 | | | | | | | | | | | | | | | | (+) | 424.41 | 424.97 | 431.46 | 424.70 | 424.59 | 425.24 | 424.73 | 425.21 | 424.76 | 424.49 | 423.66 | 423.16 | | (@) | +10120 | +2870 | +40380 | -41770 | -560 | +3380 | -2650 | +2470 | -2330 | -1370 | -4130 | -2460 | | | | | | | | | | | | | | | | ONT 37 | 0.001 | MARK 12720 | O MITST AF | 100 (0) | . 22000 | | | | | | | | CAL YR 2001 MAX 137200 MIN 45490 (@) +23080 WTR YR 2002 MAX 115000 MIN 45490 (@) +3950 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in Contents, in acre-feet. 08063050 Navarro Mills Lake near Dawson, TX--Continued ### 08063050 Navarro Mills Lake near Dawson, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1969 to Sept. 1982, Oct. 1999 to current year. BIOCHEMICAL DATA: Oct. 1981 to Aug. 1982, Oct. 1999 to current year. PESTICIDE DATA: Aug. 2000 to Sept. 2000. REMARKS.--Pesticide samples are composited from discrete samples collected at the surface, middle, and bottom of the reservoir. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 #### 315730096412601 -- Navarro Mills Lk Site AC | | | | | 315730 | 096412601 | Navar | ro Mills | Lk Site A | C | | | | | |---|--|---|--|--|--|--|---|--|---|---|---|--|---| | Date | Time | RESER-
VOIR
STORAGE
(AC-FT)
(00054) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | | FEB 13 | 1426 | 59000 | .27 | 1.00 | 274 | 7.9 | 10.0 | 9.9 | 88 | E2k | <1k | 110 | 8 | | FEB | 1120 | 33000 | • • • | 1.00 | 2,1 | | 20.0 | ,,, | 00 | 22.1 | -222 | 110 | Ü | | 13-13 | 1426 | | | 10.0 |
275 |
7.9 | 10.0 | 10.0 |
89 | | | | | | 13
13 | 1432
1439 | | | 20.0 | 275 | 7.9 | 10.0 | 10.0 | 89
89 | | | | | | 13 | 1446 | | | 27.0 | 275 | 7.9 | 10.0 | 10.2 | 91 | | | 110 | 12 | | MAY | | | | | | | | | | | - 41 | | | | 01
MAY | 1309 | 58200 | .43 | 1.00 | 335 | 8.2 | 25.5 | 7.8 | 98 | E20k | E6k | 140 | 11 | | 01-01 | 1309 | | | | | | | | | | | | | | 01 | 1317 | | | 10.0 | 335 | 8.2 | 25.5 | 7.8 | 98 | | | | | | 01
01 | 1324
1331 | | | 20.0
26.0 | 336
336 | 8.1
8.0 | 25.0
25.0 | 7.5
7.1 | 93
88 | | | 140 | 14 | | AUG | | | | | | | | | | | | | | | 01
AUG | 1216 | 56800 | .24 | 1.00 | 279 | 7.6 | 29.5 | 4.4 | 59 | <2k | <2k | 110 | 11 | | 01-01 | 1216 | | | | | | | | | | | | | | 01 | 1221 | | | 10.0 | 278 | 7.8 | 30.0 | 4.9 | 66 | | | | | | 01
01 | 1226
1230 | | | 20.0
26.0 | 280
280 | 7.6
7.6 | 29.5
30.0 | 4.0
4.6 | 53
62 | | | 110 | 10 | 096412601 | | CAR- | Lk Site A | ALKA- | | | | | | Date | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | Date FEB 13 | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | | FEB
13
FEB | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB
13
FEB
13-13 | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB
13
FEB | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932)
15
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS
IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB
13
FEB
13-13
13
13 | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932)
15 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB
13
FEB
13-13
13 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
40.5 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932)
15
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB
13
FEB
13-13
13
13
MAY
01
MAY
01-01 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
40.5

41.3
50.1 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05

9.11
12.4 | SODIUM AD- SORP- TION RATIO (00931) .44 .5 | SODIUM PERCENT (00932) 15 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.46 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 126 124 152 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
105
 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
6.47

5.67
7.14 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r | | FEB 13 FEB 13-13 13 13 13 MAY 01 MAY 01 | DIS-
SOLVED (MG/L
AS CA) (00915)
40.5

41.3
50.1 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05

9.11
12.4 | SODIUM AD- SORP- TION RATIO (00931) .44 .5 | SODIUM
PERCENT
(00932)
15

-1
14
16 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.46

-3.40
3.18 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 126 124 152 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
105

103
127 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.47

-5.67
7.14 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01-01 01 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
40.5

41.3
50.1 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05

9.11
12.4 | SODIUM AD- SORP- TION RATIO (00931) .44 .5 | SODIUM
PERCENT
(00932)
15

14
16

 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.46

3.40
3.18 | CAR-BONATE WATER DIS IT FIELD MG/L AS C03 (00452) <11 2111 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 126 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 103 127 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.47

5.67
7.14 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r | | FEB 13 FEB 13-13 13 13 13 MAY 01 MAY 01 MAY 01 AUG | DIS-
SOLVED (MG/L AS CA) (00915)
40.5
 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05

3.10 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05

9.11
12.4

12.6 | SODIUM AD- SORP- TION RATIO (00931) .44 .55 | SODIUM PERCENT (00932) 15 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.46

-3.40
3.18 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 126 124 152 152 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 103 127 127 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1

26.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.47

-5.67
7.14

6.79 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r

9r | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 MAY 01 AUG 01 AUG | DIS-
SOLVED (MG/L
AS CA) (00915)
40.5

41.3
50.1

51.2
37.9 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05

3.10 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05
 | SODIUM AD- SORP- TION RATIO (00931) .44 .55 .6 | SODIUM PERCENT (00932) 15 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.46

-3.40
3.18

-3.52 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <11 21 1 | BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 126 124 152 152 116 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 103 127 127 95 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1

26.2
23.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.47

5.67
7.14

6.79
8.41 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.3

.3
.3
.3 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r

.9r | | FEB 13 FEB 13-13 13 13 13 MAY 01 MAY 01 AUG 01 AUG 01 AUG 01 AUG 01 | DIS-
SOLVED (MG/L AS CA) (00915)
40.5 41.3 50.1 51.2 37.9 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05

3.10
3.09 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05

9.11
12.4

12.6
13.1 | SODIUM AD- SORP- TION RATIO (00931) .44 .55 | SODIUM PERCENT (00932) 15 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.46

-3.40
3.18 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
126

-124
152

152
116 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 103 127 127 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1

26.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
6.47

-5.67
7.14

6.79 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r

9r | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 MAY 01 AUG 01 AUG | DIS-
SOLVED (MG/L
AS CA) (00915)
40.5

41.3
50.1

51.2
37.9 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.54

2.58
3.05

3.10 | DIS-
SOLVED (MG/L
AS NA) (00930)
9.05
 | SODIUM AD- SORP- TION RATIO (00931) .44 .55 .6 | SODIUM PERCENT (00932) 15 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
3.46

3.40
3.18

3.52
3.68 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 | BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 126 124 152 152 116 | ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 103 127 127 95 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
21.2

21.1
26.1

26.2
23.5 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
6.47

-5.67
7.14

6.79
8.41 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.3

.3
.3
.3

.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.2

6.4
.6r

.9r | ## 08063050 Navarro Mills Lake near Dawson, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 315730096412601 -- Navarro Mills Lk Site AC | Date | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS
MN)
(01056) | BENZENE
TOTAL
(UG/L)
(34030) | ETHYL-
BENZENE
TOTAL
(UG/L)
(34371) | |---|--|--|--|--|--|---|--|--|---|---|---|--|---| | | | | | | | | | | | | | | | | FEB
13
FEB | 157 | 1.17 | .036 | 1.20 | .04 | .33 | .38 | .019 | E.01 | <10 | E.9n | | | | 13-13
13 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 13 | 156 | 1.16 | .035 | 1.20 | .04 | .33 | .37 | .019 | E.01 | <10 | E1.8b | | | | MAY
01 | 185 | 1.25 | .014 | 1.27 | <.04 | | .34 | .005 | <.02 | <10 | <2.0 | <.2 | <.2 | | MAY
01-01 | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | 01 | 187 | 1.26 | .018 | 1.28 | <.04 | | .34 | .007 | <.04 | <10 | E.8n | | | | AUG
01
AUG | 154 | | <.008 | <.05 | E.02 | | .27 | .006 | <.02 | <10 | 45.9 | <.2 | <.2 | | 01-01 | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | 01 | . == | | | | | | | | | | | | | | 01 | 153 | | <.008 | E.03 | E.03 | | .30 | .007 | <.02 | <10 | 51.9 | | | | | | | | | | | | | | | | | | | Date | TOLUENE
TOTAL
(UG/L) | XYLENE
WATER
UNFLTRD
REC
(UG/L) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 315730
2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L) | Navar ALA- CHLOR, WATER, DISS, REC, (UG/L) | ALPHA
BHC
DIS-
SOLVED
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | Date | TOTAL | WATER
UNFLTRD
REC | TERT-
BUTYL
ETHER
WAT UNF
REC | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC | ACETO-
CHLOR,
WATER
FLTRD
REC | ALA-
CHLOR,
WATER,
DISS,
REC, | ALPHA
BHC
DIS-
SOLVED | ATRA-
ZINE,
WATER,
DISS,
REC | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC | ATE,
WATER,
DISS,
REC | BARYL
WATER
FLTRD
0.7 U
GF, REC | FURAN
WATER
FLTRD
0.7 U
GF, REC | | FEB 13 | TOTAL (UG/L) | WATER
UNFLTRD
REC
(UG/L) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L) | ALPHA
BHC
DIS-
SOLVED
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | FEB 13 | TOTAL
(UG/L)
(34010) | WATER
UNFLTRD
REC
(UG/L) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLIRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | | FEB 13 | TOTAL
(UG/L)
(34010) | WATER
UNFLTRD
REC
(UG/L)
(81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | FEB
13
FEB
13-13
13 | TOTAL
(UG/L)
(34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 | | FEB
13
FEB
13-13
13
13 | TOTAL
(UG/L)
(34010) | WATER UNFLITED REC (UG/L) (81551) | TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLIRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-ZINE, WATER, DISS, REC (UG/L) (39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) | | FEB
13
FEB
13-13
13 | TOTAL
(UG/L)
(34010) | WATER UNFLTRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 | | FEB 13 FEB 13-13 13 13 13 MAY 01 | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 | | FEB 13 FEB 13-13 13 13 13 MAY 01 MAY 01 | TOTAL (UG/L) (34010) | WATER UNFLITED REC (UG/L) (81551) <.2 | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.004

.113 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

<.041
 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01-01 01 | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) <.2 | TERT- BUTYL ETHER WAT UNF REC (UG/L)
(78032) <.2 | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006 | ACETO-
CHLOR,
WATER
FLTR
REC
(UG/L)
(49260)

<.006

.036 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.004

.113 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

<.041
 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 | | FEB
13
FEB
13-13
13
13
MAY
01
MAY
01
01
01 | TOTAL (UG/L) (34010) | WATER UNFLITED REC (UG/L) (81551) <.2 | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.004

.113 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

<.041
 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01-01 01 | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) <.2 | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) <.2 | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006 | ACETO-
CHLOR,
WATER
FLTR
REC
(UG/L)
(49260)

<.006

.036 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.004

.113 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041

<.041
 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 MAY 01 AUG 01 AUG 01 AUG 01 AUG 01 | TOTAL (UG/L) (34010) | WATER UNFLITAD REC (UG/L) (81551) <.2 <.2 <.2 | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006036036006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004113019 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA- ZINE, WATER, DISS, REC (UG/L)(39632) 3.58 1.32 1.18 | METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 | | FEB 13 FEB 13-13 13 13 13 MAY 01 MAY 01-01 01 01 AUG 01-01 01 | TOTAL (UG/L) (34010) | WATER UNIFLIRD REC (UG/L) (81551) <.2 <.2 | TERT- BUTYL BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

<.006

<.006 | ACETO-CHLOR, WATER FLTRE (UG/L) (49260) <.006036006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.004

.113

.019 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005

<.005 | ATRA- ZINE, WATER, DISS, REC (UG/L) (39632) 3.58 1.32 1.18 | METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 MAY 01 AUG 01 AUG 01 AUG 01 AUG 01 | TOTAL (UG/L) (34010) | WATER UNFLITAD REC (UG/L) (81551) <.2 <.2 <.2 | TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.006 <.006 <.006 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006036036006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004113019 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

<.005 | ATRA- ZINE, WATER, DISS, REC (UG/L)(39632) 3.58 1.32 1.18 | METHYL AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 | ## 08063050 Navarro Mills Lake near Dawson, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 315730096412601 -- Navarro Mills Lk Site AC | Date | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | |--|---|---|--|--|--|--|---|--|---|---|---|--|---| | FEB | | | | | | | | | | | | | | | 13
FEB | | | | | | | | | | | | | | | 13-13
13 | <.005 | <.006 | <.018 | <.003 | E.149 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | 13 | | | | | | | | | | | | | | | MAY | | | | | | | | | | | | | | | 01
MAY | | | | | | | | | | | | | | | 01-01
01 | <.005 | <.006 | <.018 | <.003 | E.258 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | 01 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 01
AUG | | | | | | | | | | | | | | | 01-01
01 | <.005 | <.006 | <.018 | <.003 | E.220 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 |
<.004 | | 01 | | | | | | | | | | | | | | | 01 | 315730 | 096412601 | Navar | ro Mills | Lk Site A | C | | | | | | Date | LIN-
URON
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCORWATER DISSOLV(UG/L)(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | Navar
NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P' DDE DISSOLV (UG/L) (34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | FEB | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L) | LACHLOR
WATER
DISSOLV
(UG/L) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | P,P'
DDE
DISSOLV
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | | FEB
13
FEB | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | FEB
13 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L) | LACHLOR
WATER
DISSOLV
(UG/L) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | P,P'
DDE
DISSOLV
(UG/L) | PARA-
THION,
DIS-
SOLVED
(UG/L) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | | FEB
13
FEB
13-13
13 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | FEB
13
FBB
13-13
13
13 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542)

<.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | FEB
13
FEB
13-13
13
13 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | FEB
13
FEB
13-13
13
13
MAY
01
MAY
01-01 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532)

<.027

<.027 | LACHLOR WATER DISSOLV (UG/L) (39415) 038282 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA-
THION,
DIS-
SOLVED (UG/L)
(39542) <.010 <.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01-01 01 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) 038282 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007
 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA-
THION,
DIS-
SOLVED (UG/L) (39542) <.010 <.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 | | FEB 13 FEB 13-13 13 13 13 MAY 01 MAY 01-01 01 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532)

<.027

<.027
 | LACHLOR WATER DISSOLV (UG/L) (39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA-
THION,
DIS-
SOLVED (UG/L) (39542) <.010 <.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 MAY 01 MAY 01 01 01 01 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) 038282 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007
 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003 | PARA-
THION,
DIS-
SOLVED (UG/L) (39542) <.010 <.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 AUG 01 AUG 01 AUG 01 AUG 01 | URON WATER FLTRD 0.7 U GF, REC
(UG/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 <.027 <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) 038282 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 <.002 <.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

<.007

<.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 <.010 <.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 <.01 <.01 <.01 | | FEB 13 FEB 13-13 13 13 MAY 01 MAY 01 MAY 01 AUG 01 AUG | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 <.027 | LACHLOR WATER DISSOLV (UG/L) (39415) 038282 | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 < <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 | PARA- THION, DIS- SOLVED (UG/L) (39542) <.010 <.010 <.010 | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

<.022 | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 <- 0111 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 <.01 < < < < | ### 08063050 Navarro Mills Lake near Dawson, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | 315730096412601 | Navarro | Mills | Lk Site | AC | |--|-----------------|---------|-------|---------|----| |--|-----------------|---------|-------|---------|----| | | | | | 315730 | 096412601 | Navar | ro Mills | Lk Site A | C | | | | | |-----------|--------------|---|--|--|---|---|---|---|---|---|---|--|---| | I | Date | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | | FI | EB | | | | | | | | | | | | | | FI | 13
EB | | | | | | | | | | | | | | | 13-13
13 | <.010 | <.011 | <.02 | <.004 | <.005 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | | | 13 | | | | | | | | | | | | | | M | 13
AY | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | M | AY
01-01 | <.010 | <.011 | <.02 | <.004 | .011 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | | | 01 | | | | | | | | | | | | | | | 01
01 | | | | | | | | | | | | | | AI | JG | | | | | | | | | | | | | | ΙA | 01
JG | | | | | | | | | | | | | | | 01-01 | <.010 | <.011 | <.02 | <.004 | .007 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | | | 01
01 | | | | | | | | | | | | | | | 01 | 315706 | 096420201 | Navar | ro Mills | Lk Site A | R | | | | | | | | Da | te | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | | | | | | 1 | 3
3
3 | 1458
1500
1503 | 1.00
10.0
20.0 | 275
275
275 | 8.0
8.0
7.9 | 10.5
10.5
10.0 | 10.6
10.5
10.3 | 95
94
92 | | | | | | | 0 | 1 | 1342
1344
1346 | 1.00
10.0
20.0 | 336
336
339 | 8.2
8.2
8.1 | 25.5
25.5
25.0 | 8.4
8.4
7.7 | 105
105
96 | | | | | | | 0 | 1 | 1238
1240
1242 | 1.00
10.0
20.0 | 277
278
280 | 8.1
8.0
7.7 | 30.0
29.5
29.5 | 6.1
5.7
4.7 | 82
76
63 | | | | | | | | | 315710 | 096431301 | Navar | ro Mills | Lk Site B | С | | | | | | Date | Time | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | FEB | | | | | | | | | | | | | | | 13 | 1521 | .30 | 1.00 | 278 | 8.0 | 10.5 | 10.6 | 95 | E3k | E4k | 120 | 13 | 42.0 | | 13
13 | 1528
1535 | | 10.0
24.0 | 278
281 | 8.0
7.9 | 10.5
9.5 | 10.6
10.2 | 95
90 | | | 120 | 12 | 42.2 | | MAY | | | | | | | | | | | | | | | 01
01 | 1413
1421 | .27 | 1.00
10.0 | 338
338 | 8.2
8.2 | 25.5
25.0 | 8.2
7.8 | 103
97 | E3k | <2k | 140 | 10 | 50.5 | | 01 | 1429 | | 24.0 | 344 | 7.7 | 23.0 | 5.3 | 63 | | | 140 | 8 | 50.9 | | AUG
01 | 1258 | .44 | 1.00 | 275 | 8.0 | 29.5 | 5.9 | 79 | <2k | E2k | 100 | 10 | 36.9 | | 01 | 1303 | | 10.0 | 279 | 7.8 | 29.0 | 5.1 | 68 | | | | | | 01... 1.00 10.0 23.0 .44 1303 1308 275 279 281 8.0 7.8 7.6 29.5 29.0 29.0 5.9 5.1 4.3 79 68 57 E2k ---- 110 9 37.1 <2k -- 13... 13... 13... MAY 01... 01... AUG 01... 01... 01... 1.32 1.37 1.23 1.24 1.24 ---- ### 08063050 Navarro Mills Lake near Dawson, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 315710096431301 -- Navarro Mills Lk Site BC | | | | | 313/10 | 090431301 | Navai | IO MIIIS | TV SICE I | DC | | | | | |-----------|---|---|--|---------------------------------------|--|---|--|--|--|--|---|--|--| | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS
MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | FEB | | | | | | | | | | | | | | | 13 | 2.58 | 9.73 | . 4 | 15 | 3.34 | <1 | 125 | 104 | 21.4 | 5.83 | .3 | 6.1 | 159 | | 13
13 | 2.59 | 9.69 | .4 |
15 | 3.32 | <1 |
126 | 105 | 21.4 | 6.10 | .3 | 6.1 | 160 | | MAY | | | | | | | | | | | | | | | 01
01 | 3.05 | 12.4 | .5
 | 16
 | 3.22 | 2 | 154 | 129 | 26.2 | 6.94 | .3 | .5 | 186 | | 01 | 3.04 | 12.3 | .5 | 16 | 3.21 | 1 | 159 | 132 | 25.6 | 6.75 | . 4 | 2.2 | 189 | | AUG
01 | 3.04 | 12.7 | .5 | 20 | 3.55 | 1 | 114 | 94 | 23.7 | 8.50 | . 4 | 5.9 | 151 | | 01 | | 10.0 | | | | | 116 | | | | | | 150 | | 01 | 3.01 | 12.8 | .5 | 20 | 3.57 | 1 | 116 | 96 | 23.8 | 8.72 | . 4 | 6.1 | 153 | | | | | | 315710 | 096431301 | Navar | ro Mills | Lk Site E | 3C | | | | | | | Police | NIT
GE
NITR
DI
SOL | N, GE
ATE NITR
S- DI
VED SOL | N, GE
ITE NO2+
S- DI
VED SOL | N, GE
NO3 AMMO
S- DI
VED SOL | EN, GE
DNIA ORGA
ES- DI
JVED SOI | EN, GEN,
ANIC MONI
S- ORGA
LVED DIS | ANIC DI
S. SOI | RUS PHA
S- DIS
VED SOLV | S-
TE, IRC
- DI
ED SOL | N, NES
S- DI
VED SOL | S-
VED | | | | Date | (MG
AS 1
(006 | N) AS | P) AS | P) AS | FE) AS | MN) | | | .061 | 1.38 | E.02 | | .35 | .019 | <.02 | <10 | <2.0 | |-------|------|-------|-----|-----|-------|------|-----|-------| | | | | | | | | | | | .079 | 1.45 | E.03 | | .35 | .017 | E.01 | <10 | E1.2n | | .013 | 1.24 | <.04 | | .32 | E.004 | <.04 | <10 | <2.0 | | .014 | 1.25 | < .04 | | .32 | .005 | <.02 | <10 | E.8n | | .041 | 1.28 | <.04 | | .35 | .006 | <.04 | <10 | <2.0 | | <.008 | <.05 | <.04 | | .22 | E.003 | <.02 | <10 | E2.8 | | | | | | | | | | | | E.004 | <.05 | .07 | .24 | .31 | .007 | <.02 | <10 | 36.6 | ## 315642096444401 -- Navarro Mills Lk Site CC | | | | | | PH | | | OXYGEN, | COLI- | | | HARD- | | |------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | TRANS- | | SPE- | WATER | | | DIS- | FORM, | | HARD- | NESS | | | | | PAR- | | CIFIC | WHOLE | | | SOLVED | FECAL, | E COLI, | NESS | NONCARB | CALCIUM | | | | ENCY | SAM- | CON- | FIELD | TEMPER- | OXYGEN, | (PER- | 0.7 | MTEC MF | TOTAL | DISSOLV | DIS- | | | | (SECCHI | PLING | DUCT- | (STAND- | ATURE | DIS- | CENT | UM-MF | WATER | (MG/L | FLD. AS | SOLVED | | Date | Time | DISK) | DEPTH | ANCE | ARD | WATER | SOLVED | SATUR- | (COLS./ | (COL/ | AS | CACO3 | (MG/L | | | | (M) | (FEET) | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | 100 ML) | 100 ML) | CACO3) | (MG/L) | AS CA) | | | | (00078) | (00003) | (00095) | (00400) | (00010) | (00300) | (00301) | (31625) | (31633) | (00900) | (00904) | (00915) | | FEB | | | | | | | | | | | | | | | 13 | 1550 | .27 | 1.00 | 288 | 8.0 | 10.0 | 10.8 | 96 | E7k | E3k | 120 | 14 | 43.5 | | 13 | 1556 | | 10.0 | 288 | 8.0 | 9.5 | 10.7 | 94 | | | | | | | 13 | 1602 | | 16.0 | 289 | 8.0 | 9.0 | 10.5 | 91 | | | 120 | 16 | 43.8 | | MAY | | | | | | | | | | | | | | | 01 | 1456 | .26 | 1.00 | 344 | 8.2 | 25.5 | 8.3 | 104 | E3k | <2k | 140 | 12 | 51.9 | | 01 | 1502 | | 10.0 | 344 | 8.2 | 25.5 | 8.3 | 104 | | | | | | | 01 | 1507 | | 15.0 | 344 | 8.2 | 25.5 | 8.4 | 105 | | | 140 | 11 | 52.0 | | AUG | | | | | | | | | | | | | | | 01 | 1324 | .37 | 1.00 | 281 | 8.3 | 30.0 | 7.2 | 97 | <2k | E2k | 110 | 10 | 37.1 | | 01 | 1332 | | 14.0 | 281 | 8.2 | 29.0 | 6.2 | 82 | | | 110 | 9 | 37.7 | ## 08063050 Navarro Mills Lake near Dawson, TX--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 315642096444401 -- Navarro Mills Lk Site CC | | | | | 313012 | 0,0111101 | Ivavai | IO MILIED | THE DICC C | | | | | | |-----------------|---|---|--|--|--|--|--|--|--|--|--|--|--| | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | FEB | | | | | | | | | | | | | | | 13
13 | 2.65 | 10.0 | . 4 | 15 | 3.35 | 1 | 126 | 106 | 22.3 | 6.03 | .3 | 6.2 | 166 | | 13
13
MAY | 2.66 | 10.1 | . 4 | 15 | 3.46 | <1 | 127 | 106 | 22.7 | 6.00 | .3 | 6.4 | 167 | | 01 | 3.07 | 12.2 | . 4 | 15 | 3.54 | 2 | 156 | 131 | 26.2 | 6.82 | .3 | .8 | 188 | | 01
01 | 3.07 | 12.1 | . 4 | 15 | 3.44 | 2 | 156 | 131 | 26.1 | 6.86 | .3 | .8 | 189 | | AUG
01 | 3.02 | 12.7 | .5
.5 | 20 | 3.55 | 1 | 114 | 96 | 24.2 | 8.81 | . 4 | 5.7 | 153 | | 01 | 3.04 | 12.9 | .5 | 20 | 3.51 | 1 | 117 | 98 | 23.9 | 8.39 | . 4 | 5.7 | 154 | | | | | | 315642 | 096444401 | Navar | ro Mills | Lk Site C | C | | | | | | | Da | te | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | | | | FEB
1 | 3 | 1.79 | .191 | 1.98 | <.04 | .36 | .016 | <.02 | <10 | E.9n | | | | | 1 | .3
.3 | 1.83 | .202 | 2.04 |
E.03 | .40 | .017 | <.02 |
<10 |
E.9n | | | | | MAY | | | | | | | | | | | | | | | | 1 | 1.19 | .012 | 1.20 | <.04 | .32 | .005 | <.02 | <10 | E1.9b
 | | | | | 0
AUG | 1 | 1.18 | .012 | 1.20 | <.04 | .30 | .006 | <.04 | <10 | E3.0b | | | | | 0 | 1
1 | | <.008
<.008 | <.05
<.05 | <.04
<.04 | .24 | E.004
.005 | <.02
<.02 | <10
<10 | <2.0
<2.0 | | | | | | | | 215602 | 006470001 | Norrow | mo Milla | Lk Site D | a | | | | | | | | | | | 096470001 | Navar | | | | | | | | | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | | FEB
13 | 1624 | 1.00 | 343 | 8.1 | 11.0 | 11.6 | 106 | 2.73 | .262 | 2.99 | <.04 | .38 | .010 | | MAY
01 | 1530 | 1.00 | 344 | 8.1 | 26.5 | 8.0 | 102 | 1.17 | .017 | 1.18 | <.04 | .32 | .007 | | 01
AUG
01 | 1534
1356 | 3.00
1.00 | 344
281 | 8.1 | 26.5
29.5 | 7.9
6.6 | 101
88 | | <.008 | <.05 | <.04 | .24 | .006 | | 01 | 1400 | 4.00 | 282 | 8.2 | 29.5 | 6.6 | 88 | | | | | | | | | | | | 215602 | 006470001 | Marray | mo Milla | Th Cito D | c . | | | | | 315602096470001 -- Navarro Mills Lk Site DC | Date | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |---|--|---|---| | FEB
13
MAY
01
01
AUG
01 |
<.02
<.02

<.02 | <10
<10

<10 | E1.2n E1.1n <2.0 | ### 08063050 Navarro Mills Lake near Dawson, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 315706096463201 -- Navarro Mills Lk Site EC | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | |-----------|------|---|--|--|---|--|---|--|--|--|--|--|--| | FEB
13 | 1645 | 1.00 | 299 | 8.2 | 11.0 | 11.5 | 105 | 2.22 | .389 | 2.60 | E.02 | .42 | .015 | | MAY | | | | | | | | | | | | | | | 01 | 1556 | 1.00 | 345 | 8.2 | 26.0 | 8.2 | 104 | 1.17 | .021 | 1.19 | <.04 | .33 | .006 | | 01 | 1601 | 4.00 | 344 | 8.1 | 26.0 | 8.3 | 105 | | | | | | | | AUG | | | | | | | | | | | | | | | 01 | 1420 | 1.00 | 296 | 8.3 | 30.0 | 7.1 | 96 | | <.008 | E.02 | < .04 | .27 | .005 | | 01 | 1424 | 3.00 | 296 | 8.3 | 30.0 | 7.2 | 97 | | | | | | | 315706096463201 -- Navarro Mills Lk Site EC | Date | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | |-----------|--|-----|-------| | FEB 13 | <.02 | E6 | E1.5n | | MAY
01 | E.01 | <10 | <2.0 | | 01
AUG | | | | | 01 | <.02 | <10 | <2.0 | | | | | | Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: b -- Value was extrapolated below k -- Counts outside acceptable range n -- Below the NDV r -- Value verified by rerun, same method THIS PAGE IS INTENTIONALLY BLANK #### 08063100 Richland Creek near Dawson, TX LOCATION.--Lat 31°56′18", long 96°40′52", Navarro County, Hydrologic Unit 12030108, at downstream side of bridge on State Highway 31, 1.3 mi upstream from St. Louis Southwestern Railway Lines bridge, 1.7 mi downstream from Navarro Mills Dam, 2.5 mi upstream from Post Oak Creek, and 3.6 mi northeast of Dawson. DRAINAGE AREA. -- 333 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1960 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 367.52 ft above NGVD of 1929. Nov. 21, 1960, to Sept. 30, 1982, water-stage recorder at same site and at 3.00 ft higher datum. Prior to Nov. 21, 1960, nonrecording gage at same site and datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. Since Mar. 15, 1963, at least 10% of contributing drainage area has been regulated. Flow may be slightly affected at times by discharge from the flood-detention pool of one floodwater-retarding structure. This structure controls runoff from a 1.28 mi² area below Navarro Mills Lake and above this station. AVERAGE DISCHARGE FOR PERIOD PRIOR TO REGULATION.--3 years (water years 1961-63) prior to completion of Navarro Mills Lake, 181 ${\rm ft}^3/{\rm s}$ (131,100 acre-ft/yr) EXTREMES FOR PERIOD PRIOR TO REGULATION (WATER YEARS 1961-63).--Maximum discharge, $25,500 \text{ ft}^3/\text{s}$, July 3, 1961, gage height, 25.50 ft, from rating curve extended above $14,000 \text{ ft}^3/\text{s}$; no flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since about 1895, about 31 ft June 19, 1929, from information by local residents. Floods in 1946 and 1957 reached a stage of about 26 ft, from information by local residents. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DATLY MEAN VALUES DAY OCT NOV DEC JAN APR MAY JUN JUL AUG SEP 0.90 1.7 37 1720 22 1.1 2.0 2.8 0.12 38 34 64 0.12 0.92 1700 34 65 11 1.1 1.9 0.42 0.98 2.0 3 0.78 39 1670 38 34 173 1 1 1.0 0.27 0.13 352 0.19 39 1630 34 0.95 1.1 0.14 2.3 38 5 39 0.88 2.1 1600 50 34 302 0.91 1.0 1.5 0.12 0.13 6 0.76 1.6 39 1570 73 34 260 0.93 0.98 1.6 0.10 0.14 0.86 1.6 39 1550 42 34 261 0.88 1.0 0.09 0.20 8 0.90 1.6 38 1520 446 17 203 0.86 1 0 1.6 1.7 0 09 0 29 757 0.84 1.4 38 1480 1.7 0.85 1.0 0.10 0.31 3.1 10 0.79 0.82 37 1450 747 1.6 2.2 0.82 1.0 1.5 0.16 0.28 1.2 0.84 0.24 11 0.82 1160 737 1.6 2.0 0.16 612 12 1.0 1.2 38 137 0.84 1.0 0.15 0.24 724 1.6 1.5 1.4 0.78 720 13 1 5 38 348 1.6 247 0 89 1 1 1 5 0 13 0 24 1.4 1.7 0.83 0.24 37 260 15 0.70 1.3 59 196 108 1.6 250 0.88 1.0 1.5 0.00 0.23 1.6 1180 72 250 0.86 1.2 5.9 0.0 0.22 0.63 39 1.0 1.5 239 38 72 1.6 250 1.3 1.1 4.2 0.0 0.24 0.70 18 1.6 88 38 72 1.7 249 1.1 1.1 2.0 0.0 0.24 19 0.70 2.0 72 1.8 0.90 87 0.03 0.41 20 0.69 2.0 65 38 72 3.1 247 0.93 1.4 181 0.03 0.33 0.68 21 5.4 57 37 72 2.1 246 1.6 1.3 181 0.04 0.29 0.71 0.75 1.7 1.5 2.2 38 59 38 72 1.7 175 1.2 127 0.04 0.29 72 0.27 23 39 61 1.3 38 1.6 116 31 0.05 1.2 39 72 1.6 117 1.1 1.3 0.05 0.26 61 38 25 0.83 39 62 38 72 1.6 62 1.1 1.2 6.9 0.06 0.25 26 0.78 39 63 39 58 1.5 20 1.2 1.3 0.08 0.26 2.7 0.75 39 974 39 34 23 20 1.5 1.4 6.0 0.16 0.26 39 2.1 0.27 28 0.81 1830 39 64 20 1.4 34 5.5 0.14 29 1.2 39 1810 39 64 20 16 1.4 5.3 0.11 0.29 1.7 30 2.0 39 1790 39 ---64 21 1.6 5.0 0.12 0.28 31 2 2 1760 39 64 1 2 4.6 0.12 29.36 10774 5178 565.2 4632.3 80.37 35.18 690.8 7.21 TOTAL 386.90 19845 5.81 MEAN 0.947 12.90 347.5 640.2 184.9 18.23 154.4 2.593 1.173 22.28 0.187 0.240 млч 2.2 39 1830 1720 757 64 352 22 1 6 181 2.8 0.41 0.82 0.78 0.63 MTN 37 37 34 1.5 2.0 0.98 1.5 0.00 0.12 AC-FT 21370 39360 10270 1120 9190 159 1370 14 58 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002z, BY WATER YEAR (WY) MEAN 45 55 141 4 157 7 202 0 199 0 216 1 225 8 262 5 327 3 94 05 25 74 19 33 1050 1356 773 MAX 400 1366 1288 1090 971 992 980 541 269 1974 1970 1992 1980 1968 1995 1974 (WY) 1968 1975 1998 MTN 0.000 0.000 0.000 0.058 0.066 0 22 0.023 0.019 0.000 0.000 0.068 0.005 1971 1970 (WY) 1964 1964 1964 1964 1964 1964 1964 1964 1981 1997 ## 08063100 Richland Creek near Dawson, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1964 - 2002z | |---|---------------------------|----------------------------|------------------------------------| | ANNUAL TOTAL | 83518.35 | 42230.13 | 150.0 | | ANNUAL MEAN
HIGHEST ANNUAL MEAN | 228.8 | 115.7 | 159.2
561 1968 | | LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN | 2110 Mar 22 | 1830 Dec 28 | 0.20 1964
2620 Aug 4 1995 | | LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM | 0.25 Jul 12
0.27 Jul 7 | 0.00 Aug 14
0.01 Aug 14 | 0.00 Oct 1 1963
0.00 Oct 1 1963 | | MAXIMUM PEAK FLOW | 0.27 Jui 7 | 2110 Dec 16 | 3850 Nov 24 1974 | | MAXIMUM PEAK STAGE
ANNUAL RUNOFF (AC-FT) | 165700 | 18.54 Dec 16
83760 | 22.85 Nov 24 1974
115300 | | 10 PERCENT EXCEEDS | 874 | 249 | 666 | | 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 5.0
0.35 | 1.7
0.23 | 1.8
0.04 | z Period of regulated streamflow. ## 08063100 Richland Creek near Dawson, TX--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1998 to current year. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |------------------|--|--|--|--|--|--|---|---|--|---|--
--|--| | FEB
13
MAY | 1400 | 347 | 286 | 8.1 | 10.5 | 10.0 | 91 | 110 | 13 | 41.5 | 2.57 | 9.24 | . 4 | | 01
AUG | 1345 | 24 | 346 | 8.2 | 23.0 | 8.6 | 101 | 150 | 11 | 53.5 | 3.26 | 13.6 | .5 | | 01 | 1315 | 2.3 | 311 | 7.6 | 28.5 | 5.2 | 67 | 110 | 14 | 39.2 | 3.27 | 14.3 | .6 | | Date | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | | FEB | 15 | 2 24 | . 3 | 104 | 102 | 10.1 | F 74 | 2 | F 70 | 160 | 154 | 26 | 1 00 | | 13
MAY | 15 | 3.34 | <1 | 124 | 103 | 19.1 | 5.74 | .3 | 5.70 | 160 | 154 | 26 | 1.20 | | 01
AUG | 16 | 3.39 | 1 | 163 | 136 | 28.0 | 10.2 | .3 | 1.25 | 207 | 201 | 46 | 1.22 | | 01 | 21 | 3.40 | <1 | 118 | 98 | 25.6 | 9.82 | . 4 | 6.32 | 168 | 161 | <10 | | | Date | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | | FEB
13 | .029 | 1.23 | .05 | . 33 | .38 | .022 | E.01 | 5.4 | 1 | .19 | 4 | 39 | <.06 | | MAY
01 | .016 | 1.24 | <.04 | | .40 | .010 | <.04 | 5.3 | 4 | .21 | 3 | 56 | <.06 | | AUG | | | | | | | | | | | | | | | 01 | E.004 | .05 | E.03 | | .35 | .009 | <.02 | 5.8 | 2 | .29 | 7 | 83 | <.06 | | Date | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | FEB
13
MAY | <.04 | <.8 | .13 | 1.3 | E8 | <.08 | 5.8 | .04 | . 4 | .99 | <2 | <1 | 2 | | 13 | <.04
<.04 | <.8
<.8 | .13 | 1.3 | E8 <10 | <.08
E.07 | 5.8
3.6 | .04 | .4 | .99
2.12 | <2
<2 | <1
<1 | 2 | | Date | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |------------------|---| | FEB 13 | .70 | | MAY
01
AUG | .90 | | 01 | .69 | Remark codes used in this report: < -- Less than E -- Estimated value THIS PAGE IS INTENTIONALLY BLANK ### 08063600 Lake Waxahachie near Waxahachie, TX LOCATION.--Lat 32°20'30", long 96°48'18", Ellis County, Hydrologic Unit 12030109, mounted on pump intake structure, approximately 10 mi south of Waxahachie and 22 mi northwest of Ennis. DRAINAGE AREA. -- 30.0 mi². PERIOD OF RECORD.--Apr. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records good. The lake is formed by a rolled earthfill dam 3,200 ft long. The dam was completed Dec. 1, 1956. A 300 ft wide spillway has been cut through natural ground. The dam was built by the city of Waxahachie to impound water for municipal use. There was no known diversion from the lake during the current water year. Conservation pool storage is 10,799 acre-ft. Data regarding the dam is given in the following table: | | Elevation | |-------------------|-----------| | | (feet) | | Top of dam | 543.0 | | Crest of spillway | 531.0 | COOPERATION.--Capacity table was furnished by the Texas Water Development Board. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 15,380 acre-ft, Apr. 3, 1999, elevation, 531.96 ft; minimum contents, 10,620 acre-ft, Mar. 21, 2000, elevation, 526.88 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,770 acre-ft, Mar. 30, elevation, 531.27 ft; minimum contents, 12,380 acre-ft, Dec. 11, 13, 14, 15, elevation, 529.75 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | DAILY MEAN VALUES | | | | | | | | | | | | |--------|-------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 12480 | 12670 | 12420 | 13360 | 13400 | 13340 | 13450 | 13390 | 13270 | 12960 | 12660 | 12520 | | 2 | 12490 | 12650 | 12420 | 13360 | 13390 | 13340 | 13430 | 13380 | 13260 | 12990 | 12660 | 12510 | | | 12500 | 12640 | 12410 | 13360 | 13390 | 13320 | 13410 | 13430 | 13250 | 13010 | 12650 | 12510 | | 3
4 | 12500 | 12620 | 12400 | 13360 | 13390 | 13320 | 13400 | 13430 | 13230 | 13010 | 12650 | 12500 | | 5 | 12510 | 12610 | 12400 | 13360 | 13420 | 13320 | 13400 | 13420 | 13210 | 13000 | 12650 | 12490 | | 6 | 12510 | 12600 | 12400 | 13360 | 13460 | 13320 | 13400 | 13410 | 13190 | 13000 | 12640 | 12490 | | 7 | 12520 | 12580 | 12400 | 13350 | 13440 | 13330 | 13410 | 13400 | 13180 | 12990 | 12640 | 12480 | | 8 | 12530 | 12560 | 12390 | 13350 | 13440 | 13330 | 13430 | 13400 | 13160 | 12970 | 12630 | 12490 | | 9 | 12540 | 12550 | 12390 | 13350 | 13430 | 13330 | 13420 | 13390 | 13140 | 12950 | 12630 | 12490 | | 10 | 12560 | 12550 | 12380 | 13350 | 13410 | 13320 | 13420 | 13400 | 13120 | 12930 | 12620 | 12500 | | 11 | 12580 | 12560 | 12380 | 13350 | 13410 | 13320 | 13410 | 13390 | 13100 | 12910 | 12630 | 12490 | | 12 | 12610 | 12550 | 12380 | 13350 | 13410 | 13320 | 13410 | 13380 | 13080 | 12890 | 12630 | 12490 | | 13 | 12850 | 12540 | 12380 | 13350 | 13400 | 13320 | 13410 | 13380 | 13060 | 12870 | 12630 | 12500 | | 14 | 12870 | 12530 | 12380 | 13340 | 13400 | 13320 | 13410 | 13370 | 13040 | 12860 | 12620 | 12500 | | 15 | 12870 | 12520 | 12390 | 13330 | 13400 | 13310 | 13410 | 13360 | 13020 | 12850 | 12620 | 12490 | | 16 | 12860 | 12520 | 13110 | 13330 | 13400 | 13300 | 13420 | 13350 | 13020 | 12830 | 12610 | 12490 | | 17 | 12850 | 12520 | 13390 | 13330 | 13400 | 13300 | 13510 | 13350 | 13000 | 12830 | 12600 | 12490 | | 18 | 12840 | 12500 | 13420 | 13330 | 13400 | 13310 | 13460 | 13350 | 12980 | 12820 | 12600 | 12490 | | 19 | 12830 | 12500 | 13410 | 13330 | 13400 | 13340 | 13440 | 13340 | 12960 | 12800 | 12590 | 12500 | | 20 | 12820 | 12490 | 13400 | 13330 | 13390 | 13440 | 13430 | 13330 | 12940 | 12780 | 12580 | 12500 | | 21 | 12810 | 12480 | 13400 | 13320 | 13390 | 13410 | 13430 | 13320 | 12940 | 12760 | 12570 | 12500 | | 22 | 12810 | 12480 | 13400 | 13320 | 13380 | 13390 | 13420 | 13300 | 12920 | 12730 | 12560 | 12500 | | 23 | 12800 | 12480 | 13390 | 13330 | 13380 | 13390 | 13410 | 13290 | 12890 | 12710 | 12550 | 12490 | | 24 | 12790 | 12470 | 13380 | 13350 | 13390 | 13390 | 13400 | 13270 | 12870 | 12700 | 12540 | 12490 | | 25 | 12770 | 12460 | 13380 | 13360 | 13380 | 13380 | 13390 | 13260 | 12860 | 12700 | 12530 | 12480 | | 26 | 12750 | 12450 | 13370 | 13360 | 13350 | 13370 | 13410 | 13250 | 12890 | 12690 | 12520 | 12480 | | 27 | 12740 | 12450 | 13370 | 13360 | 13340 | 13370 | 13410 | 13240 | 12950 | 12690 | 12530 | 12480 | | 28 | 12720 | 12440 | 13370 | 13370 | 13340 | 13370 | 13400 | 13240 | 12930 | 12690 | 12530 | 12480 | | 29 | 12710 | 12430 | 13370 | 13370 | | 13370 | 13400 | 13280 | 12910 | 12670 | 12530 | 12480 | | 30 | 12690 | 12420 | 13370 | 13370 | | 13510 | 13390 | 13280 | 12910 | 12680 | 12530 | 12480 | | 31 | 12680 | | 13370 | 13400 | | 13540 | | 13280 | | 12670 | 12520 | | | MEAN | 12690 | 12530 | 12900 | 13350 | 13400 | 13360 | 13420 | 13340 | 13040 | 12840 | 12600 | 12490 | | MAX | 12870 | 12670 | 13420 | 13400 | 13460 | 13540 | 13510 | 13430 | 13270 | 13010 | 12660 | 12520 | | MIN | 12480 | 12420 | 12380 | 13320 | 13340 | 13300 | 13390 | 13240 | 12860 | 12670 | 12520 | 12480 | | (+) | 530.18 | 529.85 | 530.87 | 530.90 | 530.84 | 531.04 | 530.89 | 530.78 | 530.41 | 530.17 | 530.02 | 529.96 | | (@) | +200 | -260 | +950 | +30 | -60 | +200 | -150 | -110 | -370 | -240 | -150 | -40 | CAL YR 2001 MAX 13420 MIN 11960 (@) +890 WTR YR 2002 MAX 13540 MIN 12380 (@) 0 ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08063600 Lake Waxahachie near Waxahachie, TX--Continued #### 08063685 Waxahachie Creek near Waxahachie, TX LOCATION.--Lat
32°18'27", long 96°44'19", Ellis County, Hydrologic Unit 12030109, on county road bridge, over center of channel at downstream side of bridge, 1.0 mi upstream from normal pool of Bardwell Lake, and 8.4 mi southeast of Waxahachie. DRAINAGE AREA. -- 111 mi². PERIOD OF RECORD.-CHEMICAL DATA: Oct. 1980 to Aug. 1982, Oct. 1985 to June 1987, and Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1980 to Aug. 1982, Oct. 1985 to June 1987, and Oct. 1998 to current year. | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |------------------------|--|--|--|--|--|--|--|--|--|---|---|--|--| | FEB 28 | 1010 | (00061) | (00095) | (00400) | (00010) | (00300) | (00301) | (00310) | (00900) | (00904) | (00915) | (00925) | (00930) | | APR
10 | 1315 | | 517 | 8.0 | 17.8 | 8.3 | 87 | 3.1 | 200 | 25 | 78.3 | 2.10 | 24.5 | | 24
AUG_ | 1100 | 113 | 554 | 8.2 | 22.0 | 6.8 | 79 | <2.0 | 220 | 16 | 83.9 | 2.12 | 26.2 | | 07 | 0845 | 10 | 1120 | 7.9 | 25.0 | 5.9 | 72 | <2.0 | 210 | 42 | 81.3 | 2.65 | 129 | | Date | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | FEB 28 | 2 | 34 | 5.74 | 3 | 256 | 215 | 121 | 27.6 | .4 | 5.01 | 470 | 457 | <10 | | APR
10
24
AUG | .7 | 20
20 | 3.08
3.77 | 2
2 | 215
242 | 179
202 | 51.8
53.5 | 16.1
15.8 | .3 | 5.61
7.07 | 306
343 | 294
319 | 63
27 | | 07 | 4 | 55 | 12.1 | 1 | 207 | 172 | 229 | 84.6 | .5 | 7.40 | 713 | 674 | <10 | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | | FEB 28 | | E.005 | 2.24 | <.04 | | .24 | .020 | E.01 | | 3.3 | 1 | <.05 | <2 | | APR
10
24 | 1.01
1.21 | .027
.018 | 1.03
1.22 | .07
E.03 | .29 | .36
.38 | .019
.026 | E.01
E.01 | | 6.6
3.9 | 2
5 | .21 | E2
E2 | | AUG
07 | 5.24 | .022 | 5.26 | <.04 | | .56 | .120 | .09 | .267 | 6.8 | 3 | .35 | 3 | | Date | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | FEB 28 | 68 | <.06 | .04 | <.8 | . 45 | 1.5 | E6 | .13 | 37.5 | <.01 | 15.7 | 1.43 | <2 | | APR
10
24 | 62
66 | <.06
<.1 | E.03
.06 | <.8
<.8 | .30 | 1.1
1.4 | <10
<10 | <.08
.19 | 2.3
13.1 |
<.01 | 8.9
8.1 | 2.40
2.12 | <2
<2 | | AUG
07 | 96 | <.06 | .21 | E.5 | 1.04 | 3.0 | <10 | . 26 | 19.5 | .02 | 60.9 | 4.64 | <2 | # 08063685 Waxahachie Creek near Waxahachie, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | |-----------|---|---|---| | FEB 28 | <1 | 6 | 1.20 | | APR
10 | <1 | 2 | 1.13 | | 24 | <1 | 7 | 1.14 | | AUG
07 | <1 | 15 | . 59 | Remark codes used in this report: < -- Less than E -- Estimated value #### 08063700 Bardwell Lake near Ennis, TX LOCATION.--Lat 32°15′00", long 96°38′49", Ellis County, Hydrologic Unit 12030109, in intake structure of Bardwell Dam on Waxahachie Creek, 5.0 mi south of Ennis, and 5.6 mi upstream from mouth. DRAINAGE AREA. -- 178 mi². #### WATER-CONTENT RECORDS PERIOD OF RECORD.--Nov. 1965 to Sept. 2000 (U.S. Army Corps of Engineers furnished contents), Oct. 2000 to current year. Prior to Oct. 1970, published as "Bardwell Reservoir". GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (U.S. Army Corps of Engineers benchmark). Prior to Apr. 25, 1966, nonrecording gage on intake structure at same datum. Satellite telemeter at station. REMARKS.--No estimated daily contents. Records fair. The lake is formed by a rolled earthfill dam 15,400 ft long, including a 350-ft uncontrolled off-channel concrete-gravity spillway with ogee weir section. Deliberate impoundment began Nov. 20, 1965, and dam was completed Mar. 27, 1966. Controlled low-flow outlet works consists of a 10.0-ft-diameter concrete conduit with and dam was completed Mar. 27, 1966. Controlled low-flow outlet works consists of a 10.0-ft-diameter concrete conduit with two 5.0- by 10.0-ft sluice gates. The dam is owned by the U.S. Army Corps of Engineers. The lake was built for flood control and water conservation. Capacity table is based on a 1999 TWDB survey. Runoff from 81.4 mi above Bardwell Lake is modified by Lake Waxahachie (station 08063600, conservation pool storage 10,799 acre-ft). The city of Waxahachie diverts water from Lake Waxahachie and returns an unknown amount of effluent to Waxahachie Creek. Inflow is affected at times by discharge from flood-detention pools of 23 floodwater-retarding structures with a combined detention capacity of 15,370 acre-ft. These structures control runoff from 52.4 mi² in the Chambers Creek watershed. Conservation pool storage is 46,122 acre-ft. Data regarding the dam are given in the following table: | ETG. | vation | |--|--------| | (1) | feet) | | Top of dam | 460.0 | | Bebigh 2200diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii | 455.9 | | Crest of spillway (top of flood-control pool) | 439.0 | | Top of conservation pool | 421.0 | | Lowest gated outlet (invert) | 391.0 | COOPERATION .-- Capacity tables furnished by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 112,100 acre-ft, May 22, 1990, elevation, 434.54 ft; minimum contents since initial filling, 37,500 acre-ft, Dec. 8, 1999, elevation, 417.21 ft, Nov. 10, 1978, based on Oct. 1976 capacity table. EXTREMES FOR CURRENT YEAR.--Maximum contents, 68,160 acre-ft, Dec. 26, elevation, 426.55 ft; minimum contents, 41,090 acre-ft, Sept. 30, elevation, 419.24 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | 1 | 41960 | 45520 | 45760 | 58680 | 49380 | 46470 | 53350 | 47880 | 48010
| 47420 | 46330 | 43380 | | 2 | 41920 | 45550 | 45760 | 56840 | 49680 | 46750 | 53840 | 47850 | 47990 | 47810 | 46240 | 43290 | | 3 | 41860 | 45580 | 45790 | 54880 | 49930 | 46650 | 54070 | 48140 | 47950 | 48240 | 46170 | 43200 | | 4 | 41770 | 45570 | 45790 | 53090 | 50110 | 46580 | 53580 | 48860 | 47890 | 48420 | 46120 | 43110 | | 5 | 41790 | 45550 | 45800 | 52150 | 50510 | 46570 | 53060 | 48990 | 47920 | 48450 | 45990 | 43020 | | 6 | 41650 | 45530 | 45830 | 51220 | 52140 | 46630 | 52590 | 49110 | 47920 | 48480 | 45870 | 42910 | | 7 | 41490 | 45490 | 45890 | 50240 | 52800 | 46670 | 52150 | 49110 | 47850 | 48510 | 45780 | 42810 | | 8 | 41380 | 45470 | 46080 | 49360 | 52910 | 46770 | 52380 | 48960 | 47790 | 48520 | 45690 | 42880 | | 9 | 41290 | 45550 | 45940 | 48940 | 52250 | 46960 | 52860 | 48790 | 47740 | 48480 | 45580 | 42910 | | 10 | 41260 | 45570 | 45870 | 48620 | 51400 | 46850 | 53150 | 48540 | 47760 | 48450 | 45520 | 42840 | | 11 | 41340 | 45610 | 45870 | 48290 | 50370 | 46850 | 53430 | 48290 | 47690 | 48390 | 45520 | 42760 | | 12 | 41410 | 45680 | 46060 | 47930 | 49310 | 46950 | 53560 | 48060 | 47650 | 48320 | 45380 | 42670 | | 13 | 44580 | 45730 | 46170 | 47520 | 48290 | 46930 | 53220 | 47940 | 47660 | 48280 | 45250 | 42570 | | 14 | 45730 | 45730 | 46160 | 47240 | 47700 | 46950 | 52790 | 47570 | 47630 | 48210 | 45140 | 42490 | | 15 | 45890 | 45740 | 46290 | 47040 | 47380 | 47070 | 52290 | 47360 | 47510 | 48140 | 45010 | 42410 | | 16 | 45900 | 45820 | 56640 | 46890 | 47470 | 47100 | 51780 | 47180 | 47550 | 48190 | 44890 | 42280 | | 17 | 45870 | 45820 | 64130 | 46830 | 47570 | 47090 | 51990 | 47280 | 47540 | 48240 | 44760 | 42180 | | 18 | 45820 | 45820 | 65230 | 46840 | 47670 | 47200 | 52340 | 47390 | 47460 | 48290 | 44660 | 42050 | | 19 | 45850 | 45900 | 66010 | 46890 | 47900 | 47370 | 52010 | 47350 | 47400 | 48250 | 44580 | 42120 | | 20 | 45880 | 45810 | 66390 | 46830 | 47770 | 48630 | 51270 | 47320 | 47360 | 48080 | 44490 | 42130 | | 21 | 45880 | 45760 | 66710 | 46870 | 47600 | 49470 | 50410 | 47290 | 47330 | 47840 | 44350 | 42030 | | 22 | 45880 | 45690 | 67160 | 46930 | 47380 | 49350 | 49520 | 47210 | 47280 | 47630 | 44240 | 41980 | | 23 | 45880 | 45670 | 67470 | 47000 | 47220 | 49040 | 48930 | 47200 | 47220 | 47440 | 44130 | 41840 | | 24 | 45920 | 45800 | 67660 | 47280 | 47080 | 48730 | 48370 | 47220 | 47150 | 47310 | 44030 | 41700 | | 25 | 45840 | 45720 | 67870 | 47300 | 47090 | 48680 | 47790 | 47250 | 47070 | 47200 | 43940 | 41600 | | | | | | | | | | | | | | | | 26 | 45770 | 45720 | 68110 | 47380 | 47060 | 48320 | 47410 | 47270 | 47060 | 47050 | 43860 | 41520 | | 27 | 45740 | 45800 | 67860 | 47430 | 46770 | 47940 | 47570 | 47310 | 47300 | 46890 | 43850 | 41390 | | 28 | 45680 | 45920 | 66190 | 47500 | 46630 | 47750 | 47760 | 47410 | 47310 | 46740 | 43750 | 41310 | | 29 | 45620 | 45820 | 64420 | 47590 | | 47680 | 47940 | 47750 | 47240 | 46640 | 43660 | 41240 | | 30 | 45610 | 45750 | 62470 | 47720 | | 48730 | 47980 | 47990 | 47230 | 46560 | 43550 | 41130 | | 31 | 45540 | | 60560 | 48350 | | 52150 | | 48010 | | 46440 | 43450 | | | TOTAL | 1368000 | 1370690 | 1733940 | 1517670 | 1369370 | 1476880 | 1539390 | 1483880 | 1426460 | 1482910 | 1391780 | 1269750 | | MEAN | 44130 | 45690 | 55930 | 48960 | 48910 | 47640 | 51310 | 47870 | 47550 | 47840 | 44900 | 42320 | | MAX | 45920 | 45920 | 68110 | 58680 | 52910 | 52150 | 54070 | 49110 | 48010 | 48520 | 46330 | 43380 | | MIN | 41260 | 45470 | 45760 | 46830 | 46630 | 46470 | 47410 | 47180 | 47060 | 46440 | 43450 | 41130 | | (+) | 420.70 | 420.77 | 424.71 | 421.52 | 421.04 | 422.54 | 421.42 | 421.42 | 421.21 | 420.99 | 420.02 | 419.25 | | (@) | +3510 | +210 | +14810 | -12210 | -1720 | +5520 | -4170 | +30 | -780 | -790 | -2990 | -2320 | | (w) | +3510 | +210 | +14810 | -12210 | -1/20 | +3520 | -41/0 | +30 | -780 | - 790 | -2990 | -2320 | CAL YR 2001 MAX 106900 MIN 41090 (@) +9790 WTR YR 2002 MAX 68110 MIN 41130 (@) -900 ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in Contents, in acre-feet. 08063700 Bardwell Lake near Ennis, TX--Continued #### 08063700 Bardwell Lake near Ennis, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1998 to current year. PESTICIDE DATA: July 1999 to current year. REMARKS.--Pesticide samples are composited from discrete samples collected at the surface, middle, and bottom of the reservoir. ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 #### 321506096382601 -- Bardwell Lk Site AC | | | | | 321 | .506096382 | 601 Ba | ırdwell Lk | Site AC | | | | | | |--|--|---|--|--|--|--|---|--|--|---|---|--|--| | Date | Time | RESER-
VOIR
STORAGE
(AC-FT)
(00054) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E COLI,
MTEC MF
WATER
(COL/
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | | FEB | 1151 | 46000 | | 1 00 | 206 | 0.1 | 10.0 | 10.5 | 0.5 | =1.01 | 22 | 100 | | | 28
FEB | 1151 | 46700 | .53 | 1.00 | 326 | 8.1 | 10.0 | 10.7 | 96 | E18k | 23 | 120 | 6 | | 28-28
28 | 1151
1156 | | | 10.0 | 325 | 8.0 | 10.0 | 10.6 |
95 | | | | | | 28 | 1202 | | | 20.0 | 326 | 8.0 | 10.0 | 10.6 | 95 | | | | | | 28 | 1207 | | | 30.0 | 328 | 8.0 | 9.5 | 10.3 | 91 | | | | | | 28
APR | 1212 | | | 38.0 | 321 | 7.9 | 6.5 | 10.3 | 85 | | | 120 | 5 | | 25 | 1227 | 47700 | .55 | 1.00 | 364 | 8.2 | 22.5 | 7.8 | 91 | E1k | E1k | 130 | 14 | | 25
25 | 1233
1239 | | | 10.0
20.0 | 364
365 | 8.2
8.2 | 22.0
22.0 | 7.7
7.8 | 89
90 | | | | | | 25 | 1245 | | | 30.0 | 366 | 7.3 | 18.0 | 1.4 | 15 | | | | | | 25
AUG | 1253 | | | 39.0 | 369 | 7.2 | 17.0 | .2 | 2 | | | 140 | 8 | | 07
AUG | 1104 | 45800 | .85 | 1.00 | 309 | 8.5 | 30.5 | 8.9 | 121 | <1k | <1k | 92 | 8 | | 07-07 | 1104 | | | | | | | | | | | | | | 07
07 | 1110
1115 | | | 10.0 | 311
338 | 8.3
7.3 | 30.0
28.5 | 7.6
.2 | 102
3 | | | | | | 07 | 1120 | | | 30.0 | 349 | 7.1 | 28.0 | .2 | 3 | | | | | | 07 | 1125 | | | 35.0 | 364 | 7.1 | 27.5 | .3 | 4 | | | 110 | 321 | 506096382 | 601 Ba | ırdwell Lk | Site AC | | | | | | | Date | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB 28 | DIS-
SOLVED
(MG/L
AS CA) | SIUM,
DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | | FEB | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB
28
FEB
28-28
28 |
DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932)
27
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB 28
FEB 28-28
28
28 | DIS-
SOLVED (MG/L
AS CA) (00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932)
27
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB 28
FEB 28-28 28
28
28 | DIS-
SOLVED
(MG/L
AS CA)
(00915) | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932)
27
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | FEB 28
FEB 28-28
28
28
28
28 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
43.3

43.3
49.9 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.3 21.1 21.7 | SODIUM AD-
SORP-
TION RATIO
(00931) | SODIUM
PERCENT (00932)
27
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30

4.18
3.98 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 11 1 2 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 134 134 143 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 112 121 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.1 13.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7
3.5 | | FEB 28
FEB 28-28 28
28
28
28
APR 25 | DIS-
SOLVED (MG/L
AS CA) (00915)
43.3 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
21.3

21.1 | SODIUM AD-
SORP-
TION RATIO
(00931) | SODIUM PERCENT (00932) 27 27 25 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 112 121 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.1

13.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7 | | FEB 28
FEB 28-28
28
28
28
28 | DIS-
SOLVED
(MG/L
AS CA)
(00915)
43.3

43.3
49.9 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.3 21.1 21.7 | SODIUM
AD-
SORP-
TION
RATIO
(00931)
.9

.8
.8 | SODIUM
PERCENT (00932)
27
 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.30

4.18
3.98 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 134 134 143 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 112 121 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.1

13.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7 | | FEB 28 FEB 28-28 28 28 28 25 25 25 25 25 | DIS-
SOLVED (MG/L
AS CA) (00915)
43.3
 | SIUM,
DIS-
SOLVED (MG/L
AS MG) (00925)
2.30

2.29
2.47 | DIS-
SOLVED (MG/L
AS NA) (00930)
21.3
 | SODIUM AD- SORP- TION RATIO (00931) .98 .8 | SODIUM
PERCENT
(00932)
27

27
25
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30

4.18
3.98
 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 112 121 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.1

13.4
11.7 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7
3.5 | | FEB | DIS-
SOLVED (MG/L
AS CA) (00915) 43.3 43.3 49.9 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47
 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.3 21.1 21.7 | SODIUM AD-
SORP-
TION RATIO
(00931) | SODIUM
PERCENT (00932)
27
 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30

4.18
3.98 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 1 1 2 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 134 134 143 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 112 121 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2
 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
13.1 13.4 11.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7
3.5
 | | FEB 28 FEB 28-28 28 28 28 APR 25 25 25 27 AUG 07 AUG 07-07 | DIS-
SOLVED (MG/L AS CA) (00915) 43.3 43.3 49.9 49.9 32.5 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47

2.55
2.55 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.3 21.1 21.7 22.2 25.2 | SODIUM AD- SORP- TION RATIO (00931) .98 .8 .88 .1 | SODIUM PERCENT (00932) 27 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30

4.18
3.98

4.07 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 1 1 2 1 2 1 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2

36.2
38.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.1 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.33 .33 .4 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7
3.5

6.2
5.4 | | FEB | DIS-
SOLVED (MG/L
AS CA) (00915) 43.3 43.3 49.9 49.9 32.5 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47

2.55
2.55 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.3 21.1 21.7 22.2 25.2 | SODIUM AD- SORP- TION RATIO (00931) .98 .88 .1 | SODIUM PERCENT (00932) 27 27 25 26 36 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30

4.18
3.98

4.07
4.77 | CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 1 1 2 1 2 1 | BICAR- BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 134 134 143 153 98 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 112 121 126 84 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2

36.2
38.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.3

.3
.3

.3 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7
3.5

6.2
5.4 | | FEB 28 FEB 28-28 28 28 28 APR 25 25 25 27 AUG 07 AUG 07-07 | DIS-
SOLVED (MG/L AS CA) (00915) 43.3 43.3 49.9 49.9 32.5 | SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925)
2.30

2.29
2.47

2.55
2.55 | DIS-
SOLVED (MG/L
AS NA) (00930) 21.3 21.1 21.7 22.2 25.2 | SODIUM AD- SORP- TION RATIO (00931) .98 .8 .88 .1 | SODIUM PERCENT (00932) 27 | POTAS-
SIUM,
DIS-
SOLVED (MG/L
AS K) (00935)
4.30

4.18
3.98

4.07 | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 1 1 2 1 2 1 | BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 134 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 113 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
36.6

36.6
37.2

36.2
38.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
13.1 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.33 .33 .4 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.6

5.7
3.5

6.2
5.4 | ### 08063700 Bardwell Lake near Ennis, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 321506096382601 -- Bardwell Lk Site AC | Date | SOLIDS,
SUM
OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | BENZENE
TOTAL
(UG/L)
(34030) | |---|--|--|--|--|--|---|--|--|--|--|--|---|---| | FEB 28 | 197 | .65 | .029 | . 68 | .06 | .30 | .35 | .006 | <.02 | | <10 | E1.0n | | | FEB | | | | | | | | | | | | | | | 28-28
28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 28
28 |
198 |
.66 | .027 |
.69 | .07 | .29 | .37 | .009 | <.02 | |
<10 | 3.8 | | | APR | | .00 | | | | . 23 | .37 | | | | | 3.0 | | | 25 | 206 | .66
 | .023 | .69
 | <.04 | | .35 | .005 | <.02 | | <10 | E1.2n | <.2 | | 25
25 | | .67 | .024 | .69 | <.04 | | .35 | .005 | <.02 | | <10 | 4.1 | | | 25 | | | <.008 | .98 | <.04 | | .35 | .008 | <.02 | | <10 | 3.3 | | | 25
AUG | 214 | .86 | .055 | .91 | .05 | .38 | .43 | .011 | <.02 | | <10 | 37.0 | | | 07
AUG | 173 | | E.004 | <.05 | <.04 | | .29 | .009 | <.02 | | <10 | E1.3n | <.2 | | 07-07 | | | | | | | | | | | | | | | 07
07 | | | <.008
E.004 | <.05
<.05 | <.04 | .30 | .29 | .005 | <.02
<.02 | | <10
38 | 6.3
202 | | | 07 | | | | | | | | | | | | | | | 07 | 205 | | <.008 | <.05 | 1.21 | .32 | 1.5 | .110 | .09 | .264 | 681 | 1950 | | | | | | | | | | | | | | | | | | Date | ETHYL-
BENZENE
TOTAL | TOLUENE
TOTAL | XYLENE
WATER
UNFLTRD
REC | METHYL
TERT-
BUTYL
ETHER
WAT UNF | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U | ACETO-
CHLOR,
WATER
FLTRD | ALA-
CHLOR,
WATER,
DISS, | ALPHA
BHC
DIS- | ATRA-
ZINE,
WATER,
DISS,
REC | METHYL
AZIN-
PHOS
WAT FLT
0.7 U | BEN-
FLUR-
ALIN
WAT FLD
0.7 U | BUTYL-
ATE,
WATER,
DISS,
REC | CAR-
BARYL
WATER
FLTRD
0.7 U
GF. REC | | Date | | TOLUENE
TOTAL
(UG/L)
(34010) | WATER | METHYL
TERT-
BUTYL
ETHER | 2,6-DI-
ETHYL
ANILINE
WAT FLT | ACETO-
CHLOR,
WATER | ALA-
CHLOR,
WATER, | ALPHA
BHC | ZINE,
WATER, | AZIN-
PHOS
WAT FLT | FLUR-
ALIN
WAT FLD | ATE,
WATER, | BARYL
WATER
FLTRD | | | BENZENE
TOTAL
(UG/L) | TOTAL (UG/L) | WATER
UNFLTRD
REC
(UG/L) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L) | ALPHA
BHC
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | Date
FEB
28
FEB | BENZENE
TOTAL
(UG/L) | TOTAL (UG/L) | WATER
UNFLTRD
REC
(UG/L) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L) | ALPHA
BHC
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | FEB
28
FEB
28-28 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL
(UG/L)
(34010) | WATER UNFLTRD REC (UG/L) (81551) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | | FEB 28
FEB 28-28 28 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL
(UG/L)
(34010) | WATER
UNFLTRD
REC
(UG/L)
(81551) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82680) | | FEB
28
FEB
28-28 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL
(UG/L)
(34010) | WATER UNFLTRD REC (UG/L) (81551) | METHYL
TERT-
BUTYL
ETHER
WAT UNF
REC
(UG/L)
(78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | | FEB 28
FEB 28-28 28
28
28 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL
(UG/L)
(34010) | WATER UNFLTRD REC (UG/L) (81551) | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLITRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | | FEB 28
FEB 28-28 28
28
28 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FITTER REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | | FEB 28
FEB 28-28 28
28
28
28
APR 25 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) <.2 | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLITRD REC (UG/L) (49260) | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) |
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | | FEB 28 FEB 28-28 28 28 28 28 28 25 25 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER
UNFLIRD
REC
(UG/L)
(81551) | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) <.2 | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

 | ACETO-CHLOR, WATER FLITRD REC (UG/L) (49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | | FEB 28 FEB 28-28 28 28 28 28 25 25 25 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) <.2 | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTR REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | | FEB 28 FEB 28-28 28 28 28 28 28 25 25 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

 | ACETO-CHLOR, WATER FITRD REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253)

<.005

 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | | FEB 28 FEB 28-28 28 28 28 28 25 25 25 25 AUG 07 AUG | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) <.2 <.2 <.2 | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-CHLOR, WATER FLTR REC (UG/L) (49260) <.006 | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE, WATER, DISS, REC (UG/L) (04028) | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | | FEB 28 FEB 28-28 28 28 28 25 25 25 25 27 28 28 APR 27 28 28 28 APR 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

 | ACETO-CHLOR, WATER FLITRD REC (UG/L) (49260) <.006 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | | FEB 28 FEB 28-28 28 28 28 28 25 25 25 4UG 07-07 07 AUG 07-07 | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLIRD REC (UG/L) (81551) <.2 <.2 | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

 | ACETO-
CHLOR,
WATER
FLITRD
REC
(UG/L)
(49260)

<.006

 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 517 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | | FEB | BENZENE
TOTAL
(UG/L)
(34371) | TOTAL (UG/L) (34010) | WATER UNFLTRD REC (UG/L) (81551) | METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660)

<.006

 | ACETO-
CHLOR,
WATER
FITRD
REC
(UG/L)
(49260)

<.006

 | ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342) <.004 <.004 | ALPHA BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 517 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010

 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 | BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.041 | ### 08063700 Bardwell Lake near Ennis, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 321506096382601 -- Bardwell Lk Site AC | Date | CARBO-
FURAN
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | |--|--|---|--|---|--|--|--|--|--|---|---|---|--| | FEB 28 | | | | | | | | | | | | | | | FEB
28-28 | <.020 | <.005 | <.006 | <.018 | <.003 | E.063 | .007 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | | 28 | | | | | | | | | | | | | | | 28
28 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | APR | | | | | | | | | | | | | | | 25
25 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 25
AUG | | | | | | | | | | | | | | | 07
AUG | | | | | | | | | | | | | | | 07-07 | <.020 | <.005 | <.006 | <.018 | <.003 | E.150 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | | 07 | | | | | | | | | | | | | | | 07
07 | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | Date | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) | rdwell Lk NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | | Date
FEB
28 | DIS-
SOLVED
(UG/L) | URON WATER FLTRD 0.7 U GF, REC (UG/L) | THION,
DIS-
SOLVED
(UG/L) | METO-
LACHLOR
WATER
DISSOLV
(UG/L) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | P,P'
DDE
DISSOLV
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | | FEB
28
FEB | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | | FEB
28
FEB
28-28 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | | FEB 28
FEB 28-28 28 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | | FEB 28
FEB 28-28
28
28 | DIS-
SOLVED
(UG/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.010

 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011
 | | FEB 28
FEB 28-28 28 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) | THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | | FEB 28 FEB 28 - 28 28 28 28 28 28 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) <.027 | METO-
LACHLOR
WCHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 | | FEB 28 FEB 28-28 28 28 28 28 25 25 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | THION, DIS-
SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 | | FEB 28 FEB 28 - 28 28 28 28 28 28 | DIS-
SOLVED
(UG/L)
(39341)

<.004

 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION,
DIS-
SOLVED
(UG/L)
(39532)

<.027

 | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP- AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

 | | FEB 28 FEB 28-28 28 28 28 28 25 25 25 25 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLIRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 | | FEB 28 FEB 28 -28 28 28 28 25 25 25 26 27 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | DIS-
SOLVED
(UG/L)
(39341) | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 | P,P'
DDE
DISSOLV
(UG/L)
(34653)

<.003

 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 | | FEB
28 FEB 28 - 28 28 28 28 25 25 25 25 AUG 07 AUG 07 - 07 | DIS-
SOLVED
(UG/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 | NAPROP-
AMIDE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007

 | P,P' DDE DISSOLV (UG/L) (34653) <.003 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 | | FEB 28 FEB 28 -28 28 28 28 25 25 25 4UG 07 -07 07 07 | DIS-
SOLVED
(UG/L)
(39341)

<.004

 | URON WATER FLITRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL-
INATE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82671)

<.002

<.002 | NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

- | WATER FILTRD 0.7 U GF, REC (UG/L) (82664) <- 011 <- 011 <- 011 | | FEB 28 FEB 28-28 28 28 28 25 25 25 27 21 21 22 22 23 24 25 25 25 26 27 28 29 20 | DIS-
SOLVED
(UG/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 | THION, DIS- SOLVED (UG/L) (39532) <.027 | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 | MOL- INATE WATER FLIRD 0.7 U GF, REC (UG/L) (82671) <.002 <.002 | NAPROP- AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 | P,P' DDE DISSOLV (UG/L) (34653) <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.022

- | WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 | ### 08063700 Bardwell Lake near Ennis, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 321506096382601 -- Bardwell Lk Site AC | | | | - | DO 52 | 20 5 | DOM | | | | תיק | משים | | 0 | - A.T | DT | |--------------|---|--|--|--|--|---|--|---|--|---|---|----------------|--|--|--------------------------| | Date | PRO
MET
WAT
DIS
REC
(UG/ | ON, CHI
ER, WAT
S, DIS
REG
L) (UG, | DPA- PA LOR, WA TER, FL SS, 0. C GF, (L) (UG | NIL PAROTER WA'TER WA'TRD FL'7 U 0.'REC GF,/L) (UG | GITE AL
FER W.
FRD F:
7 U 0
REC GF
/L) (U | ATER M
LTRD
.7 U
, REC
G/L) (| SI-
AZINE,
WATER,
DISS,
REC
UG/L) | TEB
THIU
WAT
FLT
0.7
GF,
(UG/ | RON BAC
ER WAT
RD FLT
U 0.7
REC GF,
L) (UG, | TER 1
TRD 1
7 U 6
REC G1
/L) (1 | TER-
BUFOS
WATER
FLTRD
D.7 U
F, REC
UG/L) | (UG/ | ARB LATER WATER WA | TE FLITER ALCED WAT OCCUPANT O | FLT
7 U
REC
/L) | | | (040 | 37) (040 | 024) (82 | 679) (82 | 685) (8 | 2676) (| 04035) | (826 | 70) (826 | 565) (| 32675) | (826 | 81) (826 | 578) (82 | 661) | | FEB | | | | | | | | _ | | | | | | | | | 28
FEB | - | | | | | | | | | | | _ | | | | | 28-28
28 | E.0 | | | | .02 < | .004 | .069 | E.0 | | 034
 | <.02 | <.0 | | | 009
 | | 28 | - | | | | | | | - | | | | - | | | | | 28
28 | - | | | | | | | _ | | | | _ | | | | | APR
25 | _ | | | | | | | _ | | | | _ | | | | | 25 | - | | | | | | | - | |
| | - | | | | | 25
25 | - | | | | | | | _ | | | | _ | | | | | 25
AUG | - | | | | | | | - | | | | - | | | | | 07 | - | | | | | | | - | | | | - | | | | | AUG
07-07 | .0 | 3 <.0 | 010 <. | 011 < | .02 < | .004 | .057 | .0 | 3 <.0 | 034 | <.02 | <.0 | 05 <.0 | 002 <. | 009 | | 07
07 | _ | | | | | | | _ | | | | _ | | | | | 07 | - | | | | | | | - | | | | - | | | | | 07 | - | | | | | | | - | | | | - | | - | | | | | | | 32 | 17040963 | 93501 | Bardwe | ell I.k | Site BC | | | | | | | | | | | | | | | | | | COT T | | | | HARD- | | | | | TRANS- | | SPE- | PH
WATER | | | | OXYGEN,
DIS- | COLI:
FORM | , | | HARD- | NESS | | | | | PAR-
ENCY | SAM- | CIFIC
CON- | WHOLE
FIELD | TEMPE | R- OXY | GEN, | SOLVED
(PER- | FECAL | | COLI,
EC MF | NESS
TOTAL | NONCARB
DISSOLV | CALCIUM
DIS- | | Date | Time | (SECCHI
DISK) | PLING
DEPTH | DUCT-
ANCE | (STAND
ARD | - ATUR
WATE | | DIS-
DLVED | CENT
SATUR- | UM-M | | TER
OL/ | (MG/L
AS | FLD. AS
CACO3 | SOLVED
(MG/L | | Date | TIME | (M) | (FEET) | (US/CM) | UNITS |) (DEG | C) (N | MG/L) | ATION) | 100 M | L) 10 | 0 ML) | CACO3) | (MG/L) | AS CA) | | | | (00078) | (00003) | (00095) | (00400 |) (0001 | 0) (00 | 0300) | (00301) | (3162 | 5) (3 | 1633) | (00900) | (00904) | (00915) | | FEB 28 | 1228 | .34 | 1.00 | 329 | 8.1 | 10.0 | 10 | 0.8 | 97 | E81 | e | E1k | 20 | 6 | 43.9 | | 28 | 1232 | | 10.0 | 327 | 8.1 | 10.0 | 10 | 8.0 | 97 | | | | | | | | 28
APR | 1237 | | 22.0 | 324 | 8.1 | 9.5 | 10 | 0.7 | 95 | | | | 120 | 2 | 43.2 | | 25
25 | 1318
1325 | .46 | 1.00
10.0 | 366
366 | 8.2
8.2 | 22.5
22.5 | | 7.8
7.7 | 91
90 | E21 | 2 | E2k | 130 | 8 | 49.5 | | 25 | 1332 | | 22.0 | 368 | 7.5 | 20.5 | | 2.9 | 33 | | | | 130 | 11 | 49.3 | | AUG
07 | 1144 | .67 | 1.00 | 317 | 8.5 | 31.0 | | 3.1 | 111 | <11 | 2 | E6k | 91 | 3 | 32.5 | | 07
07 | 1149
1156 | | 10.0
21.0 | 324
344 | 7.8
7.3 | 29.5
28.5 | | 5.5 | 73
3 | | | | 100 | |
37.9 | 32 | 17040963 | 93501 | Bardwe | ell Lk | Site BC | | | | | | | | | | | | | | CAR- | BIO | CAR- | ALKA- | | | | | | SOLIDS, | | | MAGNE-
SIUM, | CODITIM | SODIUM
AD- | | POTAS
SIUM | - BONAT | E BON | NATE
ATER | LINITY
WAT DIS | SULFA' | | HLO-
IDE, | FLUO-
RIDE, | SILICA,
DIS- | SUM OF
CONSTI- | | | DIS- | SODIUM,
DIS- | SORP- | | DIS- | DIS I | T DIS | SIT | TOT IT | DIS- | D | IS- | DIS- | SOLVED | TUENTS, | | Date | SOLVED
(MG/L | SOLVED
(MG/L | TION
RATIO | SODIUM | SOLVE
(MG/L | | | ELD
L AS | FIELD
MG/L AS | SOLV | | OLVED
MG/L | SOLVED
(MG/L | (MG/L
AS | DIS-
SOLVED | | | AS MG)
(00925) | AS NA)
(00930) | (00931) | PERCENT (00932) | AS K)
(00935 | CO3
(0045 | | CO3
0453) | CACO3
(39086) | AS SO | | S CL)
0940) | AS F)
(00950) | SIO2)
(00955) | (MG/L)
(70301) | | | (00)25) | (00550) | (00)31) | (00)32) | (00)33 |) (0045 | 2) (00 | 7433) | (32000) | (00)4. | 5) (0 | 0,540, | (00)30) | (00)33) | (70301) | | FEB
28 | 2.32 | 21.0 | .8 | 27 | 4.07 | 1 | 1 | L36 | 113 | 36.8 | 1 | 3.8 | .3 | 5.7 | 199 | | 28
28 | 2.29 | 21.2 |
.9 |
27 |
4.19 | 1 | 1 |
L38 |
115 |
36.5 | 1 |
3.7 | .3 |
5.7 |
199 | | APR | | | | | | | | | | | | | | | | | 25
25 | 2.42 | 21.5 | .8 | 25
 | 4.06 | 2 | | L48
 | 125 | 36.7
 | | 1.8 | .3 | 3.6 | 208 | | 25
AUG | 2.50 | 21.9 | .8 | 26 | 4.10 | <1 | 1 | L49 | 123 | 36.6 | 1 | 1.6 | .3 | 4.7 | 208 | | 07 | 2.42 | 25.8 | 1 | 37 | 4.74 | 2 | | L03 | 88 | 38.9 | 1 | 4.9 | . 4 | 5.4 | 178 | | 07
07 | 2.48 | 25.4 | 1 | 33 | 4.52 | 1 | |
L28 | 105 | 35.2 | 1 | 4.7 | .4 | 6.5 | 192 | | | | | | | | | | | | | | | | | | ### 08063700 Bardwell Lake near Ennis, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ### 321704096393501 -- Bardwell Lk Site BC | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|--|--|--|--|--|--|---|---| | FEB | | | | | | | | | | | | 28 | .66 | .027 | .68 | .05 | . 29 | .34 | .008 | <.02 | 31 | E2.2b | | 28 | | | | | | | | | | | | 28 | .66 | .027 | .69 | .05 | . 29 | .34 | .006 | <.02 | 16 | E1.9b | | APR | | | | | | | | | | | | 25 | .64 | .019 | .66 | < .04 | | .36 | .004 | <.02 | <10 | <2.0 | | 25 | .64 | .018 | .66 | < .04 | | .37 | .006 | <.02 | 15 | E1.2n | | 25 | .85 | .014 | .87 | < .04 | | .42 | .007 | <.02 | <10 | E2.7b | | AUG | | | | | | | | | | | | 07 | | E.004 | <.05 | < .04 | | .28 | .006 | <.02 | <10 | E1.5 | | 07 | | E.004 | <.05 | < .04 | | .29 | .005 | <.02 | <10 | 11.0 | | 07 | | E.004 | <.05 | .15 | .32 | .47 | .009 | <.02 | 393 | 482 | | | | | | | | | | | | | #### 321830096404001 -- Bardwell Lk Site CC | Date | Time | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M)
(00078) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | |------|------|--|---|--|---|---|--|---|--|--|--|--|---| | FEB | | | | | | | | | | | | | | | 28 | 1250 | .30 | 1.00 | 330 | 8.2 | 9.0 | 11.8 | 103 | .65 | .026 | .68 | E.03 | .34 | | 28 | 1553 | | 4.00 | 334 | 8.2 | 9.0 | 11.7 | 102 | | | | | | | APR | | | | | | | | | | | | | | | 25 | 1343 | .30 | 1.00 | 363 | 8.3 | 22.5 | 8.3 | 97 | .64 | .021 | .66 | <.04 | .37 | | 25 | 1347 | | 3.00 | 363 | 8.3 | 22.5 | 8.4 | 98 | | | | | | | AUG | | | | | | | | | | | | | | | 07 | 1211 | .34 | 1.00 | 324 | 8.4 | 31.5 | 7.8 | 108 | | E.004 | <.05 | <.04 | . 29 | | 07 | 1214 | | 4.00 | 326 | 8.4 | 31.0 | 7.6 | 104 | | | | | | ### 321830096404001 -- Bardwell Lk Site CC | | | ORTHO- | | | |------|---------|---------|---------|---------| | | PHOS- | PHOS- | | MANGA- | | | PHORUS | PHATE, | IRON, | NESE, | | | DIS- | DIS- | DIS- | DIS- | | | SOLVED | SOLVED | SOLVED | SOLVED | | Date | (MG/L | (MG/L | (UG/L | (UG/L | | | AS P) | AS P) | AS FE) | AS MN) | | | (00666) | (00671) | (01046) | (01056) | | FEB | | | | | | 28 | .009 | <.02 | 61 | 5.1 | | 28 | | | | | | APR | | | | | | 25 | .006 | <.02 | <10 | E1.5n | | 25 | | | | | | AUG | | | | | | 07 | .006 | <.02 | <10 | <2.0 | | 07 | | | | | ### 321758096412901 -- Bardwell Lk Site DC | | | | | | PH | | | OXYGEN, | COLI- | | | HARD- | | |------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | TRANS- | | SPE- | WATER | | | DIS- | FORM, | | HARD- | NESS | | | | | PAR- | | CIFIC | WHOLE | | | SOLVED | FECAL, | E COLI, | NESS | NONCARB | CALCIUM | | | | ENCY | SAM- | CON- | FIELD | TEMPER- | OXYGEN, | (PER- | 0.7 | MTEC MF | TOTAL | DISSOLV | DIS- | | | | (SECCHI | PLING | DUCT- | (STAND- | ATURE | DIS- | CENT | UM-MF | WATER | (MG/L | FLD. AS | SOLVED | | Date | Time | DISK) | DEPTH | ANCE | ARD | WATER | SOLVED | SATUR- | (COLS./ | (COL/ | AS | CACO3 | (MG/L | | | | (M) | (FEET) | (US/CM) | UNITS) | (DEG C) | (MG/L) | ATION) | 100 ML) | 100 ML) | CACO3) | (MG/L) | AS CA) | | | | (00078) | (00003) | (00095) | (00400) | (00010) | (00300) | (00301) | (31625) | (31633) | (00900) | (00904) | (00915) | | | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 28 | 1317 | .30 | 1.00 | 329 | 8.2 | 9.5 | 11.5 | 102 | E4k | E9k | 130 | 9 | 46.7 | | 28 | 1326 | | 5.00 | 329 | 8.2 | 9.5 | 11.5 | 102 | | |
130 | 10 | 47.7 | | APR | | | | | | | | | | | | | | | 25 | 1407 | .23 | 1.00 | 392 | 8.1 | 22.5 | 8.4 | 98 | E16k | E23 | 160 | 18 | 59.6 | | 25 | 1415 | | 6.00 | 397 | 8.1 | 22.5 | 8.2 | 96 | | | 150 | 5 | 57.4 | | AUG | | | | | | | | | | | | | | | 07 | 1229 | .34 | 1.00 | 349 | 8.4 | 32.0 | 9.0 | 126 | <2k | <2k | 93 | 6 | 33.2 | | 07 | 1235 | | 5.00 | 384 | 8.2 | 30.5 | 7.8 | 106 | | | 100 | 9 | 37.2 | #### 08063700 Bardwell Lake near Ennis, TX--Continued #### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 321758096412901 -- Bardwell Lk Site DC | Date | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | |------|---|---|--|------------------------------|--|---|--|--|--|--|---|--|--| | FEB | | | | | | | | | | | | | | | 28 | 2.36 | 22.3 | .9 | 27 | 4.22 | 1 | 140 | 117 | 38.3 | 13.6 | .3 | 5.6 | 207 | | 28 | 2.36 | 22.4 | .9 | 27 | 4.35 | 2 | 142 | 119 | 42.4 | 14.6 | .3 | 5.3 | 214 | | APR | | | | | | | | | | | | | | | 25 | 2.33 | 21.0 | .7 | 22 | 3.80 | 2 | 166 | 141 | 37.0 | 12.0 | . 3 | 5.0 | 228 | | 25 | 2.33 | 20.7 | .7 | 22 | 3.84 | 1 | 179 | 148 | 36.4 | 11.8 | . 3 | 4.8 | 229 | | AUG | | | | | | | | | | | | | | | 07 | 2.38 | 29.8 | 1 | 39 | 5.28 | 2 | 102 | 87 | 46.8 | 19.2 | . 4 | 6.0 | 195 | | 07 | 2.49 | 33.0 | 1 | 39 | 5.81 | 1 | 112 | 94 | 53.9 | 20.2 | . 4 | 6.6 | 216 | 321758096412901 -- Bardwell Lk Site DC | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|--|--|--|--|--|---|---| | FEB | | | | | | | | | | | 28 | .70 | .026 | .73 | E.03 | .33 | .009 | <.02 | 60 | 5.7 | | 28 | .77 | .023 | .80 | E.04 | .30 | .006 | <.02 | 80 | 9.6 | | APR | | | | | | | | | | | 25 | .54 | .013 | .55 | < .04 | .34 | .007 | <.02 | <10 | E.9n | | 25 | .54 | .013 | .55 | < .04 | .34 | .007 | <.02 | <10 | <2.0 | | AUG | | | | | | | | | | | 07 | | E.005 | <.05 | <.04 | .31 | .006 | <.02 | <10 | <2.0 | | 07 | | E.006 | .05 | <.04 | .31 | .006 | <.02 | <10 | E1.3n | Remark codes used in this report < -- Less than E -- Estimated value Value qualifier codes used in this report: b -- Value was extrapolated below k -- Counts outside acceptable range n -- Below the NDV Null value qualifier codes used in this report: u -- Unable to determine-matrix interference #### 08063800 Waxahachie Creek near Bardwell, TX LOCATION.--Lat 32°14'36", long 96°38'24", Ellis County, Hydrologic Unit 12030109, on left bank at downstream side of highway embankment near left end of bridge on county road, 0.8 mi downstream from Bardwell Dam, 3.6 mi southeast of Bardwell, 3.8 mi downstream from bridge on State Highway 34, and 4.1 mi upstream from mouth. DRAINAGE AREA.--178 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1963 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 360.18 ft above NGVD of 1929 (U.S. Army Corps of Engineers benchmark). Prior to Oct. 2, 1998, at datum 10.0 ft higher. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since Nov. 1965, at least 10% of contributing drainage area has been regulated. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1944, about 23 ft in 1944 and 1945, from information by U.S. Army Corps of Engineers. | | D | ISCHARGE | FROM DCP | , CUBIC F | | ECOND, WA
LY MEAN V | | OCTOBER 200 |)1 TO SE | PTEMBER 200 |)2 | | |--|--|---|---|--|--|---|--|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e0.0
e0.0
e0.0
e0.00
e0.00 | 0.03
0.03
0.03
0.03
0.02 | 0.13
0.09
0.08
0.08
0.07 | 848
841
834
615
414 | 0.22
0.17
0.15
52
157 | 21
0.29
0.40
0.38
0.36 | 68
69
160
273
271 | 54
54
55
53
53 | | | e0.11
e0.12
e0.12
e0.11
e0.11 | e0.0
e0.0
e0.0
e0.0
e0.0 | | 6
7
8
9
10 | e0.0
e0.0
e0.0
e0.0 | 0.02
0.02
0.02
0.05
0.05 | 0.07
0.09
0.18
0.10
0.08 | 412
409
291
159
159 | 157
157
378
540
529 | 0.36
0.35
0.34
0.31
0.24 | 269
269
177
0.98
0.73 | 53
103
139
139
139 | e0.34
e0.34
e0.33
e0.33 | e0.22
e0.20
e0.20
e0.18
e0.18 | e0.10
e0.08 | e0.0
e0.0
e0.0
e0.0
e0.0 | | 11
12
13
14
15 | e0.0
0.04
1.6
0.52
0.25 | 0.06
0.08
0.08
0.07
0.06 | 0.13
0.24
0.21
0.20
e0.25 | 158
158
157
106
72 | 524
518
422
258
116 | 0.23
0.23
0.19
0.18
0.17 | 0.56
155
269
267
264 | 138
136
135
92
50 | e0.34
e0.32
e0.30
e0.28
e0.28 | e0.16
e0.16
e0.14
e0.14
e0.14 | e0.05
e0.05
e0.04
e0.02
e0.01 | e0.0
e0.0
e0.0
e0.0
e0.0 | | 16
17
18
19
20 | 0.12
0.06
0.04
0.04
0.04 | 0.09
0.07
0.07
0.08
0.08 | e0.30
e0.35
e0.35
0.35
0.29 | 73
28
0.33
0.15
0.08 | 0.54
0.43
0.36
69
138 | 0.16
0.17
0.20
0.34
0.67 | 265
317
385
437
527 | 50
23
0.47
0.44
0.43 | e0.28
e0.26
e0.26
e0.26
e0.25 | e0.14
e0.12
e0.12
16
50 | e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0
e0.0
e0.0 | | | | | | | | | | 0.42
0.41
0.40
0.37
0.36 | | | | | | 26
27
28
29
30
31 | 0.02
0.02
0.02
0.02
0.02
0.02 | 0.05
0.05
0.23
0.23
0.17 | 0.15
485
897
879
867
858 | 0.13
0.09
0.10
0.11
0.12
0.28 | 56
56
56

 | 153
117
66
66
67
68 | 111
0.35
0.30
0.27
33 | 0.36
0.36
0.36
0.48
e0.35
e0.34 | e0.22
e0.24
e0.24
e0.25
e0.24 | e0.16
e0.12
e0.10
e0.11
e0.10
e0.11 | e0.0
e0.0
e0.0
e0.0
e0.0 | e0.0
e0.0
e0.0
e0.0
e0.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2.96
0.095
1.6
0.00
5.9 | 2.12
0.071
0.23
0.02
4.2 | 3990.80
128.7
897
0.07
7920 | 5736.08
185.0
848
0.07
11380 | 4574.87
163.4
540
0.15
9070 | 1229.57
39.66
154
0.16
2440 | 6291.19
209.7
527
0.27
12480 | 1471.55
47.47
139
0.34
2920 | 8.58
0.286
0.34
0.22
17 | 193.31
6.236
50
0.10
383 | 1.15
0.037
0.12
0.00
2.3 | 0.0
0.000
0.00
0.00 | | STATIST | | | | | | | • | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) |
18.90
299
1974
0.000
1964 | 74.62
723
1992
0.000
1964 | 87.74
603
1999
0.018
1990 | 124.5
921
1998
0.022
1967 | 114.3
605
1992
0.022
1967 | 161.2
710
1997
0.024
1967 | 128.6
590
1977
0.11
1996 | 158.6
827
1973
0.11
1996 | 179.9
773
1989
0.001
1996 | 24.67
370
1981
0.000
1966 | 4.293
71.8
1973
0.000
1964 | 5.831
178
1976
0.000
1966 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YEAR | | WATER YEAR | RS 1964 - | 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
ANNUAL
10 PERC
50 PERC | MEAN I ANNUAL ANNUAL M I DAILY ME SEVEN-DA M PEAK FL M PEAK ST | EAN EAN AN Y MINIMU OW AGE AC-FT) EDS EDS | М | 44551.
122.
1580
0.
0.
88370
287
0. | Mar 2.00 Jul 000 Jul 000 Jul 000 000 000 000 | 2
7
7 | 0. | Dec 28
00 Oct 1
00 Oct 1
Dec 27
23 Dec 27 | | 90.02
318
0.06
1880
0.00
0.00
0.00
1960
aa28.13
65210
283
1.1 | Jun 25
Jun 25
Oct 1
Oct 1
Jun 25
Jun 25 | 1992
1967
1981
1963
1963
1981
1981 | e Estimated aa Adjusted to present datum. 08063800 Waxahachie Creek near Bardwell, TX--Continued #### 08063800 Waxahachie Creek near Bardwell, TX--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1998 to current year. BIOCHEMICAL DATA: Oct. 1980 to Sept. 1982, Oct. 1998 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |-----------|--|--|--|--|--|--|---|--|---|--|---|--|--| | FEB 28 | 1300 | 56 | 324 | 8.4 | 10.0 | 11.7 | 104 | | 120 | 10 | 43.9 | 2.31 | 21.4 | | APR 24 | 1400 | 262 | 368 | 8.3 | 21.0 | 8.4 | 96 | | 130 | 9 | 49.1 | 2.46 | 21.8 | | AUG
07 | 1032 | .42 | 407 | 7.4 | 27.5 | 5.3 | 68 | <2.0 | 130 | | 46.8 | 2.87 | 26.9 | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | FEB 28 | .9 | 27 | 3.88 | 1 | 131 | 110 | 36.7 | 13.7 | .3 | 5.31 | 212 | 196 | 24 | | APR 24 | .8 | 26 | 4.07 | 1 | 148 | 124 | 36.9 | 12.0 | .2 | 3.61 | 222 | 208 | 23 | | AUG
07 | 1 | 30 | 4.02 | <1 | 161 | 132 | 41.1 | 16.9 | .4 | 5.93 | 243 | 224 | <10 | | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | | FEB 28 | .66 | .027 | .69 | .05 | .33 | .38 | .008 | <.02 | 5.0 | <1 | <.05 | 2 | 52 | | APR
24 | .73 | .051 | .78 | E.02 | | .41 | .007 | <.02 | 5.3 | 1 | .38 | 3 | 61 | | AUG
07 | .73 | <.008 | <.05 | <.04 | | .33 | .015 | <.02 | 4.6 | 3 | .24 | 4 | 61 | | 07 | | <.008 | <.05 | <.04 | | .33 | .015 | <.02 | 4.0 | 3 | .24 | 4 | 91 | | Date | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | | FEB | | | _ | | | | | _ | | _ | | 6 | - | | 28
APR | <.06 | <.04 | <.8 | .15 | 1.2 | E9 | .10 | .3 | <.01 | .3 | 1.53 | <2 | <1 | | 24 | | | | | | | | | | | | | | | AUG
07 | <.06
<.06 | E.03 | <.8 | .17 | 1.8 | <10
<10 | .08 | .4
8.7 | E.01n
<.01 | 3.4
4.6 | 1.45
2.17 | <2
<2 | <1
<1 | | | | URANIUM | |------|---------|---------| | | ZINC, | NATURAL | | | DIS- | DIS- | | | SOLVED | SOLVED | | Date | (UG/L | (UG/L | | | AS ZN) | AS U) | | | (01090) | (22703) | | | | | | FEB | | | | 28 | <1 | .71 | | APR | | | | 24 | 2 | .82 | | AUG | | | | 07 | 4 | .58 | | | | | Remark codes used in this report: <-- Less than E -- Estimated value Value qualifier codes used in this report: $\ensuremath{\text{n}}$ -- Below the NDV THIS PAGE IS INTENTIONALLY BLANK #### 08064100 Chambers Creek near Rice, TX LOCATION.--Lat 32°11'54", long 96°31'12", Navarro County, Hydrologic Unit 12030109, on downstream side of highway embankment 20 ft to left of left end of bridge on Farm Road 1126, 3.6 mi downstream from Oak Branch, 3.9 mi upstream from Cummins Creek, 4.2 mi upstream from bridge on Interstate Highway 45, 5.0 miles downstream from Waxahachie Creek, and 3.4 mi southwest of Rice. DRAINAGE AREA. -- 807 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Oct. 1983 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 340.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily discharges, which are poor. Since installation of gage in Oct. 1984, at least 10% of contributing drainage area has been regulated. Flood releases from Bardwell Lake will sustain flows at this site from time to time. In addition, flow is affected at times by discharge from the flood-detention pools of numerous floodwater-retarding structures in the drainage basin above this station. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood information for the next downstream station, Chambers Creek near Corsicana, (08064500) indicates that the maximum stage since at least 1870 occurred in Aug. 1887, and that other significant floods occurred in Dec. 1913, May 1944, and May 1958. Stages for these floods are unknown, but over the years a levee system has been developed along the main channel to limit cropland flooding. | | | DISCHARGE | FROM DCP, | CUBIC FEE | | OND, WA' | | OCTOBER 200 |)1 TO SE | PTEMBER 200 |)2 | | |--|--|--|--|---|--|---|---|---|--|---
--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
19
19
19 | 12
12
13
13 | 22
22
21
20
20 | e517
e492
e467
e442
e417 | 1350
751
397
280
577 | 151
77
75
69
65 | 1640
955
751
753
659 | 171
164
175
921
531 | 115
73
54
44
36 | 14
100
178
195
169 | 2.2
2.4
3.5
1.9 | 0.09
0.08
0.08
0.07
0.06 | | 6
7
8
9
10 | 9.8
7.5
7.1
7.2
6.7 | 12
13
18 | 21
e11
e12
e8.3
e8.9 | e392
e367
e343
e318
e306 | 2930
e4490
e1960
e1440
e1210 | 66
66
e100
67
66 | 608
595
888
1340
663 | 410
441
386
337
308 | 32
28
26
24
23 | 74
49
36
28
22 | 0.96
0.74
0.56
0.45
0.43 | 0.06
0.07
0.08
0.09
0.09 | | 11
12
13
14
15 | 6.6
10
e53
e162
e171 | 19
18
38
34
26 | | 281 | e1000
e775
e610
e501
433 | 60
59
60
59
57 | 461
461
624
589
574 | 359
320
294
255
166 | 20
18
16
e33
13 | 18
17
15
13 | 0.41
1.3
1.4
0.74
0.49 | 0.08
0.07
0.07
0.07
0.06 | | 16
17
18
19
20 | 341
219
137
76
e17 | 28
37
46
e34
e27 | 9960
13000
7550
2550
1730 | 163
e144
e156
e152
e145 | 170
150
141
178
353 | 54
53
53
60
822 | 545
786
2110
978
904 | 152
132
62
56
56 | 14
16
16
14 | 14
62
91
56
108 | 0.41
0.37
0.29
0.23
0.20 | 0.06
0.05
0.05
0.08
0.08 | | 21
22
23
24
25 | e12
e11
e10
e9.4
e6.6 | | 1260
e1090
e991
e867
e767 | e133
e145
e163
e200
e251 | 336
289
214
209
203 | 1180
788
601
506
445 | 837
711
504
485
469 | 48
42
38
34
31 | 10
21
12
9.4
8.2 | 110
103
96
23
8.9 | 0.18
0.17
0.15
0.14
0.13 | 0.07
0.06
0.06
0.06
0.05 | | 26
27
28
29
30
31 | e3.9
e3.2
14
13
13 | 1.0 | e717
e692
e617
e592
e567
e542 | 211
108
74
62
57
135 | 192
186
180
 | 410
361
251
237
531
3030 | 349
133
126
105
113 | 30
31
53
442
630
241 | 7.9
13
19
12
8.4 | 6.2
4.6
4.4
3.6
2.9
3.0 | 0.12
0.13
0.13
0.11
0.10
0.09 | 0.04
0.05
0.04
0.03
0.03 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1424.0
45.94
341
3.2
2820 | 18.91
46 | 43825.2
1414
13000
8.3
86930 | 7625
246.0
517
57
15120 | 21505
768.0
4490
141
42660 | 10479
338.0
3030
53
20790 | 20716
690.5
2110
105
41090 | 7316
236.0
921
30
14510 | 747.9
24.93
115
7.9
1480 | 195 | 21.53
0.695
3.5
0.09
43 | 1.93
0.064
0.09
0.03
3.8 | | STATIS | TICS OF | | | FOR WATER Y | | - 2002 | , BY WATE | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 303.5
1499
1986
0.000
1989 | 1999 | 911.6
3579
1992
1.45
1989 | 566.7
2393
1998
4.66
1996 | 805.8
2450
1997
5.16
1996 | 831.3
2497
2001
6.35
1996 | 555.5
2218
1995
12.2
1996 | 698.6
2932
1989
1.34
1996 | 624.0
2560
1986
0.051
1996 | 47.96
194
1989
0.081
1988 | 33.71
185
1995
0.000
1988 | 24.62
149
1991
0.000
1985 | | SUMMAR | Y STATI | STICS | FOR | 2001 CALEN | DAR YEAR | 1 | FOR 2002 | WATER YEAR | | WATER YEAR | RS 1984 - | 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ANNUAL T DAILY DAILY I SEVEN-I M PEAK I M PEAK I | MEAN MEAN MEAN DAY MINIMU FLOW STAGE (AC-FT) CEEDS CEEDS | M | 202492.72
554.8
13000
0.09
0.09
401600
1850
53
0.27 | Dec 17
Aug 11
Aug 11 | | 115865.
317.
13000
0.
0.
18600
29.
229800
713
49
0. | Dec 17 03 Sep 29 04 Sep 24 Dec 16 93 Dec 16 | | 487.2
1263
12.9
22700
0.00
0.00
c43400
32.57
352900
1220
43
0.07 | | 1992
1996
1991
1985
1985
1986
1991 | e Estimated From rating curve extended above 15,000 ft³/s on basis of velocity-area study. 08064100 Chambers Creek near Rice, TX--Continued #### 08064100 Chambers Creek near Rice, TX--Continued WATER-OUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1983 to current year. BIOCHEMICAL DATA: Oct. 1983 to current year. PESTICIDE DATA: Feb. 2000 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Oct. 1983 to Dec. 1993 (local observer), Jan. 1994 to current year. WATER TEMPERATURE: Oct. 1983 to Dec. 1993 (local observer), Jan. 1994 to current year. INSTRUMENTATION. -- Water-quality monitor since Jan. 1994. REMARKS.--Records poor. Interruptions in the record were due to malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous water years using the daily (or continuous) records of specific conductance and regression relationships between each chemical constituent and specific conductance. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office upon request. EXTREMES FOR PERIOD OF DAILY RECORD. -- NOV. 11, 13, 14, 1998. WATER TEMPERATURE: Maximum daily, 2,510 microsiemens/cm, Nov. 21, 1988; minimum, 100 microsiemens/cm, Nov. 11, 13, 14, 1998. WATER TEMPERATURE: Maximum daily, 38.0°C, Aug. 16, 1987; minimum daily, 0.0°C, Feb. 7, 1989. EXTREMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum, 1,050 microsiemens/cm, Aug. 18; minimum, 115 microsiemens/cm, Oct. 13. WATER TEMPERATURE: Maximum, 31.8°C, July 25; minimum, 5.0°C, Mar. 4. | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |-------------------------------------|------------------------------|---|--|--|--|---|---|---|--|--|--|--|--| | FEB 07 | 0745 | 352 | 423 | 8.3 | 10.7 | 9.9 | 90 | 160 | 23 | 59.7 | 2.75 | 22.2 | .8 | | MAR
15 | 0845 | 1680 | 361 | 8.1 | 14.5 | 8.8 | 88 | 150 | 21 | 56.5 | 2.65 | 12.6 | . 4 | | APR
11 | 1430 | 892 | 444 | 8.2 | 20.0 | 7.5 | 96 | 160 | 13 | 59.7 | 2.59 | 18.3 | . 6 | | MAY
16 | 1130 | 95 | 526 | 7.6 | 25.5 | 6.3 | 79 | 190 | 40 | 69.8 | 4.56 | 32.2 | 1 | | JUN | 1130 | 95 | 520 | 7.6 | 25.5 | 0.3 | 79 | 190 | 40 | 69.8 | 4.50 | 32.2 | 1 | | 14 | 1100 | 33 | 828 | 6.8 | 29.0 | 5.5 | 73 | 250 | 72 | 88.3 | 6.44 | 73.3 | 2 | | JUL
11 | 1300 | 24 | 568 | 6.1 | 30.2 | 6.1 | 83 | 190 | 62 | 69.0 | 4.65 | 37.1 | 1 | | SEP
06 | 1300 | 332 | 263 | 6.2 | 25.7 | 6.6 | | 89 | 9 | 32.4 | 1.82 | 12.0 | .6 | | Date | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | FEB
07
MAR | 23 | | | | | | | | | | | | | | | 23 | 3.99 | 138 | 42.8 | 13.9 | . 4 | 5.01 | 254 | 238 | .97 | .026 | 1.00 | <.04 | | 15 | 15 | 3.99 | 138
131 | 42.8 | 13.9
7.07 | .4 | 5.01
8.99 | 254
227 | 238
204 | .97
.72 | .026 | 1.00 | <.04
E.03 | | APR
11 | | | | | | | | | | | | | | | APR
11
MAY
16 | 15 | 3.02 | 131 | 30.8 | 7.07 | .3 | 8.99 | 227 | 204 | .72 | .013 | .73 | E.03 | | APR
11
MAY
16
JUN
14 | 15
19 | 3.02 | 131
147 | 30.8
37.8 | 7.07
12.0 | .3 | 8.99
4.22 | 227
253 | 204
230 | .72
.71 | .013 |
.73
.74 | E.03 | | APR
11
MAY
16
JUN | 15
19
26 | 3.02
3.64
3.85 | 131
147
153 | 30.8
37.8
70.0 | 7.07
12.0
23.2 | .3 | 8.99
4.22
6.35 | 227
253
335 | 204
230
306 | .72
.71
.98 | .013
.025
.014 | .73
.74
1.00 | E.03 <.04 <.04 | ### 08064100 Chambers Creek near Rice, TX--Continued | Date | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | |------------------|--|--|---|--|---|---|--|---|--|--|--|---|---| | FEB
07 | 1.9 | .37 | .92 | .147 | .008 | <.02 | | 64.6 | 68 | 97 | <10 | <3.2 | <.002 | | MAR
15 | 2.2 | .43 | 1.4 | .59 | .031 | .03 | .077 | 3620 | 797 | 98 | E6 | <3.2 | <.002 | | APR 11 | 1.4 | .37 | .65 | .078 | .010 | <.02 | | 190 | 79 | 100 | <10 | 3.4 | <.002 | | MAY
16 | 2.1 | .45 | 1.1 | .162 | .013 | <.02 | | 40.8 | 159 | 100 | <10 | 3.5 | <.002 | | JUN
14 | | .27 | .67 | .096 | .009 | <.02 | | 11.0 | 123 | 84 | <10 | 10.1 | <.002 | | JUL
11
SEP | | .41 | .79 | .121 | .011 | <.02 | | 4.2 | 65 | 100 | <10 | 3.2 | <.002 | | 06 | 2.7 | .42 | 2.1 | .79 | .028 | E.01 | | 898 | 1000 | 100 | E9 | <3.0 | <.002 | | Date | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(UG/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | METHYL
AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | BEN-
FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | PER-
METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | CYANA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | DCPA
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | | FEB
07
MAR | <.004 | <.002 | <.005 | .418 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 15
APR | <.004 | <.002 | <.005 | .088 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 11
MAY | <.004 | .012 | <.005 | .506 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 16
JUN | <.004 | .015 | <.005 | 2.80 | <.050 | <.010 | <.002 | E.050 | <.020 | <.005 | <.006 | <.018 | <.003 | | 14
JUL | <.004 | <.002 | <.005 | .364 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 11
SEP | <.004 | <.002 | <.005 | .263 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | 06 | <.004 | <.002 | <.005 | .016 | <.050 | <.010 | <.002 | <.041 | <.020 | <.005 | <.006 | <.018 | <.003 | | Date | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | | FEB
07
MAR | E.075 | <.005 | <.005 | <.02 | .008 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .025 | <.006 | | 15
APR | E.029 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .024 | <.006 | | 11
MAY | E.032 | .008 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .073 | <.006 | | 16
JUN | E.188 | E.003 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | 1.45 | <.006 | | 14
JUL | E.063 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .138 | <.006 | | 11
SEP | <.006 | .008 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .025 | <.006 | | 06 | E.006 | .015 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.007 | <.006 | ### 08064100 Chambers Creek near Rice, TX--Continued | | | | | ~ - | • | | | | | | | | | |--|--|---|---|---|--|---|---|---|---|---|--|--|--| | Date | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82676) | | FEB 07 MAR 15 APR 11 MAY 16 JUN 14 JUL 11 SEP 06 | <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | E.001 <.003 <.003 <.003 <.003 <.003 <.003 | <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | <.006 <.006 <.006 <.006 <.006 <.006 <.006 | <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | <.010 <.010 <.010 .050 <.010 <.010 <.010 <.010 | <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | M <.01 <.01 M <.01 <.01 <.01 <.01 <.01 <.01 | <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | <.02 <.02 <.40 <.02 <.02 <.02 <.02 <.02 | <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | | | | Da | te | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82675) | THIO-
BENCARB
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82661) | | | | | | | MAR
1
APR
1
MAY
1
JUN
1
JUN
1
SEF | 5
1
6 | .038
.018
.056
.034
E.009
E.007 | .02
E.01
.02
E.01
E.01
<.02 | <.034 <.034 <.034 <.034 <.034 <.034 <.034 | <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | <.009 <.009 <.009 <.009 <.009 <.009 <.009 | | | | 08064100 Chambers
Creek near Rice, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |---|--|---|--|---|--|---|--|--|--|---|--|--|--| | OCT
25 | 1130 | 20 | | 7.7 | 20.0 | 5.9 | | <2.0 | 190 | 48 | 68.2 | 3.85 | 37.2 | | NOV
08 | 1200 | 12 | 708 | 7.7 | 16.9 | 5.9 | 61 | | | | | | | | DEC
03
13 | 1300
0920 | 21
34 | 764 | 7.7
8.1 | 10.9
10.0 | 9.7
9.2 | 89 | 2.2 | 230 |
41 |
84.5 |
5.21 |
53.8 | | JAN
07 | 1200 | 618 | 315 | 8.2 | 7.3 | 12.5 | 104 | | | | | | | | FEB 12 | 1230 | 888 | 361 | 8.1 | 9.1 | 12.1 | 105 | | | | | | | | MAR
04
12
19
25
APR | 1500
1500
1300
1230 | 68
59
60
443 | 571
604
630
423 | 8.2
8.2
8.0
8.1 | 6.4
14.6
16.8
15.5 | 12.8
10.9
9.0
9.5 | 103
108
94
96 |

 |

 |

 |

 |

 |

 | | 01
04
08
15
22 | 1300
0945
1300
1200
1200 | 1480
758
888
575
797 | 381
394
396
419
399 | 8.0
8.1
8.1
8.2
8.3 | 16.6
16.0
16.2
19.9
22.2 | 8.9
11.5
9.3
9.2
9.0 | 92
116
97
104
103 | 2.5

 | 150

 | 17

 | 55.9

 | 2.59

 | 17.8

 | | MAY
06
13
20
21
28 | 1130
1130
1100
1015
1230 | 317
298
59
49
32 | 445
451
583
592
690 | 7.9
7.8
7.9
8.0
7.5 | 24.7
16.2
21.6
21.5
24.5 | 7.1
7.9
8.7
7.1
5.8 | 86
80
99
80
71 |

e
 |

220
 |

52
 |

80.0 |

5.07 |

39.0 | | JUN
03
10
18
26
JUL | 1500
1115
1000
1045 | 52
24
16
7.7 | 535
650
735
721 | 7.3
7.0
7.4
7.4 | 28.0
27.8
25.7
27.9 | 6.5
5.1
5.2
5.3 | 85
66
65
68 |

 |

 |

 |

 |

 |

 | | 08
09
22 | 1130
1002
1100 | 36
28
102 | 459
482
383 | 7.6
7.6
7.8 | 29.0
29.0
29.4 | 5.4
9.3
6.6 | 70
124
86 | 3.2 | 180
 | 70
 | 65.7
 | 4.28
 | 29.4
 | | | | | | | | | | | | | | | | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | ОСТ
25 | AD-
SORP-
TION
RATIO | PERCENT | SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE WATER DIS IT FIELD MG/L AS CO3 | BONATE WATER DIS IT FIELD MG/L AS HCO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | | OCT
25
NOV
08 | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | | OCT
25
NOV
08
DEC
03 | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) 30 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
138
172
190 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
14.1
55.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | | OCT 25 NOV 08 DEC 03 13 JAN 07 | AD-
SORP-
TION
RATIO
(00931) | PERCENT (00932) 30 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
14.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 | AD-
SORP-
TION
RATIO
(00931) | 30
33 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.19

3.67 | BONATE WATER DIS IT FIELD MG/L AS (00452) <1 1 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 168 232 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 138 172 190 192 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5
109
121
92.1 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
14.1
55.3
52.7
50.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
9.18 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 80 24 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB | AD-
SORP-
TION
RATIO
(00931)
1
2 | 30 33 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.19

3.67 | BONATE WATER DIS IT FIELD MG/L AS C03 (00452) <1 1 | BONATE WATER DIS IT FIELD MG/L AS HC03 (00453) 168 232 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
138
172
190
192 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5
109
121
92.1
36.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
14.1
55.3
52.7
50.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
9.18

4.94 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 228 411 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 80 24 | | OCT 25 NOV 08 DEC 13 JAN 07 FEB 12 MAR 04 12 19 25 | AD-
SORP-
TION
RATIO
(00931)
1
2
2 | 3033 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.19

3.67 | BONATE WATER DIS IT FIELD MG/L AS C03 (00452) <1 1 1 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 168
232 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 138 172 190 192 114 116 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5
109
121
92.1
36.1
41.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
14.1
55.3
52.7
50.1
14.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
9.18

4.94 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 228 411 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 80 24 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 APR 01 04 04 15 APR 01 | AD-
SORP-
TION
RATIO
(00931)
1
2
2 | PERCENT (00932) 30 33 31 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.19

3.67 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) <1 1 1 1 1 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 168 232 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 138 172 190 192 114 116 183 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5
109
121
92.1
36.1
41.3 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
14.1
55.3
52.7
50.1
14.3
12.6 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.4

.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
9.18

4.94
 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
330

434

 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 228 411 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 8024 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 25 APR 01 04 04 08 15 22 MAY 06 13 20 21 22 | AD-
SORP-
TION
RATIO
(00931)
1
2

.6 | 30 33 20 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.19

3.67

3.32 | BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) <1 1 1 1 1 1 1 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 168 232 161 161 | LINITY WAT DIS TOT IT FIELD MG/L AS CACC3 (39086) 138 172 190 192 114 116 183 134 144 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5
109
121
92.1
36.1
41.3

81.6

38.4
38.6 | RIDE,
DIS-
SOIVED (MG/L
AS CL) (00940)
14.1
55.3
52.7
50.1
14.3
12.6
 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.4

.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
9.18

4.94

 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 330 434 230 230 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 228 411 222 222 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 8024 274 274 274 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 13 13 20 21 | AD-
SORP-
TION
RATIO
(00931)
1
2

.6

.6 | PERCENT (00932) 30 33 20 27 | SIUM, DIS- SOLVED (MG/L AS K) (00935) 4.19 3.67 3.32 3.32 3.58 | BONATE WATER WATER DIS IT FIELD MG/L AS CO3 (00452) <1 1 1 1 1 2 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 168 232 161 202 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 138 172 190 192 114 116 183 134 144 136 169 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
2.5
109
121
92.1
36.1
41.3

81.6

38.4
38.6

85.5
85.7 | RIDE, DIS- DIS- SOIVED (MG/L AS CL) (00940) 14.1 55.3 52.7 50.1 14.3 12.6 27.8 12.2 12.3 14.6 29.1 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.4
.5

.3

.3
 | DIS- SOLVED (MG/L AS SIO2) (00955) 9.18 4.94 5.74 5.95 | RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 330 434 230 230 358 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 228 411 222 351 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 80 24 274 274 444 | ### 08064100 Chambers Creek near Rice, TX--Continued | | | | | ~ | | | | | EMDER 200 | | | | | |--|--|--|---|--|--|--|---|--|---|---|--|--|--| | Date | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | | OCT
25 | 1.17 | .022 | 1.20 | <.04 | | | | .48 | | | <.06 | <.02 | | | NOV
08 | | <.008 | .10 | <.04 | .62 | | | | .52 | .058 | | <.02 | | | DEC
03 | | <.008 | .12 | <.04 | .65 | | | | .53 | .055 | | <.02 | | | 13
JAN | | E.006 | .34 | E.03 | | | | .33 | | | .007 | <.02 | | | 07
FEB | .48 | .009 | .49 | E.03 | 1.1 | | | | .61 | .081 | | .02 | .055 | | 12
MAR | .79 | .057 | .85 | <.04 | 1.5 | | | | .69 | .092 | | <.02 | | | 04
12
19
25
APR |

-98 | <.008
E.004
E.004
.039 | 1.02
.75
.49
1.02 | <.04
<.04
<.04
E.04 | 1.3
1.0
.84
2.0 |

 |

 |

 | .25
.30
.35
.93 | .020
.023
.033
.178 |

 | <.02
<.02
<.02
<.02 |

 | | 01
04 | 1.75
1.19 | .098
.109 | 1.84
1.30 | .06
.11 | 3.4 | 1.5 |
.36 |
.47 | 1.6 | .67 |
E.04 | .02 | .061
.276 | | 08
15 | 1.28
.77 | .051 | 1.33 | <.04
<.04 | 2.5
1.5 | | | | 1.1
.76 | .35
.126 | | <.02
<.02 | | | 22
MAY | .66 | .015 | .68 | <.04 | 1.3 | | | | .58 | .113 | | <.02 | | | 06
13 | 1.22
.84 | .078
.026 | 1.30
.87 | .07
<.04 | 2.7
1.7 | 1.3 | | | 1.4
.81 | .31
.144 | | E.01
<.02 | | | 20
21 | | <.008
<.008 | .36
.33 | <.04
<.04 | .92
 | | | .29 | .56
 | .070 | .006 | <.02
<.02 | | | 28
JUN | | <.008 | .15 | <.04 | .74 | | | | .58 | .084 |
| <.02 | | | 03
10 | 1.19 | .014
E.004 | 1.20 | <.04
<.04 | 2.0
.87 | | | | .81
.75 | .141 | | <.02
<.02 | | | 18
26
JUL | | <.008
<.008 | <.05
<.05 | <.04
<.04 | | | | | .61
.76 | .091
.077 | | <.02
<.02 | | | 08
09
22 | .41

 | .010
E.006
<.008 | .42
.37
<.05 | <.04
<.04
<.04 | 1.3 |
 |
 |
.42
 | .86

.69 | .159

.111 | .019 | E.01
E.01
<.02 |
 | | | | | | | | | | | | | | | | | Date | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | OCT
25 | ORGANIC
TOTAL
(MG/L
AS C) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | MENT,
SUS-
PENDED
(MG/L) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | MONY,
DIS-
SOLVED
(UG/L
AS SB) | DIS-
SOLVED
(UG/L
AS AS) | DIS-
SOLVED
(UG/L
AS BA) | LIUM,
DIS-
SOLVED
(UG/L
AS BE) | DIS-
SOLVED
(UG/L
AS CD) | MIUM,
DIS-
SOLVED
(UG/L
AS CR) | DIS-
SOLVED
(UG/L
AS CO) | | OCT
25
NOV
08 | ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | DIS-
SOLVED
(UG/L
AS CO)
(01035) | | OCT
25
NOV
08
DEC
03 | ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154) | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | DIS-
SOLVED
(UG/L
AS CO)
(01035) | | OCT
25
NOV
08
DEC | ORGANIC
TOTAL
(MG/L
AS C)
(00680) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154)

47 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | DIS-
SOLVED
(UG/L
AS CO)
(01035) | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154)

47
47 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.31

.15 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4

2 | DIS-
SOLVED
(UVFL)
(AS BA)
(01005)
64

-73 | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | DIS-
SOLVED
(UG/L
AS CO)
(01035)
.28

.34 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | MENT,
SUS-
PENDED
(MG/L)
(80154)

47
47

49
79 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
<1

<1

<1 | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.31

.15 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4

2

2 | DIS-
SOLVED (UG/L
AS BA) (01005)
64

-73 | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<.06

<.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04

<.04
 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<.8

<.8 | DIS-
SOLVED
(UG/L
AS CO)
(01035)
.28

-34
 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)

1.5
2.7

81.8
189 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.31

-5.15 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4
2
2 | DIS-
SOLVED (UG/L
AS BA) (01005)
64

73
 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04

<.04 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<.8

<.8 | DIS-
SOLVED (UG/L
AS CO) (01035) .2834 | | OCT 25 NOV 08 DEC 03 JAN 07 FEB 12 MAR 04 12 19 APR | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1

 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1

2.8
 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 1.5 2.7 81.8 189 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 | MONY, DIS- SOLVED (UG/L AS SB) (01095) .311515 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4

2

2 | DIS-
SOLVED (UG/L
AS BA) (01005) | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<.06

<.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04

<.04

 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<.8

<.8

<.8 | DIS-
SOLVED
(UG/L
AS CO)
(01035)
.28

.34
 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 19 25 APR 01 04 | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1

10.0 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1

2.8

 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)

1.5
2.7

81.8
189

 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
<1

<1

<1 | MONY, DIS- SOLVED (UG/L AS SB) (01095) .31151520 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4

2

2 | DIS-
SOLVED (UG/L
AS BA) (01005) 6473 49 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 < <.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04
<.04

<.04

<.04 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<.8

<.8

<.8 | DIS-
SOLVED (UG/L
AS CO) (01035) .283434 | | OCT 25 NOV 08 DEC 03 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 01 | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1

10.0 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1

2.8

4.5
 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)

1.5
2.7

81.8
189

1200 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 499 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095)
.31

.15 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4
2
2
3
 | DIS-
SOLVED (UG/L
AS BA) (01005) 64 73 49 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04
<.04

<.04

 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<.8

<.8

<.8 | DIS-
SOLVED (UG/L
AS CO) (01035) .2834 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY | ORGANIC
TOTAL
(MG/L
AS C)
(00680)
9.8

65.1

10.0 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1

2.8

4.5 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2i | MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 1.5 2.7 81.8 189 1200 1200 | MENT, SUS-, PENDED (MG/L) (80154) 47 47 49 499 499 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <1 <1 <1 <1 < < < < < < | MONY, DIS- SOLVED (UG/L AS SB) (01095) .31151515 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4

2

2

3 | DIS-
SOLVED (UG/L
AS BA) (01005) 64 73 49 | LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<.06

<.06

 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04 <.04 <.04 | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<.8 <.8 | DIS-
SOLVED (UG/L
AS CO) (01035) .2834 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 129 25 APR 01 04 04 15 APR 01 04 08 15 22 MAY 06 | ORGANIC TOTAL (MG/L AS C) (00680) 9.8 65.1 10.0 1 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)

5.7
4.8

3.6
4.1

2.8

4.5
 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 1.5 2.7 81.8 189 1200 1200 239 200 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 499 279 249 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < < | MONY, DIS- SOLVED (UG/L AS SB) (01095) .3115152020 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4

2

2

3
 | DIS-
SOLVED (UG/L
AS BA) (01005) 64 73 49 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 | DIS-
SOLVED (UG/L
AS CD) (01025) <.04 <.04 | MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 | DIS-
SOLVED (UG/L
AS CO) (01035) .2834 | | OCT 25 NOV 08 DEC 03 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 01 04 04 04 05 APR 01 04 04 06 | ORGANIC TOTAL (MG/L AS C) (00680) 9.8 65.1 10.0 10.0 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.7 4.8 3.6 4.1 2.8 4.5 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155)

1.5
2.7

81.8
189

1200

1200 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 499 279 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <1 <1 | MONY, DIS- SOLVED (UG/L AS SB) (01095) .3115152020 | DIS-
SOLVED
(UG/L
AS AS)
(01000)
4
2
3
3
3
3 | DIS-
SOLVED (UG/L
AS BA) (01005) 64 73 49 49 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.04
<.04

<.04

 | MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 | DIS-
SOLVED (UG/L
AS CO) (01035) .28342424 | | OCT 25 NOV 08 DEC 03 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 13 21 28 JUIN 03 | ORGANIC TOTAL (MG/L AS C) (00680) 9.8 65.1 10.0 5.7 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.7 4.8 3.6 4.1 2.8 4.5 4.5 4.5 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 | MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 1.5 2.7 81.8 189 1200 1200 1200 1100 1200 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 499 279 249 84 120 89 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | MONY, DIS- SOLVED (UG/L AS SB) (01095) .31151520151515 | DIS- SOLVED (UG/L AS AS) (01000) 4 2 3 E1 | DIS- SOLVED (UG/L AS BA) (01005) 6473 49 62 62 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 | DIS-
SOLVED (UG/L
AS CD) (01025) <.04 <.04 <.04 <.04 <.04 <.04 | MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 | DIS- SOLVED (UG/L AS CO) (01035) .2834243737 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 25 APR 01 04 08 15 APR 01 04 08 22 MAY 06 15 22 MAY 06 15 22 MAY 06 13 20 21 JUN 03 10 | ORGANIC TOTAL (MG/L AS C) (00680) 9.8 65.1 10.0 5.7 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.7 4.8 3.6 4.1 2.8 4.5 4.5 4.5 4.5 4.5 4.5 4.5 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 1 1 1 2.4 2.4 2.4 2.4 | MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 1.5 2.7 81.8 189 1200 1200 1200 10.4 12.5 5.2 5.4 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 499 279 249 84 120 89 81 124 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < <1 < < < < | MONY, DIS- SOLVED (UG/L AS SB) (01095) .3115152015151515 | DIS- SOLVED (UG/L AS AS) (01000) 4 2 3 E1 | DIS- SOLVED (UG/L AS BA) (01005) 6473 49 62 62 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 | DIS-
SOLVED (UG/L
AS CD) (01025) <.04 <.04 <.04 <.04 <.04 | MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 | DIS- SOLVED (UG/L AS CO) (01035) .283424373737 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 129 25 APR 01 04 04 15 22 MAY 06 13 22 MAY 06 13 21 21 28 JUN 03 | ORGANIC TOTAL (MG/L AS C) (00680) 9.8 65.1 10.0 5.7 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.7 4.8 3.6 4.1 2.8 4.5 4.5 4.5 4.5 | ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689) 1.9 2.1 2.4 4.1 1.2 1.5 1.2 - | MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 1.5 2.7 81.8 189 1200 1200 13.4 12.5 5.2 | MENT, SUS- PENDED (MG/L) (80154) 47 47 49 79 499 279 249 84 120 89 81 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 < <1 < < < < < | MONY, DIS- SOLVED (UG/L AS SB) (01095) .311515151515151515151515 | DIS- SOLVED (UG/L AS AS) (01000) 4 2 3 1 1 E1 | DIS- SOLVED (UG/L AS BA) (01005) 6473 49 62 62 | LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.06 | DIS-
SOLVED (UG/L
AS CD) (01025) <.04 <.04 <.04 <.04 <.04 <.04 <.04 | MIUM, DIS- SOLVED (UG/L AS CR) (01030) <.8 <.8 | DIS- SOLVED (UG/L AS CO) (01035) .2834243737 | TRINITY RIVER BASIN 281 08064100 Chambers Creek near Rice, TX--Continued | Part | Date | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS
ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 U
GF, REC
(UG/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(UG/L)
(49260) | |--|---|---|---|--|---|--|---|---|--|---|---|--|---|--| | Dec | | 2.1 | E6 | <.08 | 7.5 | <.01 | 4.5 | 1.89 | <2 | <1 | <1 | 1.60 | | | | 10 | 08 | | | | | | | | | | | | <.002 | <.004 | | 12 | 03 | | | | | | | | | | | | | | | PSB | JAN | | | | | | | | | | | | | | | MART | FEB | | | | | | | | | | | | | | | 12 | MAR | | | | | | | | | | | | | | | Mart | 12 | | | | | | | | | |
| | <.006 | <.006 | | 04. | APR | | | | | | | | | | | | | | | 15 | 04 | 1.7 | <10 | <.08 | .6 | <.01 | 2.4 | 2.44 | <2 | <1 | <1 | 1.11 | | | | MAY | 15 | | | | | | | | | | | | <.006 | .006 | | 131. | MAY | | | | | | | | | | | | | | | The color of | 13 | | | | | | | | | | | | <.006 | <.006 | | 10 | 21 | | | | | | | | | | | | | | | 18. | 03 | | | | | | | | | | | | | | | December | 18 | | | | | | | | | | | | <.006 | <.006 | | OPE CALCADA | JUL | | | | | | | | | | | | | | | Part | 09 | | | | | | | | | | | 1.30 | | | | Color | | | | | | | | | | | | | | | | OBC COUNTY COUN | Date | CHLOR,
WATER,
DISS,
REC,
(UG/L) | BHC
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L) | ATE,
WATER,
DISS,
REC
(UG/L) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PYRIFOS
DIS-
SOLVED
(UG/L) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L) | | OB Color | OCT | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | BHC
DIS-
SOLVED
(UG/L) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | FURAN
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | | SAN | OCT
25
NOV
08 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342) | BHC
DIS-
SOLVED
(UG/L)
(34253) | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686) | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673) | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82680) | FURAN
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82674) | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933) | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687) | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82682) | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | | Tebs | OCT 25
NOV 08
DEC 03 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.002 | BHC DIS-
SOLVED (UG/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028) | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041 | FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 | PYRIFOS DIS-SOLVED (UG/L) (38933) <.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)

<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041) | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)

<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040) | | 04 | OCT 25 NOV 08 DEC 03 13 JAN | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.002
<.002 | BHC DIS-
DIS-
SOLVED (UG/L)
(34253)

<.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632) | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050
 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)

<.002
<.002 | BARYL
WATER
FLITED
0.7 U
GF, REC
(UG/L)
(82680)

<.041
- | FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) | PYRIFOS DIS-
SOLVED (UG/L) (38933) <.005 <.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)

<.006
 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)

<.018 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82682)

<.003
 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064 | | 19 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 | CHLOR,
WATER,
DISS,
REC,
(UG/L)
(46342)

<.002
<.002 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)

2.62
.518

.498 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050
<.050

<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010
<.010

<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)

<.002
<.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041
<.041

<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)

<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)

<.006
<.006

<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)

<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)

<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064

E.051 | | APR 01 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 <.004 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)

2.62
.518

.498
.916 | AZIN-
PHOS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82686)

<.050

<.050
<.050
<.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010
<.010
<.010
<.010
<.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 | BARYL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82680)

<.041
<.041
<.041
<.041 | FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)

<.005
<.005

<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)

<.006
<.006

<.006
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)

<.018
<.018
<.018
<.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064

E.051
E.059
E.037 | | 04 08 1111 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 .010 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(UG/L)
(39632)

2.62
.518

.498
.916
.414
.400
.382 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR-
ALIN
WAT FLD
0.7 U
GF, REC
(UG/L)
(82673)

<.010
<.010
<.010
<.010
<.010
<.010
<.010
<.010 | ATE,
WATER,
DISS,
REC
(UG/L)
(04028)

<.002
<.002

<.002
<.002
<.002
<.002
<.002
<.002
<.002 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)

<.005

<.005
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FIT
0.7 U
GF, REC
(UG/L)
(82687)

<.006

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)

<.018
<.018
<.018
<.018
<.018
<.018
<.018 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82682)

<.003

<.003
<.003
<.003
<.003
<.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064

E.051
E.059
E.037
E.021
E.015 | | 15 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 <.010 .010 .407 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 | AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)

<.005
<.005

<.005
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)

<.006

<.006

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 |
ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)

<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064

E.051
E.059
E.037
E.021
E.015
E.062 | | 06 | OCT 25 NOV 08 DEC 13 JAN 07 FEB 12 MAR 04 12 12 APR 01 04 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.004 <.004 <.004 <.010 .010 .010 .407 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLIRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 020 020 174 174 | PYRIFOS
DIS-
SOLVED
(UG/L)
(38933)

<.005
<.005

<.005
<.005
<.005
<.005
<.005
<.005 | METHRIN
CIS
WAT FLT
0.7 U
GF, REC
(UG/L)
(82687)

<.006

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ZINE,
WATER,
DISS,
REC
(UG/L)
(04041)

<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018
<.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 0 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064

E.051
E.059
E.037
E.021
E.021
E.062
E.186 | | 20 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 25 APR 01 04 01 01 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 010 .010 .407 1.61 1111 .069 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 4.71 1.97 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 E.070 E.174 E.050 E.032 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 | ATRA-
ZINE,
WATER,
DISS,
REC
(UG/L)
(04040)

E.166
E.064

E.051
E.059
E.037
E.021
E.015
E.062
E.186

E.104
E.060 | | 28 0.025 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 <.010 .010 .407 1.61111 .069 .166 .599 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 4.71 1.97 1.45 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITTED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.166 E.064 E.051 E.059 E.037 E.021 E.015 E.062 E.186 E.104 E.060 E.041 E.227 | | 03 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 APR 01 04 08 15 APR 01 04 08 15 22 MAY 06 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 <.010 .010 .407 1.61111 .069 .166 .599 .039 .058 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 4.71 1.97 1.45 4.53 1.56 .546 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR-ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
<.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLITED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.0 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FILTRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 0 | ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.166 E.064 E.051 E.059 E.037 E.021 E.015 E.062 E.186 E.104 E.060 E.041 E.27 E.157 E.097 | | 26 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 13 20 21 MAY 20 21 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 <.010 .010 .407 1.61111 .069 .166 .599 .039 .058 | BHC DIS- DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 4.71 1.97 1.45 4.53 1.56 .546 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITTED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 E.070 E.174 E.050 E.032 <.020 E.228 E.007 E.003 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.166 E.064 E.051 E.059 E.037 E.021 E.015 E.062 E.186 E.104 E.060 E.041 E.227 E.157 E.097 | | 09 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 25 APR 01 04 08 22 MAY 06 13 220 MAY 06 13 21 22 MAY 06 13 21 22 MAY 06 13 21 | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 <.004 <.010 .010 .407 1.61111 .069 .166 .599 .039 .058025 .238 .032 | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 4.71 1.97 1.45 4.53 1.56 .546963 1.22 .793 | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
<.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITTED 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 E.070 E.174 E.050 E.032 <.020 E.070 E.228 E.007 E.003 <.020 <.020 <.020 C.020 C.020 C.020 C.020 C.020 C.020 C.020 C.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.166 E.064 E.051 E.059 E.037 E.021 E.015 E.062 E.186 E.104 E.060 E.186 E.104 E.227 E.157 E.097 E.122 E.312 E.312 | | 22 <.004 <.005 .800 <.050 <.010 <.002 <.041 <.020 <.005 <.006 <.018 <.003 E.143 | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 25 APR 01 04 08 15 22 MAY 06 13 22 MY 06 13 21 22 MY 06 13 21 22 MY 06 13 21 22 JUN 03 10 18 26 JUL | CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.004 <.004 <.004 <.004 <.010 .010 .407 1.61111 .069 .166 .599 .039 .058025 .238 .032 .007r | BHC DIS- SOLVED (UG/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (UG/L) (39632) 2.62 .518498 .916 .414 .400 .382 3.76 7.49 4.71 1.97 1.45 4.53 1.56 .546963 1.22 .793 .443 r | AZIN-PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (UG/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 < < < < < < < < < | BARYL WATER FITTRD 0.7 U GF, REC (UG/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.020 <.020 <.020 <.020 <.020 <.020 <.020 E.070 E.174 E.050 E.032 <.020 E.070 E.228 E.007 E.003 <.020 <.020 <.020 <.020 | PYRIFOS DIS- SOLVED (UG/L) (38933) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | METHRIN CIS WAT FIT 0.7 U GF, REC (UG/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ZINE, WATER, DISS, REC (UG/L) (04041) <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 <.018 | WATER FLITRD 0.7 U GF, REC (UG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | ATRA- ZINE, WATER, DISS, REC (UG/L) (04040) E.166 E.064 E.051 E.059 E.037 E.021 E.015 E.062 E.186 E.104 E.060 E.041 E.227 E.157 E.097 E.122 E.312 E.312 E.345 E.142r | ### 08064100 Chambers Creek near Rice, TX--Continued | | | | WAIEK- | QUALITY L | MIN, WALL | ic illine oc | TODDIC 200 | 1 10 0011 | DIADDIC 200 | _ | | | | |--|--|---|--
--|---|--|--
---|---|---|---|--|---| | Date | DI-
AZINON,
DIS-
SOLVED
(UG/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(UG/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82677) | EPTC
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82672) | FONOFOS
WATER
DISS
REC
(UG/L)
(04095) | LINDANE
DIS-
SOLVED
(UG/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(UG/L)
(39532) | METO-
LACHLOR
WATER
DISSOLV
(UG/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(UG/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82671) | | OCT | | | | | | | | | | | | | | | 25
NOV | | | | | | | | | | | 01.7 | | | | 08
DEC | <.007 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .017 | <.006 | <.002 | | 03
13 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035
 | <.027
 | E.007 | <.006 | <.002 | | JAN
07 | E.004 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .023 | <.006 | <.002 | | FEB 12 | <.007 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .041 | <.006 | <.002 | | MAR
04 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | E.011n | <.006 | <.002 | | 12
19 | E.004n
<.005 | <.005 | <.02 | <.002 | <.009 | <.005
<.005 | <.003 | <.004 | <.035
<.035 | <.027
<.027 | E.008n
.028 | <.006 | <.002 | | 25
APR | .012 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .302 | <.006 | <.002 | | 01 | .009 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .540 | <.006 | <.002 | | 08
15
22
MAY | .007
.009
.031 | <.005
<.005
<.005 | <.02
<.02
<.02 | <.002
<.002
<.002 | <.009
<.009
<.009 | <.005
<.005
<.005 | <.003
<.003
<.003 | <.004
<.004
<.004 | <.035
<.035
<.035 | <.027
<.027
<.027 | .442
.259
.050 | <.006
<.006
<.006 | <.002
<.002
<.002 | | 06
13 | .026 | <.024
<.005 | <.10
<.02 | <.010
<.002 | <.045
<.009 | <.025
<.005 | <.013
<.003 | <.020
<.004 | <.175
<.035 | <.135
<.027 | .148 | <.030
<.006 | <.008
<.002 | | 20 | E.003n | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .026 | <.006 | <.002 | | 21
28
JUN | E.004n | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .024 | <.006 | <.002 | | 03
10 | .008 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | <.005
<.005 | <.003
<.003 | <.004
<.004 | <.035
<.035 | <.027
<.027 | .024 | <.006
<.006 | <.002
<.002 | | 18 | <.005
r | <.005 | <.02 | <.002
r | <.009
r | <.005 | <.003 | <.004
r | <.035 | <.027 | E.011n
r | <.006 | <.002 | | JUL
08 | .006 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .013 | <.006 | <.002 | | 09 | <.005 | <.005 | <.02 | <.020 | <.009 | <.005 | <.003 | <.004 | <.035 | <.027 | .129 | <.006 | <.002 | Date | NAPROP-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | P,P'
DDE
DISSOLV
(UG/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(UG/L)
(39542) | METHYL
PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | PEB-
ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664) | PRO-
METON,
WATER,
DISS,
REC
(UG/L)
(04037) | PROPA-
CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PRO-
PARGITE
WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82685) | PRON-
AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82676) | SI-
MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | | OCT | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) | DDE
DISSOLV
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | CHLOR,
WATER,
DISS,
REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | MAZINE,
WATER,
DISS,
REC
(UG/L) | | OCT
25
NOV | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684) | DDE
DISSOLV
(UG/L)
(34653) | THION,
DIS-
SOLVED
(UG/L)
(39542) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664) | METON,
WATER,
DISS,
REC
(UG/L)
(04037) | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82679) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685) | AMIDE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82676) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035) | | OCT
25 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) | DDE
DISSOLV
(UG/L) | THION,
DIS-
SOLVED
(UG/L) | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L) | ULATE
WATER
FILTRD
0.7 U
GF, REC
(UG/L)
(82669) | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | METON,
WATER,
DISS,
REC
(UG/L) | CHLOR,
WATER,
DISS,
REC
(UG/L) | PANIL
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L) | MAZINE,
WATER,
DISS,
REC
(UG/L) | | OCT 25 NOV 08 DEC 03 13 JAN | AMIDE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82684)

<.007
<.007 | DDE
DISSOLV
(UG/L)
(34653)

<.003
<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.007
<.007 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

| ULATE WATER WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)

<.010 | WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011
<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)

<.01
<.01 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)

<.010
<.010 | PANIL WATER FLITRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 | PARGITE
WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82685) | AMIDE WATER FIITED 0.7 U GF, REC (UG/L) (82676) | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011
<.011 | | OCT 25 NOV 08 DEC 03 13 JAN 07 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) < .007 < .007 | DDE
DISSOLV
(UG/L)
(34653)

<.003
<.003 | THION,
DIS-
SOLVED
(UG/L)
(39542)

<.007
<.007

<.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006

<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.010
<.010

<.022 | WATER
FLITRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011
<.011

<.011 | METON,
WATER,
DISS,
REC
(UG/L)
(04037)

<.01

E.01 | CHLOR,
WATER,
DISS,
REC
(UG/L)
(04024)

<.010
<.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 | PARGITE
WATER
FLTRD
0.7 U
GF, REC
(UG/L)
(82685)

<.02
<.02

<.02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011
<.011
 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 | DDE
DISSOLV
(UG/L)
(34653)

<.003
<.003

<.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006

<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 | METH-
ALIN
WAT FIT
0.7 U
GF, REC
(UG/L)
(82683)

<.010
<.010

<.022
<.022 | WATER
FLIRD
0.7 U
GF, REC
(UG/L)
(82664)

<.011

<.011

<.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011

.051 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006

<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.010
<.010

<.022
<.022
<.022
<.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 004 004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011

.051
.054
.006
<.005 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 19 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE
DISSOLV
(UG/L)
(34653)

<.003

<.003
<.003
<.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.010
<.010

<.022
<.022
<.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011

.051
.054 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 E.013n | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 < | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011

.051
.054
.005
<.005
<.005 | | OCT 25 NOV 08 DEC 03 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 04 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 Mm | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE,
WATER,
DISS,
REC
(UG/L)
(04035)

<.011

.051
.054
.006
<.005
<.005
.057 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 25 APR 01 04 04 15 22 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE
DISSOLV (UG/L)
(34653)

<.003
<.003

<.003
<.003
<.003
<.003
<.003
<.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L)
(82683)

<.010
<.010

<.022
<.022
<.022
<.022
<.022
<.022
<.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 < | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY | AMIDE WATER FLTRD
0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 E.013n <.022 E.013n <.022 <.022 E.013n <.110 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.055 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 < | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.015 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 APR 01 04 08 15 APR 01 04 08 15 22 MAY 06 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <. | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
006<br 006<br </td <td>ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004</td> <td>METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022</td> <td>WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011</td> <td>METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 Unit conduction of the of</td> <td>CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010</td> <td>PANIL WATER FITTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011</td> <td>PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02</td> <td>AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004</td> <td>MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 <.005 .057 .051058 .089 .264 .065 .065 .028</td> | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 Unit conduction of the | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FITTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 <.005 .057 .051058 .089 .264 .065 .065 .028 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 129 25 APR 01 04 04 15 APR 01 04 08 15 22 MAY 06 13 20 21 22 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007
<.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <. | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 E.013n <.022 E.013n <.110 <.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 Mm <.01 Mn <.01 01 E.01 <.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 .065 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 13 20 21 28 JUIN 03 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006

</td <td>ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004</td> <td>METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022</td> <td>WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011</td> <td>METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 Mn <.01 E.01n <.01 Mn <.01 E.01n <.07 E.01n Mn <.01 <.01 <.07 E.01n Mn <.01 <.01 <.01</td> <td>CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010</td> <td>PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011</td> <td>PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02</td> <td>AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004</td> <td>MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 .065 .065 .065 .065 .028028</td> | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 Mn <.01 E.01n <.01 Mn <.01 E.01n <.07 E.01n Mn <.01 <.01 <.07 E.01n Mn <.01 <.01 <.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011
<.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 .065 .065 .065 .065 .028028 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 13 22 MAY 06 13 21 JUN 03 10 18 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ULATE WATER WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 Mn <.01 Mn <.01 01 <.01 01 <.01 01 <.01 01 <.01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FITTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 .065 .065 .028028 .012 .019 .018 | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 19 25 APR 01 04 08 15 22 MAY 06 13 24 JUN 03 10 18 26 JUL | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-
THION
WAT FLT
0.7 U
GF, REC
(UG/L)
(82667)

<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FIT 0.7 U GF, REC (UG/L) (82683) <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 E.013n <.022 <.022 E.013n <.022 <.022 <.022 <.022 <.022 | WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 Mm <.01 E.01n <.01 Mn <.01 C.01 <.01 C.01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FILTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <- <.004 <- <- <- <- <- <- <- <- <- <- <- <- < | MAZINE, WATER, VATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 .065 .028028 .012 .019 .018 r | | OCT 25 NOV 08 DEC 03 13 JAN 07 FEB 12 MAR 04 12 19 25 APR 01 04 08 15 22 MAY 06 15 22 MAY 06 13 15 21 28 JUIN 03 10 11 | AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (UG/L) (34653) <.003 | THION, DIS- SOLVED (UG/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PARA-THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | ULATE WATER FILITED 0.7 U GF, REC (UG/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | WATER FLITRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (UG/L) (04037) <.01 <.01 E.01 <.01 <.01 <.01 <.01 <.01 <.01 Mn <.01 Mn <.01 01 <.01 01 <.01 01 <.01 01 <.01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 | CHLOR, WATER, DISS, REC (UG/L) (04024) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
<.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | PANIL WATER FITTRD 0.7 U GF, REC (UG/L) (82679) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 | PARGITE WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | AMIDE WATER FITTED 0.7 U GF, REC (UG/L) (82676) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | MAZINE, WATER, DISS, REC (UG/L) (04035) <.011 <.011051 .054 .006 <.005 .057 .051058 .089 .264 .065 .065 .028028 .012 .019 .018 | #### 08064100 Chambers Creek near Rice, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | TEBU- THIURON WATER FLIRD 0.7 U GF, REC (UG/L) (82670) | WATER
FLTRD
0.7 U
GF, REC
(UG/L) | 0.7 U
GF, REC
(UG/L) | WATER
FLTRD | LATE WATER FLTRD 0.7 U GF, REC (UG/L) | FLUR-
ALIN
WAT FLT
0.7 U
GF, REC
(UG/L) | |-----------------------------|--|--|----------------------------|----------------------------------|---------------------------------------|--| | OCT 25 | | | | | | | | NOV
08 | E.01 | <.041 | <.02 | <.005 | <.002 | <.009 | | DEC
03
13 | E.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | JAN
07 | .02 | <.034 | <.02 | <.005 | <.002 | <.009 | | FEB
12
MAR | E.01n | <.034 | <.02 | <.005 | <.002 | <.009 | | 04
12
19
25 | <.02
E.01
<.02
E.01 | <.034
<.034
<.034
<.034 | | <.005
<.005
<.005
<.005 | <.002
<.002 | <.009
<.009 | | APR
01
04 | E.01n | | | <.005 | | | | 08
15
22 | E.01n
.02
E.03 | <.034
<.034 | <.02
<.02 | <.005
<.005
<.005 | <.002
<.002 | <.009
<.009 | | MAY
06
13
20
21 | <.02
E.01n | <.034
<.034 | <.02 | <.005
<.005 | <.002
<.002 | <.009
<.009 | | 28
JUN
03 | .03
E.02 | <.034 | | <.005
<.005 | | | | 10
18
26 | E.02
E.03
E.02 | <.034
<.034
<.034
r | | <.005
<.005
<.005
r | <.002 | <.009 | | JUL
08
09 | | | | <.005 | | | | 22 | .03 | <.034 | <.02 | <.005 | <.002 | <.009 | Remark codes used in this report: <--- Less than E -- Estimated value M -- Presence verified, not quantified Value qualifier codes used in this report: n -- Below the NDV $\,$ Null value qualifier codes used in this report: e -- Required equipment not functional/avail i -- Required sample type not received r -- Sample ruined in preparation 08064100 Chambers Creek near Rice, TX--Continued SPECIFIC CONDUCTANCE (DCP 1788E306), in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPECIFIC | CONDUCTA | MCE (DCF | 1/00E300), | In US/ | CM @ 25C, | WAIER YEA | R OCTOR | SER ZUUI | IO SEPIEMB | ER 2002 | | |---|--|--|---|--|--|--|--|---|--|------------------------------|-------------|--| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | OCTOBER | | NO | VEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 799 | 761 | 785 | 641 | 637 | 639 | 740 | 722 | 728 | | | e292 | | 2 | 794 | 761 | 777 | 652 | 641 | 646 | 752 | 724 | 735 | | | e292 | | 3
4 | 825
873 | 767
825 | 798
837 | 664
672 | 652
664 | 657
668 | 783
784 | 752
777 | 768
781 | 292
314 | 291
291 | 291
297 | | 5 | 875 | 723 | 801 | 686 | 672 | 680 | 781 | 769 | 777 | 306 | 304 | 305 | | | | | | | | | | | | | | | | 6
7 | 723
683 | 683
647 | 697
663 | 700
710 | 686
700 | 694
706 | 786
803 | 768
786 | 774
798 | 308
307 | 305
305 | 307
306 | | 8 | 654 | 646 | 650 | 725 | 707 | 719 | | | e798 | 350 | 305 | 313 | | 9 | 650 | 633 | 644 | 722 | 706 | 712 | | | e753 | 350 | 341 | 343 | | 10 | 634 | 628 | 630 | 732 | 708 | 726 | | | e721 | 343 | 342 | 343 | | 11 | 639 | 616 | 632 | 731 | 705 | 719 | 719 | 713 | 716 | 344 | 342 | 343 | | 12 | 673 | 528 | 653 | 705 | 631 | 678 | 724 | 709 | 718 | 343 | 338 | 341 | | 13
14 | 528
326 | 115
228 | 273
299 | 685
674 | 631
641 | 659
659 | 713 | 655
 | 697
e650 | 340
378 | 338
336 | 339
343 | | 15 | 324 | 316 | 320 | 678 | 649 | 663 | 673 | 614 | 649 | 378 | 368 | 370 | | | | | | | | | | | | | | | | 16
17 | 318
319 | 315
315 | 316
316 | 680
647 | 643
619 | 659
638 | 622
251 | 132
143 | 211
198 | 369
378 | 365
366 | 367
369 | | 18 | 348 | 319 | 332 | 628 | 582 | 612 | 257 | 239 | 248 | | | e393 | | 19 | 392 | 348 | 368 | 588 | 574 | 582 | 246 | 239 | 241 | | | e407 | | 20 | 425 | 392 | 408 | 617 | 582 | 603 | 244 | 237 | 240 | | | e425 | | 21 | 457 | 425 | 442 | 605 | 575 | 587 | 248 | 244 | 246 | | | e453 | | 22 | 488 | 457 | 473 | 612 | 575 | 587 | | | e247 | | | e487 | | 23 | 513 | 488 | 504 | 671 | 612 | 649 | | | e246 | | | e514 | | 24
25 | 543
560 | 513
543 | 529
550 | 688
706 | 671
683 | 679
689 | | | e249
e251 | | | e548
e582 | | | | | | | | | | | | | | | | 26 | 576 | 560 | 567 | | | e719 | | | e259 | 548 | 427 | 467 | | 27
28 | 588
607 | 576
587 | 581
594 | | | e774
e786 | | | e265
e270 | 462
492 | 426
462 | 440
476 | | 29 | 621 | 607 | 615 | | | e779 | | | e276 | 523 | 492 | 509 | | 30 | 634 | 621 | 627 | | 740 | e753 | | | e282 | 536 | 523 | 529 | | 31 | 640 | 634 | 636 | | | | | | e287 | 538 | 320 | 515 | | MONTH | 875 | 115 | 559 | | | 677 | | | 486 | | | 397 | DAY | MAX | MTN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | • | I | MARCH | | | APRIL | | MAX | | | | 1
2 | 483
373 | FEBRUARY
321
330 | 385
353 | 469
600 | MARCH
441
469 | 447
568 | 412
407 | APRIL
384
393 | 399
401 | | MAY
 | e599
e618 | | 1
2
3 | 483
373
400 | FEBRUARY
321
330
373 | 385
353
389 | 469
600
600 | MARCH
441
469
592 | 447
568
597 | 412
407
418 | 384
393
407 | 399
401
412 |
 | MAY

 | e599
e618
e621 | | 1
2
3
4 | 483
373
400
422 | 321
330
373
400 | 385
353
389
412 | 469
600
600
594 | MARCH
441
469
592
592 | 447
568
597
593 | 412
407
418
416 | 384
393
407
410 | 399
401
412
413 | | MAY
 | e599
e618
e621
e400 | | 1
2
3
4
5 | 483
373
400
422
551 | 321
330
373
400
327 | 385
353
389
412
378 | 469
600
600
594
607 | MARCH
441
469
592
592
594 | 447
568
597
593
602 | 412
407
418
416
420 | 384
393
407
410
414 | 399
401
412
413
418 |

 | MAY | e599
e618
e621
e400
e244 | | 1
2
3
4
5 | 483
373
400
422
551
346 | 321
330
373
400
327
315 | 385
353
389
412
378 | 469
600
600
594
607 | MARCH
441
469
592
592
594
607 | 447
568
597
593
602 | 412
407
418
416
420 | 384
393
407
410
414 | 399
401
412
413
418 |

 | MAY | e599
e618
e621
e400
e244 | | 1
2
3
4
5 |
483
373
400
422
551
346 | 321
330
373
400
327
315 | 385
353
389
412
378
324
e273 | 469
600
600
594
607
616
619 | MARCH 441 469 592 592 594 607 614 | 447
568
597
593
602
613
616 | 412
407
418
416
420
423
432 | 384
393
407
410
414
418
419 | 399
401
412
413
418
420
427 | | MAY | e599
e618
e621
e400
e244
e445
e435 | | 1
2
3
4
5
6
7
8
9 | 483
373
400
422
551
346
 | 321
330
373
400
327
315
 | 385
353
389
412
378
324
e273
e235
e265 | 469
600
600
594
607
616
619
624
616 | MARCH 441 469 592 592 594 607 614 615 609 | 447
568
597
593
602
613
616
620
614 | 412
407
418
416
420
423
432
501
567 | 384
393
407
410
414
418
419
425
443 | 399 401 412 413 418 420 427 443 479 |

 | MAY | e599 e618 e621 e400 e244 e445 e435 e424 e433 | | 1
2
3
4
5
6
7
8 | 483
373
400
422
551
346 | 321
330
373
400
327
315
 | 385
353
389
412
378
324
e273
e235 | 469
600
600
594
607
616
619
624 | MARCH 441 469 592 592 594 607 614 615 | 447
568
597
593
602
613
616
620 | 412
407
418
416
420
423
432
501 | 384
393
407
410
414
418
419
425 | 399
401
412
413
418
420
427
443 | ====
====
====
==== | MAY | e599
e618
e621
e400
e244
e445
e435
e424 | | 1
2
3
4
5
6
7
8
9 | 483
373
400
422
551
346
 | 321
330
373
400
327
315
 | 385
353
389
412
378
324
e273
e235
e265 | 469
600
600
594
607
616
619
624
616 | MARCH 441 469 592 592 594 607 614 615 609 | 447
568
597
593
602
613
616
620
614 | 412
407
418
416
420
423
432
501
567 | 384
393
407
410
414
418
419
425
443 | 399 401 412 413 418 420 427 443 479 |

 | MAY | e599 e618 e621 e400 e244 e445 e435 e424 e433 | | 1
2
3
4
5
6
7
8
9
10 | 483
373
400
422
551
346
 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361 | 469
600
600
594
607
616
619
624
616
609 | MARCH 441 469 592 592 594 607 614 615 609 600 597 600 | 447
568
597
593
602
613
616
620
614
607 | 412
407
418
416
420
423
432
501
567
475 | 384
393
407
410
414
418
419
425
443
458
472
429 | 399
401
412
413
418
420
427
443
479
471 | | MAY | e599
e618
e621
e400
e244
e445
e424
e433
e438
e447
e453 | | 1
2
3
4
5
6
7
8
9
10 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392 | 469
600
600
594
607
616
619
624
616
609 | MARCH 441 469 592 592 594 607 614 615 609 600 597 600 616 | 447
568
597
593
602
613
616
620
614
607 | 412
407
418
416
420
423
432
501
567
475
480
509
434 | 384
393
407
410
414
418
419
425
443
458
472
429
426 | 399
401
412
413
418
420
427
443
479
471
476
474
430 | | MAY | e599
e618
e621
e400
e244
e445
e424
e433
e438
e447
e453
e456 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 483
373
400
422
551
346
 | 321
330
373
400
327
315
 | 385
353
389
412
378
324
e273
e265
e265
e285
e310
e361
e392
e379 | 469
600
600
594
607
616
619
624
616
609
604
618
626
631 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436 | 384
393
407
410
414
418
419
425
443
458
472
429
426
426 | 399
401
412
413
418
420
427
443
479
471
476
474
430 | | MAY | e599
e618
e621
e400
e244
e445
e435
e424
e433
e438
e447
e453
e456
e462 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376 | 469
600
600
594
607
616
619
624
616
609
604
618
626
631
630 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440 | 384
393
407
410
414
418
419
425
443
458
472
429
426
426
430 | 399
401
412
413
418
420
427
443
479
471
476
474
430
430
433 | | MAY | e599
e618
e621
e400
e244
e445
e424
e435
e424
e438
e447
e453
e456
e462
e474 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e265
e265
e285
e361
e361
e379
e376 | 1469
600
600
594
607
616
619
624
616
609
604
618
626
631
630 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 | | MAY | e599
e618
e621
e400
e244
e445
e433
e438
e447
e453
e456
e462
e474 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e235
e265
e285
e361
e396
e366
e396 | 469
600
600
594
607
616
619
624
616
609
604
618
626
631
630 | MARCH 441 469 592 592 594 607 614 615 609 600 597 600 616 620 618 619 615 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
440
511 | 384
393
407
410
414
418
419
425
443
458
472
429
426
430
428
365 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 | | MAY | e599
e618
e621
e400
e244
e445
e435
e424
e433
e438
e447
e453
e456
e462
e474 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e265
e265
e285
e361
e361
e379
e376 | 1469
600
600
594
607
616
619
624
616
609
604
618
626
631
630 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 3566 407 | | MAY | e599
e618
e621
e400
e244
e445
e433
e438
e447
e453
e456
e462
e474 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376
e366
e396
e442 | 469
600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635 | MARCH 441 469 592 594 607 614 615 609 600 616 620 618 619 615 625 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
440
511
415 | 384
393
407
410
414
418
419
425
443
458
472
429
426
426
430
428
365
317 | 399
401
412
413
418
420
427
443
479
471
476
474
430
430
433
432
443
356 | | MAY | e599
e618
e621
e400
e244
e445
e435
e424
e433
e447
e453
e456
e462
e474 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 |
385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376
e366
e342
e463
e356 | 1469
600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635
640 | MARCH 441 469 592 594 607 614 615 609 600 616 620 618 619 615 625 607 348 | 447
568
597
593
602
613
616
620
614
607
606
619
624
623
622
620
627
633
473 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
440
511
415
412
410 | 384
393
407
410
414
418
419
425
443
458
472
429
426
430
428
365
317
402 | 399
401
412
413
418
420
427
443
479
471
476
474
430
430
433
432
443
356
407
405 | | MAY | e599 e618 e621 e400 e244 e445 e435 e424 e433 e456 e462 e474 e469 e483 e530 e553 e583 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376
e396
e4463
e356
e4463
e356 | 616
619
624
616
619
624
616
631
630
627
627
635
640
626 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 625 607 348 421 426 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
440
511
415
410
413
434 | 384
393
407
410
414
418
419
425
443
458
472
429
426
430
428
365
317
400
401
407
409 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 3566 407 405 | | MAY | e599
e618
e621
e400
e244
e445
e435
e424
e433
e438
e447
e453
e456
e462
e474
e469
e483
e553
e583
e593
e610 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e235
e265
e285
e361
e392
e379
e376
e366
e442
e463
e356
e384
e399
e411 | 469
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635
640
626 | MARCH 441 469 592 592 594 607 614 615 609 600 597 600 616 620 618 619 615 625 607 348 421 426 430 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431 | 412
407
418
416
420
423
432
501
567
475
480
509
434
440
440
511
415
412
410
413
434
435 | 384
393
407
410
414
418
419
425
443
458
472
429
426
426
430
428
365
317
402
401
407
409
428 | 399 401 412 413 418 420 427 443 479 471 476 474 430 430 433 432 443 356 407 405 409 418 430 | | MAY | e599 e618 e621 e400 e244 e445 e435 e424 e433 e438 e447 e453 e456 e462 e474 e469 e483 e530 e553 e583 e610 e635 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 483
373
400
422
551
346

 | 321
330
373
400
327
315

 | 385
353
389
412
378
324
e273
e265
e285
e361
e392
e379
e376
e396
e442
e443
e342
e443
e356
e442
e443
e356
e442
e443
e356
e442
e443
e356
e366
e396
e442
e442
e443
e356
e366
e396
e346
e346
e346
e346
e346
e346
e346
e34 | 600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
627
627
627
627
635
640
626 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 627 348 421 426 430 430 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
431 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
410
411
415
412
410
413
434
435
433 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 402 401 407 409 428 428 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 356 407 405 | | MAY | e599
e618
e621
e400
e244
e445
e433
e438
e447
e456
e462
e474
e469
e483
e530
e553
e583
e593
e610
e635
e660 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e265
e265
e285
e361
e392
e379
e376
e366
e442
e442
e453
e356
e442
e442
e443
e442
e443
e443
e443
e443 | 469
600
594
607
616
619
624
616
609
604
618
626
631
630
627
635
640
626
597
500
433
432
435 | MARCH 441 469 592 592 594 607 614 615 609 600 597 600 618 619 615 625 607 348 421 426 430 430 431 | 447
568
597
593
602
613
616
620
614
607
606
619
624
623
622
620
627
633
473
488
438
431
431 | 412
407
418
416
420
423
432
501
567
475
480
509
434
440
440
511
415
412
410
413
434
435
433
431 | 384
393
407
410
414
418
419
425
443
458
472
429
426
426
430
428
365
317
400
401
407
409
428
428
424 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 356 407 405 409 418 430 431 428 | | MAY | e599 e618 e621 e400 e244 e445 e435 e424 e433 e438 e447 e453 e456 e462 e474 e469 e680 e680 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e265
e285
e265
e285
e310
e361
e392
e379
e376
e366
e3442
e443
e342
e443
e342
e443
e343
e34 | 600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
627
635
640
626
597
500
433
432
435 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 627 348 421 426 430 431 435 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
431
433 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
410
411
415
412
410
413
434
435
433
431 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 402 401 407 409 428 428 424 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 356 407 405 409 418 430 431 428 | | MAY | e599
e618
e621
e400
e244
e445
e435
e438
e447
e456
e462
e474
e469
e483
e530
e553
e553
e660
e680
e694 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 483
373
400
422
551
346

 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376
e346
e346
e442
e4463
e356
e442
e443
e440
e440 | 600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635
640
626
597
500
433
432
435 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 625 607 348 421 426 430 430 431 435 428 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
433
433
436
432 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
411
415
410
413
434
435
431
431
431
431
431
431
432
433
433
431
431
432
433
433
434
436
436
437
437
437
437
437
437
437
437
437
437 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 407 409 428 428 424 424 508 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 3566 407 405 | | MAY | e599
e618
e621
e400
e244
e445
e435
e425
e423
e447
e453
e456
e462
e474
e469
e483
e530
e553
e583
e610
e636
e680
e680 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e265
e285
e265
e285
e310
e361
e392
e379
e376
e396
e442
e443
e342
e443
e342
e443
e440
e440
e440
e440
e440
e440 | 600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
627
635
640
626
597
500
433
432
435 | MARCH 441 469 592 594 607
614 615 609 600 597 600 616 620 618 619 615 627 348 421 426 430 431 435 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
431
433 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
410
411
415
412
410
413
434
435
433
431 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 402 401 407 409 428 428 424 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 356 407 405 409 418 430 431 428 | | MAY | e599
e618
e621
e400
e244
e445
e435
e438
e447
e456
e462
e474
e469
e483
e530
e553
e553
e660
e680
e694 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376
e346
e342
e463
e356
e442
e463
e356
e442
e463
e356
e440
e440
e440
e440
e440 | 600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635
640
626
597
500
433
432
435
438
447
460
462
464 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 625 607 348 421 426 430 431 435 428 447 459 295 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
431
433
436
432
457
461
427 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
411
415
412
410
413
434
435
433
431
508
577
581
508 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 402 401 407 409 428 424 508 560 560 560 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 3566 407 405 409 418 430 431 428 438 567 575 565 e584 | | MAY | e599 e618 e621 e400 e244 e445 e435 e435 e424 e447 e453 e456 e462 e474 e469 e483 e530 e553 e660 e680 e694 e703 e485 e313 e238 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e265
e285
e265
e285
e310
e361
e392
e379
e376
e396
e442
e443
e342
e443
e342
e443
e440
e440
e440
e440
e440
e440 | 1469
600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635
640
626
597
500
433
432
435
438
447
460
462 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 627 348 421 426 430 431 435 428 447 459 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
431
431
433
436
432
457
461 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
410
411
415
412
410
413
434
435
433
431
508
577
577 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 402 401 407 409 428 428 424 508 560 560 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 356 407 405 409 418 430 431 428 438 567 577 565 | | MAY | e599
e618
e621
e400
e244
e445
e435
e425
e425
e447
e453
e456
e462
e474
e469
e483
e530
e553
e583
e636
e636
e636
e680
e694
e703
e488
e694
e703
e488
e694
e703
e694
e703
e694
e703
e694
e703
e694
e703
e694
e703
e703
e703
e703
e703
e703
e703
e703 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 483 373 400 422 551 346 | 321 330 373 400 327 315 | 385
353
389
412
378
324
e273
e235
e265
e285
e310
e361
e392
e379
e376
e346
e342
e463
e356
e442
e463
e356
e442
e463
e356
e440
e440
e440
e440
e440 | 600
600
594
607
616
619
624
616
609
604
618
626
631
630
627
627
635
640
626
597
500
433
432
435
438
447
460
462
464 | MARCH 441 469 592 594 607 614 615 609 600 597 600 616 620 618 619 615 625 607 348 421 426 430 431 435 428 447 459 295 | 447
568
597
593
602
613
616
620
614
607
600
606
619
624
623
622
620
627
633
473
488
438
431
431
433
436
432
457
461
427 | 412
407
418
416
420
423
432
501
567
475
480
509
434
436
440
411
415
412
410
413
434
435
433
431
508
577
581
508 | APRIL 384 393 407 410 414 418 419 425 443 458 472 429 426 430 428 365 317 402 401 407 409 428 424 508 560 560 560 | 399 401 412 413 418 420 427 443 479 471 476 474 430 433 432 443 3566 407 405 409 418 430 431 428 438 567 575 565 e584 | | MAY | e599 e618 e621 e400 e244 e445 e435 e426 e447 e453 e458 e462 e474 e469 e483 e530 e553 e660 e680 e694 e703 e485 e313 e238 | ### 08064100 Chambers Creek near Rice, TX--Continued SPECIFIC CONDUCTANCE (DCP 1788E306), in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|-----|------|------|------|------|------|------|--------|-------|-----|---------|-------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1 | | | e374 | | | e756 | 719 | 686 | 704 | | | e1150 | | 2 | | | e478 | | | e562 | 745 | 717 | 726 | | | e1160 | | 3 | | | e535 | | | e338 | 757 | 718 | 733 | | | e1170 | | 4 | | | e540 | | | e320 | 782 | 757 | 768 | | | e1170 | | 5 | | | e535 | | | e267 | 803 | 782 | 789 | | | e1170 | | 6 | | | e575 | | | e246 | 831 | 803 | 819 | | | e1160 | | 7 | | | e598 | | | e290 | 854 | 831 | 846 | | | e1180 | | 8 | | | e606 | | | e382 | 873 | 851 | 865 | | | e1180 | | 9 | | | e623 | | | e485 | 897 | 871 | 887 | | | e1180 | | 10 | | | e650 | | | e512 | 919 | 897 | 907 | | | e1190 | | 11 | | | e663 | 525 | 515 | 521 | 947 | 919 | 936 | | | e1180 | | 12 | | | e673 | 536 | 518 | 527 | 991 | 947 | 969 | | | e1180 | | 13 | | | e683 | 528 | 516 | 522 | 962 | 895 | 916 | | | e1180 | | 14 | | | e690 | 546 | 528 | 539 | 917 | 897 | 908 | | | e1180 | | 15 | | | e693 | 557 | 540 | 546 | 948 | 917 | 934 | | | e1180 | | 16 | | | e700 | 558 | 474 | 523 | 994 | 948 | 972 | | | e1180 | | 17 | | | e720 | 643 | 497 | 541 | 1020 | 994 | 1010 | | | e1190 | | 18 | | | e735 | 602 | 376 | 456 | 1050 | 1010 | 1020 | | | e1200 | | 19 | | | e702 | 497 | 468 | 480 | | | e1020 | | | e904 | | 20 | | | e711 | 1040 | 367 | 484 | | | e1030 | | | e644 | | 21 | | | e713 | 393 | 367 | 381 | | | e1070 | | | e682 | | 22 | | | e652 | 393 | 376 | 386 | | | e1090 | | | e744 | | 23 | | | e663 | 376 | 361 | 367 | | | e1110 | | | e807 | | 24 | | | e690 | 389 | 362 | 371 | | | e1120 | | | e844 | | 25 | | | e710 | 437 | 389 | 408 | | | e1130 | | | e882 | | 26 | | | e719 | 493 | 437 | 475 | | | e1130 | | | e944 | | 27 | | | e722 | 555 | 493 | 531 | | | e1140 | | | e978 | | 28 | | | e736 | 597 | 555 | 580 | | | e1130 | | | e1010 | | 29 | | | e739 | 642 | 597 | 620 | | | e1140 | | | e1050 | | 30 | | | e739 | 667 | 642 | 654 | | | e1140 | | | e1070 | | 31 | | | | 686 | 665 | 675 | | | e1150 | | | | | MONTH | | | 652 | | | 476 | | | 971 | | | 1060 | #### e Estimated ### 08064100 Chambers Creek near Rice, TX--Continued WATER TEMPERATURE (DCP 1788E306), in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | WAIER | TEMPERATUR | KE (DCP | 1/88E3U0), | III (DEC | GREES C), | WAIER IEAR | OCTOBER | K 2001 | 10 SEPTEMBE | R 2002 | | |---|---|---|---|---|---|---
--|---|--|------------------------------|--------------|--| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 19.9 | 18.4 | 19.2 | 17.4 | 15.7 | 16.6 | 8.9 | 8.0 | 8.5 | | | | | 2 | 19.8 | 18.2 | 19.1 | 18.4 | 17.3 | 17.8 | | 8.5 | 9.2 | 7.5 | | | | 3
4 | 20.3 | 18.6
19.5 | 19.5
20.3 | 19.0
19.1 | 18.0
18.2 | 18.5
18.7 | 11.4
13.4 | 10.0
11.4 | 10.6
12.5 | 7.4
7.0 | 6.7
6.5 | 7.1
6.7 | | 5 | 21.4 | 20.3 | 20.9 | 19.0 | 18.2 | 18.6 | 15.5 | 13.4 | 14.5 | 7.4 | | 7.2 | | _ | 20.2 | 10.0 | 10 5 | 10.2 | 17.0 | 10.0 | 10.1 | 15 4 | 16.2 | | 6.0 | 7.0 | | 6
7 | 20.3
18.8 | 18.8
17.1 | 19.5
18.0 | 18.3
17.5 | 17.2
16.6 | 17.7
17.1 | 17.1
17.9 | 15.4
17.0 | 16.3
17.4 | 7.7
7.7 | 6.8
6.7 | 7.2
7.1 | | 8 | 18.4 | 16.8 | 17.6 | 17.8 | 16.6 | 17.2 | | | | 7.6 | 6.8 | 7.2 | | 9 | 19.6 | 18.0 | 18.6 | 17.7 | 16.4 | 17.1 | | | | 8.8 | 7.0 | 7.7 | | 10 | 21.4 | 19.4 | 20.2 | 16.5 | 16.0 | 16.2 | | | | 9.5 | 8.2 | 8.9 | | 11 | 21.2 | | 20.6 | 16.9 | 16.0 | 16.4 | 10.7 | 10.4 | 10.5 | 9.6 | 8.8 | 9.3 | | 12 | 20.8 | 19.0 | 19.8 | 17.1 | 16.7 | 16.9 | 11.3 | 10.5 | 10.8 | 9.4 | 8.3 | 8.8 | | 13
14 | 19.6 | 16.9 | | 17.5
18.1 | 16.6
17.0 | 17.0
17.6 | 10.9
10.1 | 10.1
9.4 | 10.3 | 9.1
9.1 | 8.0
8.1 | 8.6
8.5 | | 15 | 18.4 | 17.4 | 17.8 | 18.2 | 17.9 | 18.1 | 10.4 | 9.6 | 9.8 | 8.7 | 8.1 | 8.4 | | 16 | 18.0 | 16.3 | 17.5 | 18.3 | 17.8 | 18.1 | 13.4 | 10.3 | 12.6 | 9.6 | 8.5 | 9.0 | | 17 | 16.3 | 15.2 | 15.9 | 18.3 | 17.9 | 18.1 | 13.5 | 12.9 | 13.3 | 9.9 | 9.2 | 9.5 | | 18 | 16.2 | 15.0 | 15.6 | 18.5 | 17.5 | 18.0 | 12.9 | 12.1 | 12.4 | 9.7 | 9.1 | 9.4 | | 19
20 | 17.4
18.9 | 16.1
17.2 | 16.7
18.1 | 18.3
17.1 | 17.1
14.7 | 17.9
15.8 | 12.4
11.8 | 11.4
10.4 | 11.7
10.8 | | | | | 20 | 10.9 | 17.2 | 10.1 | 17.1 | 14.7 | 13.0 | 11.0 | 10.4 | 10.0 | | | | | 21 | 19.5 | 18.1 | 18.9 | 14.7 | 13.2 | 13.6 | | | 10.3 | | | | | 22
23 | 20.7
21.7 | 19.3
20.6 | 19.9
21.1 | 13.7
15.1 | 13.2
13.4 | 13.4
14.4 | | | | | | | | 24 | 22.6 | 21.6 | 22.0 | 15.2 | 14.4 | 14.8 | | | | | | | | 25 | 21.6 | 19.7 | 20.4 | 14.7 | 13.7 | 14.3 | | | | 10.9 | | | | 26 | 19.7 | 18.3 | 18.9 | | | | | | | 8.9 | 7.8 | 8.4 | | 27 | 18.3 | 17.2 | 17.7 | | | | | | | 8.9 | 7.2 | 8.1 | | 28 | 17.2 | 16.2 | 16.6 | | | | | | | 11.0 | 8.9 | 9.8 | | 29
30 | 16.2
15.6 | 15.5
14.8 | 15.9
15.2 | 8.8 | | | | | | 13.9
16.2 | 11.0
13.9 | 12.5
15.2 | | 31 | 15.7 | 14.7 | 15.3 | | | | | | | 15.9 | 9.6 | 14.7 | | MONTHE | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | | | MARCH | | i | APRIL | | | MAY | | | DAY
1
2 | MAX
10.9
9.6 | | 9.9 | MAX
10.4
10.5 | MARCH
9.6 | 10 | | | 16.8 | MAX
 | | MEAN | | 1
2
3 | 10.9
9.6
9.1 | 9.5
8.2
8.7 | 9.9
8.7
8.9 | 10.4
10.5
8.4 | 9.6
8.4
6.0 | 10
9.7
7.4 | 18.3
18.8
18.8 | APRIL
15.9
16.9
16.5 | 16.8
17.9
17.5 | | MAY

 | | | 1
2
3
4 | 10.9
9.6
9.1
9.9 | 9.5
8.2
8.7
9.0 | 9.9
8.7
8.9
9.6 | 10.4
10.5
8.4
6.4 | 9.6
8.4
6.0
5.0 | 10
9.7
7.4
5.8 | 18.3
18.8
18.8
16.5 | 15.9
16.9
16.5
15.5 | 16.8
17.9
17.5
15.9 | | MAY |

 | | 1
2
3 | 10.9
9.6
9.1 | 9.5
8.2
8.7 | 9.9
8.7
8.9 | 10.4
10.5
8.4 | 9.6
8.4
6.0 | 10
9.7
7.4 | 18.3
18.8
18.8 | APRIL
15.9
16.9
16.5 | 16.8
17.9
17.5 | | MAY

 | | | 1
2
3
4
5 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 | 10
9.7
7.4
5.8
6.9 | 18.3
18.8
18.8
16.5
16.5 | 15.9
16.9
16.5
15.5
15.4 | 16.8
17.9
17.5
15.9
15.9 |

 | MAY |

 | | 1
2
3
4
5 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3 | 9.6
8.4
6.0
5.0
5.6
7.8
10.4 | 10
9.7
7.4
5.8
6.9
9.0
11.8 | 18.3
18.8
18.8
16.5
16.5 | 15.9
16.9
16.5
15.5
15.4 | 16.8
17.9
17.5
15.9
15.9 |

 | MAY | | | 1
2
3
4
5 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 | 10
9.7
7.4
5.8
6.9 | 18.3
18.8
18.8
16.5
16.5 | 15.9
16.9
16.5
15.5
15.4 | 16.8
17.9
17.5
15.9
15.9 |

 | MAY |

 | | 1
2
3
4
5
6
7
8 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4 | 18.3
18.8
18.8
16.5
16.5
16.2 | 15.9
16.9
16.5
15.5
15.4
15.2
15.1
15.5 | 16.8
17.9
17.5
15.9
15.9 |

 | MAY | | | 1
2
3
4
5
6
7
8
9 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6
6.0 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1 | 9.6
8.4
6.0
5.0
5.6
7.8
10.4
13.3
14.8 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3 | 15.9
16.9
16.5
15.5
15.4
15.2
15.1
15.5
16.4 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4 |

 | MAY | | | 1
2
3
4
5
6
7
8
9 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8 | 15.9
16.9
16.5
15.5
15.4
15.2
15.1
15.5
16.4 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2 |

 | MAY | | | 1
2
3
4
5
6
7
8
9
10 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0 | 18.3
18.8
18.8
16.5
16.5
16.5
16.2
15.6
18.0
18.8
19.3 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7 |

 | MAY | ====================================== | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 10.9
9.6
9.1
9.9
10.0 | 9.5
8.2
8.7
9.0
7.6
6.0 | 9.9
8.7
8.9
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
15.3
17.8 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6 | | MAY | ====================================== | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.9
9.6
9.1
9.9
10.0
7.6 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8
17.3 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.0
13.1
13.8
16.0
18.3 | 18.3
18.8
18.8
16.5
16.5
16.5
19.3
20.1
21.3
20.2
19.9
20.3 | 15.9
16.9
16.5
15.5
15.4
15.2
15.1
15.5
16.4
17.8
19.2
19.4
18.6
18.7 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6
19.3
19.7 |

 | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 17.3 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3 | APRIL 15.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6
19.3
19.7 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
15.3
17.8
19.4 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 17.3 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.4 17.8 19.2 19.4 18.6 19.2 19.4 18.7 19.0 18.9 19.5 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6
19.3
19.7 |

 | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
15.3
17.8
19.4
18.1
17.2
16.4
17.0 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 17.3 17.2 16.0 15.6 16.0 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3
17.7
16.6
16.0
16.5 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
20.3
22.5
22.4 | APRIL 15.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.3 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
15.3
17.8
19.4
18.1
17.2
16.4 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 17.2 16.0 15.6 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3 | 18.3
18.8
18.8
16.5
16.5
16.5
16.2
15.6
18.0
19.3
20.1
21.3
20.2
19.9
20.3
20.3
22.5
22.5 | APRIL 15.9 16.9 16.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6
19.3
19.7 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 17.3 17.2 16.0 15.6 16.0 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3
17.7
16.6
16.0
16.5 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
20.3
22.5
22.4 | APRIL 15.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.3 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 17.3 17.2 16.0 15.6 16.0 15.4 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3
17.7
16.6
16.0
16.5
16.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.5
22.5
22.4
22.1 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.4 17.8 19.2 19.4 18.6 19.2 19.4 21.4 21.4 21.6 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
21.3
21.9
21.7
21.7
22.3 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 17.3 17.2 16.0 15.6 16.0 15.4 14.4 12.8 13.1 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
16.5
16.0
14.9
13.6
13.5 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
20.3
22.5
22.5
22.4
22.1 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 21.4 21.4 21.6 | 16.8
17.9
17.59
15.9
15.9
15.8
16.2
17.4
18.7
19.6
20.7
19.6
19.3
21.3
21.9
21.7
22.3 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 17.3 17.2 16.0 15.6 16.0 15.4 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3
17.7
16.6
16.0
16.5
16.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.5
22.5
22.4
22.1 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.4 17.8 19.2 19.4 18.6 19.2 19.4 21.4 21.4 21.6 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
21.3
21.9
21.7
21.7
22.3 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 10.9 9.6 9.1 9.9 10.0 7.6 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 17.3 17.2 16.0 15.6 16.0 14.4 12.8 13.1 13.7 14.1 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
16.5
16.0
14.9
13.6
13.5
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
20.3
22.5
22.5
22.4
22.1
22.0
22.9
23.2
23.9
23.4 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 21.4 21.4 21.6 21.6 21.8 22.1 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6
19.3
19.7
21.7
22.8
22.4
22.9
22.8 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4
13.3 14.8 13.4 12.7 12.5 14.8 17.3 17.2 16.0 15.6 16.0 15.4 14.4 12.8 13.7 14.1 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
18.3
17.7
16.6
16.5
16.0
14.9
13.6
13.5
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.5
22.4
22.1
22.0
22.9
23.9
23.4
22.1 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 21.4 21.6 21.6 21.6 21.8 22.1 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.7
21.7
22.3
22.4
22.9
22.8 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 10.9 9.6 9.1 9.9 10.0 7.6 | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 17.3 17.2 16.0 15.6 16.0 14.4 12.8 13.1 13.7 14.1 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.8
16.0
16.5
16.0
14.9
13.6
13.5
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
20.3
22.5
22.5
22.4
22.1
22.0
22.9
23.2
23.9
23.4 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 21.4 21.4 21.6 21.6 21.8 22.1 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.6
19.3
19.7
21.7
22.8
22.4
22.9
22.8 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 10.9
9.6
9.1
9.9
10.0
7.6

- | 9.5
8.2
8.7
9.0
7.6
6.0
 | 9.9
8.7
8.9
9.6
9.5
6.5

- | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 14.8 17.3 17.2 16.0 15.6 16.0 15.4 14.4 12.8 13.7 14.1 13.0 13.3 14.0 15.4 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.0
13.1
13.8
16.0
18.3
17.7
16.6
16.5
16.0
14.9
13.6
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.4
22.1
22.0
22.9
23.2
23.9
23.4
22.1
21.8
22.1
22.1
22.1
22.1
22.6
23.9
23.4 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 18.7 19.0 18.9 19.5 20.0 21.4 21.4 21.6 21.8 22.1 20.8 20.3 21.7 23.9 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.7
21.7
22.3
22.4
22.9
22.8
21.4
20.9
22.8 | | MAY | | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

- | 9.9
8.7
8.9
9.6
9.5
6.5

- | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
15.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 17.3 17.2 16.0 15.4 14.4 12.8 13.1 13.1 14.1 13.0 15.4 16.8 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.1
16.0
18.3
17.7
16.6
16.5
16.0
14.9
13.6
13.5
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.5
22.4
22.1
22.0
22.9
23.2
23.9
23.4
22.1
21.8
24.1
26.6
26.6 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 19.2 19.4 21.4 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.7
21.7
22.3
22.4
22.9
22.8
21.4 | | MAY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
31
31
31
31
31
31
31
31
31 | 10.9
9.6
9.1
9.9
10.0
7.6

9.3
10.2 | 9.5 8.2 8.7 9.0 7.6 6.0 | 9.9
8.7
8.9
9.6
9.5
6.5
 | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 14.8 17.3 17.2 16.0 15.6 16.0 15.4 14.4 12.8 13.7 14.1 13.0 13.3 14.0 15.4 16.8 16.6 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.0
13.1
13.8
16.0
16.5
16.0
14.9
13.6
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.4
22.1
22.0
22.9
23.2
23.9
23.4
22.1
21.8
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22.1
24.1
26.6 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 19.0 18.9 19.5 20.0 21.4 21.4 21.6 21.8 22.1 20.8 20.1 20.8 20.3 21.7 23.9 26.1 | 16.8
17.9
17.5
15.9
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.7
21.7
22.3
22.4
22.9
22.8
21.4
20.9
22.8 | | MAY | | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 10.9
9.6
9.1
9.9
10.0
7.6
 | 9.5
8.2
8.7
9.0
7.6
6.0

- | 9.9
8.7
8.9
9.6
9.5
6.5

- | 10.4
10.5
8.4
6.4
7.9
10.4
13.3
15.2
16.1
14.8
13.5
14.3
15.3
17.8
19.4
18.1
17.2
16.4
17.0
16.9
15.5
15.4
13.8
14.9
15.5 | MARCH 9.6 8.4 6.0 5.6 7.8 10.4 13.3 14.8 13.4 12.7 12.5 12.8 14.8 17.3 17.2 16.0 15.4 14.4 12.8 13.1 13.1 14.1 13.0 15.4 16.8 | 10
9.7
7.4
5.8
6.9
9.0
11.8
14.4
15.5
14.0
13.1
13.1
16.0
18.3
17.7
16.6
16.5
16.0
14.9
13.6
13.5
14.4
15.0 | 18.3
18.8
18.8
16.5
16.5
16.2
15.6
18.0
18.8
19.3
20.1
21.3
20.2
19.9
20.3
22.5
22.5
22.4
22.1
22.0
22.9
23.2
23.9
23.4
22.1
21.8
24.1
26.6
26.6 | APRIL 15.9 16.9 16.5 15.5 15.4 15.2 15.1 15.5 16.4 17.8 19.2 19.4 18.6 19.2 19.4 21.4 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6 | 16.8
17.9
17.5
15.9
15.8
15.3
16.2
17.4
18.7
19.6
20.7
19.8
20.8
21.3
21.7
21.7
22.3
22.4
22.9
22.8
21.4 | | MAY | | ### 08064100 Chambers Creek near Rice, TX--Continued WATER TEMPERATURE (DCP 1788E306), in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 28.3
28.7
28.1 |

27.6
27.4 |

28.1
27.8 | 26.6
26.2
25.6
27.5
28.1 | 25.9
25.3
25.0
25.6
26.2 | 26.2
25.8
25.4
26.2
27.2 | 31.7
31.7
31.2
31.5
31.0 | 28.9
28.5
28.8
28.8
28.3 | 30.0
29.8
29.8
29.9
29.6 | 29.3
29.9
29.3
29.0
28.4 | 25.0
25.2
25.4
25.7
25.2 | 27.2
27.4
27.3
27.1
26.8 | | 6
7
8
9
10 | 27.8
27.9
28.1
28.4
29.3 | 26.4
26.7
26.8
27.3
27.7 | 27.3
27.3
27.4
27.7
28.3 |
28.3
29.4
30.7
30.9
31.1 | 26.6
27.9
28.6
29.0
29.6 | 27.5
28.6
29.6
30.0
30.4 | 31.3
31.3
29.7
29.8
28.7 | 28.0
28.0
28.1
26.9
26.7 | 29.5
29.5
29.0
28.3
27.5 | 28.6
26.9
25.6
27.0
28.5 | 24.9
24.9
24.7
24.3
24.5 | 26.7
25.8
25.1
25.5
26.4 | | 11
12
13
14
15 | 30.1
30.1
30.3
29.9
28.8 | 28.4
28.6
28.6
27.9
27.0 | 29.1
29.3
29.4
29.0
28.0 | 31.0
31.4
30.0
29.9
29.3 | 29.5
29.7
28.8
28.2
28.1 | 30.3
30.3
29.4
29.0
28.6 | 29.1
28.7
29.3
28.6
27.8 | 25.9
26.1
26.5
26.8
26.7 | 27.3
27.3
27.7
27.7
27.2 | 28.2
28.3
27.7
27.4
25.6 | 24.4
24.3
24.6
23.9
23.7 | 26.2
26.2
26.1
25.6
24.8 | | 16
17
18
19
20 | 28.0
27.8
27.9
28.1
28.8 | 26.4
25.6
25.7
26.2
26.9 | 27.0
26.7
26.8
27.1
27.8 | 28.1
27.3
28.7
29.9
29.6 | 26.4
26.3
26.2
28.2
28.4 | 27.0
26.8
27.5
28.9
29.2 | 28.8
29.2
30.2
29.9
29.8 | 25.8
26.3
26.6
26.9
26.6 | 27.1
27.7
28.2
28.4
28.2 | 25.2
27.4
27.3
25.3
26.3 | 23.3
22.8
24.6
24.3
22.4 | 24.0
24.7
25.8
24.9
24.2 | | 21
22
23
24
25 | 29.3
29.1
29.0
28.8
29.1 | 27.2
27.3
27.1
27.1
27.2 | 28.2
28.2
28.1
28.0
28.2 | 29.3
29.6
29.8
31.0
31.8 | 28.9
29.0
29.2
28.6
29.6 | 29.1
29.3
29.4
29.7
30.6 | 30.0
30.5
31.2
30.8
31.0 | 26.6
27.0
26.8
26.9
26.8 | 28.2
28.7
28.8
28.8
28.5 | 25.6
25.5
23.9
22.4
23.9 | 21.0
21.5
19.9
17.0
18.9 | 23.3
23.2
21.9
20.1
21.2 | | 26
27
28
29
30
31 | 28.7
28.1
28.7
28.3
27.6 | 27.4
26.4
27.2
27.4
26.5 | 28.0
27.2
27.9
27.9
26.9 | 31.6
31.1
30.4
30.0
31.1
31.3 | 29.6
29.3
29.2
29.1
28.7
28.8 | 30.6
30.3
29.9
29.6
29.7
29.8 | 30.2
28.3
28.9
27.5
28.0
28.6 | 26.3
25.8
25.1
24.9
24.0
24.6 | 28.0
26.8
26.9
26.4
26.2
26.7 | 24.9
25.2
25.7
26.1
26.1 | 20.2
18.7
19.4
20.9
21.6 | 22.2
22.0
22.7
23.5
23.6 | | MONTH | | | | 31.8 | 25.0 | 28.8 | 31.7 | 24.0 | 28.2 | 29.9 | 17.0 | 24.7 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE #### 08064510 Halbert Lake near Corsicana, TX $\label{location.--Lat 32^04'36", long 96^24'20", Navarro County, Hydrologic Unit 12030109, on fishing pier approximately 1,000 ft upstream of dam on left bank, 4 mi southeast of Corsicana.$ DRAINAGE AREA. -- 12.0 mi². PERIOD OF RECORD. -- Apr. 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are poor. The lake is formed by a rolled earthfill dam 2,780 ft long. The dam was completed and storage began in 1921. An uncontrolled concrete chute spillway 175 ft long is located to the left (west) embankment. The dam was built by the city of Corsicana to impound water for municipal use. There was no known diversion from the lake during the current water year. Conservation pool storage is 6,033 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |--|-----------| | | (feet) | | Top of dam | 375.0 | | Crest of spillway (top of conservation pool) | 368.0 | COOPERATION. -- Capacity table furnished by Texas Water Development Board survey Nov. 1999. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 5,530 acre-ft, Apr. 8, 2002, elevation, 367.12 ft; minimum contents, 2,670 acre-ft, Feb. 17, 18, 2000, elevation, 361,17 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 5,530 acre-ft, Apr. 8, elevation, 367.12 ft; minimum contents, 3,420 acre-ft, Nov. 27, elevation, 362.97 ft. | | R | ESERVOIR | STORAGE F | ROM DCP, | | FEET), WA
LY MEAN V | | OCTOBER 2 | 001 TO SE | PTEMBER 2 | 002 | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|--------------------------------------|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3780 | 3550 | 3490 | 4960 | 4880 | 5070 | 5480 | 5480 | 5320 | 4970 | 5010 | 4550 | | 2 | 3770 | 3550 | 3490 | 4950 | 4880 | 5060 | 5480 | 5460 | 5300 | 4990 | 4990 | 4530 | | 3 | 3760 | 3550 | 3490 | 4950 | 4880 | 5040 | 5490 | 5440 | 5290 | 5030 | 4980 | 4530 | | 4 | 3750 | 3540 | 3490 | 4940 | 4880 | 5040 | 5490 | 5440 | 5270 | 5030 | 4970 | 4530 | | 5 | 3740 | 3530 | 3500 | 4940 | 4920 | 5030 | 5480 | 5420 | 5260 | 5010 | 4960 | 4510 | | 6 | 3710 | 3530 | 3500 | 4940 | 5120 | 5020 | 5480 | 5410 | 5260 | 5000 | 4950 | 4500 | | 7 | 3700 | 3530 | 3500 | 4930 | 5140 | 5010 | 5490 | 5390 | 5240 | 4980 | 4940 | 4470 | | 8 | 3690 | 3530 | 3500 | 4920 | 5160 | 5010 | 5520 | 5370 | 5230 | 4970 | 4920 | 4440 | | 9 | 3680 | 3530 | 3500 | 4920 | 5170 | 5000 | 5530 | 5360 | 5220 | 4960 | 4910 | e4400 | | 10 | 3660 | 3530 | 3500 | 4920 | 5170 | 4990 | 5530 | 5340 | 5220 | 4940 | 4900 | e4400 | | 11 | 3660 | 3530 | 3500 | 4910 | 5160 | 4980 | 5520 | 5330 | 5210 | 4930 | 4890 | e4350 | | 12 | 3660 | 3530 | 3500 | 4900 | 5160 | 4980 | 5520 | 5310 | 5200 | 4910 | 4880 | e4350 | | 13 | 3710 | 3530 | 3500 | 4900 | 5160 | 4970 | 5510 | 5310 | 5190 | 4900 | 4870 | e4300 | | 14 | 3710 | 3530 | 3510 | 4890 | 5160 | 4960 | 5510 | 5300 | 5170 | 4900 | 4850 | e4300 | | 15 | 3710 | 3530 | 3540 | 4880 | 5150 | 4960 | 5510 | 5290 | 5160 | 4890 | 4840 | e4250 | | 16 | 3690 | 3530 | 4160 | 4870 | 5140 | 4940 | 5500 | 5270 | 5160 | 5060 | 4800 | e4250 | | 17 | 3680 | 3530 | 4970 | 4870 | 5140 | 4950 | 5490 | 5280 | 5160 | 5210 | 4780 | e4100 | | 18 | 3670 | 3530 | 5010 | 4870 | 5140 | 5010 | 5480 | 5280 | 5140 | 5220 | 4780 | e4100 | | 19 | 3660 | 3530 | 5020 | 4860 | 5140 | 5080 | 5490 | 5270 | 5130 | 5210 | 4770 | e4000 | | 20 | 3660 | 3530 | 5020 | 4850 | 5140 | 5420 | 5490 | 5260 | 5110 | 5200 | 4740 | e4000 | | 21 | 3650 | 3530 | 5020 | 4850 | 5140 | 5480 | 5490 | 5250 | 5090 | 5190 | 4720 | e3950 | | 22 | 3640 | 3530 | 5020 | 4850 | 5150 | 5490 | 5490 | 5230 | 5080 | 5170 | 4720 | e3950 | | 23 | 3640 | 3530 | 5020 | 4850 | 5150 | 5480 | 5490 | 5210 | 5060 | 5160 | 4700 | e3910 | | 24 | 3630 | 3530 | 5020 | 4850 | 5130 | 5480 | 5490 | 5200 | 5050 | 5140 | 4690 | e4240 | | 25 | 3620 | 3520 | 5010 | 4850 | 5120 | 5480 | 5480 | 5190 | 5040 | 5130 | 4670 | e4350 | | 26
27
28
29
30
31 | 3600
3590
3580
3580
3570
3560 | 3520
3470
3470
3480
3490 | 5000
5000
4990
4980
4970
4960 | 4850
4850
4850
4840
4850
4860 | 5080
5080
5070
 | 5480
5480
5470
5480
5480
5480 | 5480
5480
5480
5480
5480 | 5190
5180
5190
5290
5320
5320 | 5010
5000
4990
4970
4960 | 5110
5090
5070
5060
5040
5030 | 4660
4620
4610
4610
4600
4570 | e4330
e4330
e4310
e4310
e4300 | | MEAN | 3670 | 3520 | 4250 | 4890 | 5090 | 5190 | 5490 | 5310 | 5150 | 5050 | 4800 | 4290 | | MAX | 3780 | 3550 | 5020 | 4960 | 5170 | 5490 | 5530 | 5480 | 5320 | 5220 | 5010 | 4550 | | MIN | 3560 | 3470 | 3490 | 4840 | 4880 | 4940 | 5480 | 5180 | 4960 | 4890 | 4570 | 3910 | | (+) | 363.26 | 363.11 | 366.07 | 365.88 | 366.28 | 367.03 | 367.03 | 366.74 | 366.07 | 366.19 | 365.31 | e364.80 | | (@) | -220 | -70 | +1470 | -100 | +210 | +410 | 0 | -160 | -360 | +70 | -460 | -270 | | CAL YR | 2001 | MAX 5410 | MIN 34 | 70 (@) | +140 | | | | | | | | WTR YR 2002 MAX 5530 MIN 3470 (@) +520 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. (@) Change in contents, in acre-feet. 08064510 Halbert Lake near Corsicana, TX--Continued #### 08064550 Richland-Chambers Reservoir near Kerens, TX LOCATION.--Lat 32°02'25", long 96°12'23", Navarro County, Hydrologic Unit 12030109, on upper floor of pumphouse, on left bank of Chambers Creek arm of Richland-Chambers Reservoir, 7.0 mi south of intersection of State Highway 31 and Farm Road 309 in Kerens, and 14.4 mi upstream from dam on Richland Creek. DRAINAGE AREA. -- 1,957 mi². PERIOD OF RECORD. -- Nov. 1988 to current year. GAGE.--Water-stage recorder. Datum of gage is sea level. Satellite telemeter at station. REMARKS.--Records good, except for estimated daily mean contents, which are fair. The reservoir is formed by a rolled earthfill dam 31,000 ft long. Deliberate impoundment of water began Jul. 14, 1987, and the dam was completed in Dec. 1988. A gated concrete spillway is located near the left end of dam. The spillway is 1,155 ft long and contains twenty-four 40- x 29.4-ft radial gates. The low flow outlet works consist of two 3- x 5-ft outlets at elevation 266.0 ft, one 1.5 x 2.5 ft outlet, and one 1 x 1 ft outlet at elevation 285.0 ft. Each of the low flow outlets is controlled by sluice gates. The dam is owned by Tarrant Regional Water District, and was built for municipal and industrial water supply and for recreation. Flow from 464 mi² above the dam is controlled by Bardwell and Navarro Mills Lakes. Conservation pool storage is 1,136,600 acre-ft. Data regarding the dam are given in the following table: | | ation | |--------------------------|-------| | Top of dam | eet) | | | 30.0 | | | 17.3 | | Top of conservation pool | 14.2 | | Crest of spillway | 90.0 | |
Lowest gated outlet | 56.0 | COOPERATION.--Capacity table No. 1-C was prepared by Freese and Nichols, consulting engineers for Tarrant Regional Water District. A new capacity table, No. 2-C, was prepared by the Texas Water Development Board and put into use Oct. 1, 1995. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,267,000 acre-ft, Dec. 22, 1991 elevation 316.85 ft; minimum contents after initial filling, 862,000 acre-ft, Nov. 23, 1996 elevation, 308.05 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,204,000 acre-ft, Mar. 2, elevation, 316.61 ft; minimum contents, 1,023,000 acre-ft, Oct. 15, elevation, 312.22 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,192,000 acre-ft, Dec. 19, elevation, 316.32 ft; minimum contents, 1,033,000 acre-ft, Nov. 27, 28, Dec. 11, elevation, 312.47 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---|---|---|--|--|---| | 1 | 1040000 | 1027000 | 1132000 | 1175000 | 1154000 | 1189000 | 1163000 | 1146000 | 1149000 | 1130000 | 1098000 | 1069000 | | 2 | 1039000 | 1028000 | 1131000 | 1170000 | 1151000 | 1202000 | 1161000 | 1146000 | 1149000 | 1130000 | 1096000 | 1069000 | | 3 | 1039000 | 1039000 | 1131000 | 1166000 | 1149000 | 1201000 | 1159000 | 1145000 | 1149000 | 1130000 | 1095000 | 1069000 | | 4 | 1037000 | 1053000 | 1130000 | 1163000 | 1148000 | 1198000 | 1156000 | 1144000 | 1148000 | 1130000 | 1094000 | 1074000 | | 5 | 1037000 | 1057000 | 1130000 | 1160000 | 1149000 | 1193000 | 1154000 | 1149000 | 1146000 | 1130000 | 1092000 | 1074000 | | 6
7
8
9
10 | 1035000
1033000
1029000
1028000
1027000 | 1069000
1074000
1081000
1085000
1086000 | 1130000
1130000
1129000
1129000
1129000 | 1159000
1158000
1155000
1150000 | 1150000
1151000
1152000
1153000
1151000 | 1186000
1181000
1178000
1184000
1189000 | 1154000
1153000
1152000
1151000
1150000 | 1168000
1169000
1167000
1164000
1162000 | 1145000
1143000
1144000
1144000
1143000 | 1129000
1129000
1128000
1126000
1126000 | 1091000
1090000
1089000
1087000
1086000 | 1074000
1075000
1074000
1073000
1072000 | | 11 | 1026000 | 1086000 | 1127000 | 1154000 | 1150000 | 1187000 | 1152000 | 1158000 | 1143000 | 1124000 | 1084000 | 1071000 | | 12 | 1025000 | 1088000 | 1126000 | 1155000 | 1150000 | 1193000 | 1151000 | 1156000 | 1142000 | 1123000 | 1082000 | 1070000 | | 13 | 1025000 | 1090000 | 1129000 | 1152000 | 1149000 | 1196000 | 1150000 | 1153000 | 1142000 | 1122000 | 1081000 | 1069000 | | 14 | 1024000 | 1089000 | 1130000 | 1150000 | 1149000 | 1195000 | 1149000 | 1150000 | 1141000 | 1121000 | 1080000 | 1069000 | | 15 | 1023000 | 1089000 | 1130000 | 1148000 | 1150000 | 1187000 | 1147000 | 1147000 | 1145000 | 1119000 | 1078000 | 1068000 | | 16 | 1027000 | 1089000 | 1130000 | 1148000 | 1171000 | 1177000 | 1147000 | 1146000 | 1144000 | 1118000 | 1077000 | 1068000 | | 17 | 1029000 | 1088000 | 1130000 | 1154000 | 1191000 | 1169000 | 1147000 | 1146000 | 1143000 | 1117000 | 1076000 | 1068000 | | 18 | 1028000 | 1088000 | 1129000 | 1171000 | 1201000 | 1164000 | 1148000 | 1145000 | 1142000 | 1116000 | 1076000 | 1067000 | | 19 | 1027000 | 1089000 | 1128000 | 1182000 | 1195000 | 1163000 | 1149000 | 1145000 | 1141000 | 1115000 | 1075000 | 1066000 | | 20 | 1027000 | 1088000 | 1128000 | 1185000 | 1184000 | 1162000 | 1149000 | 1146000 | 1140000 | 1113000 | 1074000 | 1065000 | | 21 | 1026000 | 1087000 | 1126000 | 1181000 | 1176000 | 1162000 | 1149000 | 1144000 | 1140000 | 1112000 | 1072000 | 1064000 | | 22 | 1027000 | 1087000 | 1126000 | 1175000 | 1171000 | 1162000 | 1150000 | 1143000 | 1138000 | 1112000 | 1071000 | 1064000 | | 23 | 1027000 | 1088000 | 1125000 | 1169000 | 1169000 | 1160000 | 1150000 | 1142000 | 1137000 | 1110000 | 1069000 | 1063000 | | 24 | 1027000 | 1113000 | 1124000 | 1165000 | 1169000 | 1158000 | 1149000 | 1141000 | 1136000 | 1108000 | 1068000 | 1061000 | | 25 | 1027000 | 1124000 | 1128000 | 1160000 | 1167000 | 1159000 | 1148000 | 1139000 | 1135000 | 1107000 | 1067000 | 1060000 | | 26
27
28
29
30
31 | 1026000
1025000
1025000
1026000
1027000
1027000 | 1130000
1132000
1132000
1132000
1132000 | 1154000
1182000
1197000
1192000
1185000
1180000 | 1155000
1152000
1150000
1155000
1161000
1158000 | 1165000
1163000
1171000
 | 1158000
1157000
1160000
1162000
1164000
1164000 | 1147000
1147000
1147000
1146000
1146000 | 1140000
1142000
1146000
1149000
1150000 | 1134000
1133000
1132000
1131000
1130000 | 1106000
1105000
1104000
1102000
1101000
1099000 | 1067000
1068000
1067000
1066000
1067000
1069000 | 1058000
1057000
1056000
1055000
1053000 | | MEAN | 1029000 | 1088000 | 1139000 | 1161000 | 1162000 | 1176000 | 1151000 | 1150000 | 1141000 | 1117000 | 1079000 | 1066000 | | MAX | 1040000 | 1132000 | 1197000 | 1185000 | 1201000 | 1202000 | 1163000 | 1169000 | 1149000 | 1130000 | 1098000 | 1075000 | | MIN | 1023000 | 1027000 | 1124000 | 1148000 | 1148000 | 1157000 | 1146000 | 1139000 | 1130000 | 1099000 | 1066000 | 1053000 | | (+) | 312.30 | 314.90 | 316.04 | 315.52 | 315.84 | 315.66 | 315.22 | 315.32 | 314.85 | 314.10 | 313.36 | 312.96 | | (@) | -14000 | +105000 | +48000 | -22000 | +13000 | -7000 | -18000 | +4000 | -20000 | -31000 | -30000 | -16000 | CAL YR 2000 MAX 1197000 MIN 958700 (@) +209500 WTR YR 2001 MAX 1202000 MIN 1023000 (@) +12000 ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08064550 Richland-Chambers Reservoir near Kerens, TX--Continued #### 08064550 Richland-Chambers Reservoir near Kerens, TX--Continued # RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | 1
2
3
4
5 | 1052000
1052000
1051000
1050000
1050000 | 1048000
1047000
1047000
1046000
1046000 | 1036000
1036000
1036000
1036000
1036000 | 1155000
1153000
1151000
1150000 | 1145000
1147000
1148000
1147000
1149000 | 1144000
1143000
1142000
1142000
1142000 | 1153000
1153000
1149000
1149000
1148000 | 1147000
1146000
1146000
1147000 | 1146000
1146000
1146000
1145000
1144000 | 1124000
1126000
1128000
1128000
1128000 | 1118000
1116000
1116000
1115000
1114000 | 1087000
1086000
1085000
1084000
1082000 | | 6
7
8
9
10 | 1049000
1048000
1047000
1046000
1046000 | 1045000
1044000
1044000
1045000
e1044000 | 1035000
1035000
1036000
1035000
1034000 | 1149000
1149000
1152000
1153000
1153000 | 1155000
1160000
1162000
1160000
1157000 | 1141000
1141000
1141000
1139000
1139000 | 1147000
1147000
1154000
1155000 | 1148000
1149000
1149000
1148000
1148000 | 1143000
1142000
1142000
1142000
1142000 | 1127000
1126000
1126000
1125000
1124000 | 1113000
1112000
1111000
1110000
1109000 | 1081000
1080000
1080000
1082000
1080000 | | 11
12
13
14
15 | 1046000
1054000 | e1044000
e1043000
e1043000
e1043000
1042000 | 1035000
1039000
1039000
1039000
1041000 | 1152000
1151000
1148000
1146000
1147000 | 1155000
1153000
1151000
1150000
1147000 | 1139000
1138000
1138000
1138000
1137000 | 1153000
1151000
1149000
1147000
1148000 | 1149000
1148000
1148000
1147000
1147000 | | 1123000
1122000
1122000
e1123000
e1126000 | 1109000
1107000
1107000
1105000
1104000 | 1080000
1079000
1078000
1076000
1075000 | | 16
17
18
19
20 | 1060000
1060000
1059000
1058000
1058000 | 1042000
1042000
1042000
1042000
e1040000 | 1065000
1117000
1172000
1190000
1182000 | 1147000
1147000
1146000
1146000
1146000 | 1147000
1147000
1147000
1149000
1148000 | 1137000
1137000
1139000
1141000
1153000 | 1150000
1151000
1152000
1153000
1152000 | 1147000
1148000
1148000
1147000
1145000 | | e1128000
e1130000
1131000
1131000
1130000 |
1102000
1101000
1100000
1099000
1098000 | 1074000
1073000
1072000
1073000
1073000 | | 21
22
23
24
25 | 1057000
1057000 | e1040000
e1039000
e1039000
e1040000
1037000 | 1177000
1174000
1171000
1167000
1166000 | 1146000
1145000
1146000
1146000 | 1147000
1147000
1147000
1148000
1147000 | 1159000
1161000
1159000
1157000
1154000 | 1151000
1148000
1148000
1147000
1146000 | 1145000
1144000
1144000
1142000
1142000 | 1130000
1130000
1129000
1128000
1127000 | 1130000
1130000
1129000
1128000
1128000 | 1096000
1095000
1094000
1093000
1091000 | 1071000
1070000
1068000
1066000
1064000 | | 26
27
28
29
30
31 | 1053000
1052000
1051000
1050000
1049000
1048000 | 1036000
1034000
1036000
1038000
1037000 | 1163000
1160000
1159000
1159000
1158000
1157000 | 1146000
1145000
1145000
1145000
1145000
1146000 | 1145000
1145000
1144000
 | 1150000
1148000
1147000
1147000
1148000
1151000 | 1146000
1147000
1147000
1147000
1147000 | 1142000
1142000
1143000
1147000
1149000
1148000 | 1127000
1126000
1126000
1125000
1123000 | 1127000
1126000
1124000
1122000
1121000
1119000 | 1090000
1091000
1091000
1090000
1089000
1087000 | 1063000
1062000
1061000
1060000
1059000 | | MEAN
MAX
MIN | 1053000
1060000
1046000 | 1042000
1048000
1034000 | 1100000
1190000
1034000 | 1148000
1155000
1145000 | 1150000
1162000
1144000 | 1145000
1161000
1137000 | 1150000
1155000
1146000 | 1146000
1149000
1142000 | 1135000
1146000
1123000 | 1126000
1131000
1119000 | 1102000
1118000
1087000 | 1074000
1087000
1059000 | | (+)
(@) | 312.85
-5000 | 312.57
-11000 | 315.49
+120000 | 315.22
-11000 | 315.19
-2000 | 315.34
+7000 | 315.26
-4000 | 315.27
+1000 | 314.68
-25000 | 314.58
-4000 | 313.81
-32000 | 313.12
-28000 | | CAT. V | P 2001 | MAY 12020 | OO MIN | 1034000 | (@) _ 230 | 00 | | | | | | | CAL YR 2001 MAX 1202000 MIN 1034000 (@) -23000 WTR YR 2002 MAX 1190000 MIN 1034000 (@) +6000 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month.(@) Change in contents, in acre-feet. M 2002 1,020,000 N 2001 Figure 5.--Map showing location of gaging stations in the third section of the Trinity River Basin | 08064700 | Tehuacana Creek near Streetman, TX | 296 | |----------|--|-----| | 08065000 | Trinity River near Oakwood, TX | 300 | | 08065200 | Upper Keechi Creek near Oakwood, TX | 302 | | 08065330 | Houston County Lake near Corckett, TX | 304 | | 08065350 | Trinity River near Crockett, TX | 306 | | 08065800 | Bedias Creek near Madisonville, TX | 318 | | 08066170 | Kickapoo Creek near Onalaska, TX | 320 | | 08066190 | Livingston Reservoir near Goodrich, TX | 322 | | 08066200 | Long King Creek at Livingston, TX | 332 | | 08066250 | Trinity River near Goodrich, TX | 334 | | 08066300 | Menard Creek near Rye, TX | 336 | | 08066500 | Trinity River at Romayor, TX | 338 | | 08067000 | Trinity River at Liberty, TX | 340 | | 08067070 | CWA Canal near Dayton, TX | 342 | | 08067118 | Lake Charlotte near Anahuac, TX | 344 | | 08067252 | Trinity River at Wallisville, TX | 350 | ### 08064700 Tehuacana Creek near Streetman, TX LOCATION.--Lat 31°50′54", long 96°17′23", Freestone County, Hydrologic Unit 12030201, on downstream side at right end of bridge on U.S. Hwy 75, 2.8 mi southeast of Streetman, 3.1 mi downstream from Burlington Northern and Santa Fe Railroad Co. bridge, 3.8 mi upstream from Caney Creek, and 25 mi upstream from mouth. DRAINAGE AREA.--142 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- Apr. 1968 to current year. GAGE.--Water-stage recorder. Datum of gage is 287.58 ft above NGVD of 1929. From Dec. 14, 1993 to Aug. 14, 2001, at site 0.2 mi upstream at datum 7.45 ft lower. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in Sept. 1932 reached a stage of about 24 ft at site and datum 0.2 mi downstream from information by Texas Department of Transportation. | | | | | | | | OCTOBER 200 |)1 TO SE | PTEMBER 20 | 02 | | |--|---|--|---|--
---|--|--|---|---|---|---| | OCT | NOV | DEC | JAN | FEB | MAR
 APR | MAY | JUN | JUL | AUG | SEP | | 0.10
0.09
0.08
0.07 | 0.56
0.60
0.61
0.64
0.66 | 5.4
2.7
1.9
1.5 | 1.5
1.5
1.5
1.6
1.8 | e4.7
e4.6
e4.3
e4.1
e9.7 | | | | 13
6.9
3.9
2.3
1.3 | 0.48
0.97
3.8
1.3
0.75 | 0.07
e0.05
e0.04
0.04
0.04 | 0.00
0.00
0.00
0.00
0.00 | | 0.07
0.07
0.08
0.09
0.10 | 0.73 | 1.1
17
44 | 2.1
2.2
2.2
2.3
2.4 | 854
199
37
19
e13 | | | | 0.66
0.56
0.53
0.51
0.56 | 0.59
0.53
0.49
0.46
0.43 | 0.03
0.03
0.03
0.02
0.05 | 0.00
0.00
0.00
0.00 | | 0.12
0.14
3.2
4.5
1.6 | 0.96
1.1
1.1
1.1 | 1.9
401
117
17
11 | 2.2
2.1
2.0
2.2
2.2 | e9.3
e7.9
e7.2
e6.9
e6.1 | 9.1
9.3
9.7
10 | 43
35
29
148
52 | 14
15
15
14
13 | 0.54
0.54
0.52
0.49
0.50 | 0.41
0.36
0.35
0.33
0.33 | 0.05
0.05
0.04
0.04 | 0.00
0.00
0.00
0.00
0.00 | | | | 2390
5100
1060
46
9.7 | 2.3
2.3
2.4
2.5
2.5 | e6.5
e6.5
e6.4
e6.8
8.6 | 9.9
13
16
17
781 | 33
26
22
20
19 | 14
24
36
19
16 | 0.59
0.63
0.60
0.55
0.49 | 0.77
9.2
3.2
1.2
0.72 | 0.03
0.03
0.03
0.03
0.02 | 0.00
0.00
0.00
0.00
0.00 | | 0.49 | 1.9 | | | | 158
46
28
23
19 | 18
17
17
17
17 | 14
13
13
13
13 | 0.44
0.46
0.47
0.44
0.39 | 0.54
0.41
0.32
0.27
0.24 | 0.02
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 0.47
0.47
0.51
0.51
0.52
0.53 | 1.9
1.8
2.6
44
14 | 2.2
1.7
1.7
1.6
1.6 | e3.3
e3.3
e3.6
e3.8
e4.4 | e7.5
e7.3
e7.4
 | 16
17
16
15
60
669 | 16
15
15
15
15 | 13
18
186
593
256
31 | 0.41
0.43
0.40
0.38
0.41 | 0.21
0.19
0.17
0.14
0.10
0.08 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 18.95
0.611
4.5
0.07
38 | 91.40
3.047
44
0.56
181 | 298.9
5100
1.1
18380 | 2.555
4.4
1.5
157 | 854
4.1
2560 | 781
7.8
4050 | 780
15
3730 | 593
13
2950 | 0.38
79 | 29.34
0.946
9.2
0.08
58 | 0.78
0.025
0.07
0.00
1.5 | 0.00
0.000
0.00
0.00 | | | | | | | | | | | 3.649 | 14.23 | 26.94 | | 379
1974
0.000
1981 | 399
1999
0.000
1981 | 1013
1992
0.000
2000 | 381
1998
0.12
1971 | | | 762
1997
0.000
1971 | 2927
1989
0.020
1971 | 388
1981
0.040
1996 | 35.1
1976
0.000
1978 | 234
1983
0.000
1969 | 547
1974
0.000
1980 | | Y STATIST | ICS | FOR | 2001 CALE | ENDAR YEAR | . 1 | FOR 2002 | WATER YEAR | | WATER YEA | RS 1968 - | 2002 | | MEAN
F ANNUAL :
ANNUAL M | EAN | | 126.1 | L | | 44. | 44 | | 274 | 2 | 1989
1996 | | DAILY ME
SEVEN-DA
M PEAK FL | AN
Y MINIMUM
OW | 1 | 0.0 | 00 Feb 6 | i | 5100
0.
0.
6390
23 | Dec 17
00 Aug 22
00 Aug 22
Dec 17
93 Dec 17 | | 42000
0.0
0.0
g85700
34 9 | May 4
0 Sep 30
0 Sep 30
May 17
9 Feb 17 | 1968
1968
1989 | | RUNOFF (.
CENT EXCE
CENT EXCE | AC-FT)
EDS
EDS | | | | | 23 | 9 | | 55
1.6 | | 2001 | | | 0.10 0.09 0.08 0.07 0.07 0.07 0.07 0.07 0.09 0.10 0.12 0.14 3.2 4.5 1.6 0.83 0.62 0.57 0.58 0.52 0.50 0.47 0.55 0.611 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0. | OCT NOV 0.10 0.56 0.09 0.60 0.08 0.61 0.07 0.64 0.07 0.66 0.07 0.69 0.07 0.73 0.08 0.73 0.09 0.93 0.10 0.99 0.12 0.96 0.14 1.1 3.2 1.1 4.5 1.1 1.6 1.0 0.83 1.1 0.62 1.1 0.57 1.1 0.58 1.2 0.52 1.2 0.50 1.2 0.50 1.2 0.47 1.4 0.50 2.3 0.49 2.2 0.48 1.9 0.47 1.9 0.47 1.9 0.47 1.8 0.51 2.6 0.51 44 0.52 14 0.53 18.95 91.40 0.611 3.047 4.5 4.5 0.51 44 0.53 18.95 91.40 0.611 3.047 4.5 4.5 0.51 44 0.53 18.95 91.40 0.611 3.047 4.5 4.5 0.51 44 0.53 18.95 91.40 0.611 3.047 4.5 4.5 0.51 44 0.7 0.56 38 181 FICS OF MONTHLY ME 53.91 63.65 379 399 1974 1999 0.000 0.000 1981 1981 Y STATISTICS TOTAL MEAN T ANNUAL MEAN ANNUAL MEAN ANNUAL MEAN T DALLY MEAN T DALLY MEAN T DALLY MEAN T DALLY MEAN | OCT NOV DEC 0.10 0.56 5.4 0.09 0.60 2.7 0.08 0.61 1.9 0.07 0.64 1.5 0.07 0.66 1.3 0.07 0.69 1.2 0.07 0.73 1.1 0.08 0.73 17 0.09 0.93 44 0.10 0.99 4.3 0.12 0.96 1.9 0.14 1.1 401 3.2 1.1 117 4.5 1.1 17 1.6 1.0 11 0.83 1.1 2390 0.62 1.1 5100 0.57 1.1 1060 0.58 1.2 46 0.52 1.2 9.7 0.50 1.2 5.7 0.47 1.4 4.3 0.50 2.3 3.9 0.49 2.2 3.4 0.48 1.9 3.0 0.47 1.9 2.2 0.47 1.8 1.7 0.51 2.6 1.7 0.51 44 1.6 0.52 14 1.6 0.53 1.6 18.95 91.40 9264.7 0.611 3.047 298.9 4.5 44 5100 0.07 0.56 1.1 38 11 18380 PICS OF MONTHLY MEAN DATA F 53.91 63.65 144.7 379 399 1013 1974 1999 1992 0.000 0.000 0.000 1981 1981 2000 Y STATISTICS FOR TOTAL MEAN T ANNUAL D DAILY D D D D D D D D D D D D D D D D D D | OCT NOV DEC JAN 0.10 0.56 5.4 1.5 0.09 0.60 2.7 1.5 0.08 0.61 1.9 1.5 0.07 0.64 1.5 1.6 0.07 0.66 1.3 1.8 0.07 0.69 1.2 2.1 0.07 0.73 1.1 2.2 0.08 0.73 17 2.2 0.09 0.93 44 2.3 0.10 0.99 4.3 2.4 0.12 0.96 1.9 2.2 0.14 1.1 401 2.1 3.2 1.1 117 2.0 4.5 1.1 17 2.2 1.6 1.0 11 2.2 0.83 1.1 2390 2.3 0.62 1.1 5100 2.3 0.62 1.1 5100 2.3 0.62 1.1 5100 2.3 0.57 1.1 1060 2.4 0.58 1.2 46 2.5 0.52 1.2 9.7 2.5 0.50 1.2 5.7 2.7 0.47 1.4 4.3 2.9 0.50 2.3 3.9 3.1 0.49 2.2 3.4 3.8 0.48 1.9 3.0 3.2 0.47 1.9 2.2 63.3 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.52 14 1.6 63.6 0.52 14 1.6 63.6 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.51 44 1.6 63.6 0.52 14 1.6 63.6 0.53 1.6 64.4 18.95 91.40 9264.7 79.2 0.611 3.047 298.9 2.555 4.5 44 5100 4.4 0.07 0.56 1.1 1.5 38 181 18380 157 TICS OF MONTHLY MEAN DATA FOR WATER 53.91 63.65 144.7 82.24 379 399 1013 381 1974 1999 1992 1998 0.000 0.000 0.000 0.012 1981 1981 2000 1971 Y STATISTICS FOR 2001 CALF TOTAL 400.000 0.000 0.012 1981 1981 2000 1971 Y STATISTICS FOR 2001 CALF TOTAL 400.000 0.000 0.000 0.12 1981 1981 2000 1971 Y STATISTICS FOR 2001 CALF TOTAL 400.000 0.000 0.000 0.12 1981 1981 2000 1971 Y STATISTICS FOR 2001 CALF TOTAL 400.000 0.000 0.000 0.12 1981 1981 2000 1971 Y STATISTICS FOR 2001 CALF TOTAL 400.000 0.0000 | OCT NOV DEC JAN FEB 0.10 0.56 5.4 1.5 e4.7 0.09 0.60 2.7 1.5 e4.6 0.08 0.61 1.9 1.5 e4.6 0.07 0.64 1.5 1.6 e4.1 0.07 0.66 1.3 1.8 e9.7 0.07 0.69 1.2 2.1 854 0.07 0.73 1.1 2.2 199 0.08 0.73 17 2.2 37 0.09 0.93 44 2.3 19 0.10 0.99 4.3 2.4 e13 0.12 0.96 1.9 2.2 e9.3 0.14 1.1 401 2.1 e7.9 3.2 1.1 117 2.0 e7.2 4.5 1.1 17 2.2 e6.9 1.6 1.0 11 2.2 e6.1 0.83 1.1 2390 2.3 e6.5 0.62 1.1 5100 2.3 e6.5 0.62 1.1 5100 2.3 e6.5 0.57 1.1 1060 2.4 e6.4 0.58 1.2 46 2.5 e6.8 0.52 1.2 9.7 2.5 8.6 0.50 1.2 5.7 2.7 e12 0.47 1.4 4.3 2.9 e10 0.50 2.3 3.9 3.1 e8.7 0.49 2.2 3.4 3.8 e8.1 0.48 1.9 3.0 3.2 e7.7 0.47 1.9 2.2 e3.3 e7.5 0.49 2.2 3.4 3.8 e8.1 0.48 1.9 3.0 3.2 e7.7 0.47 1.9 2.2 e3.3 e7.5 0.51 2.6 1.7 e3.3 e7.3 e7.4 0.51 44 1.6 e3.6 1.8 95 91.40 9264.7 79.2 1290.3 0.611 3.047 298.9 2.555 46.08 4.5 44 5100 4.4 854 0.52 14 1.6 e3.8 1.6 e4.4 18.95 91.40 9264.7 79.2 1290.3 0.611 3.047 298.9 2.555 46.08 4.5 44 5100 4.4 854 0.57 2560 CICS OF MONTHLY MEAN DATA FOR WATER YEARS 196 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 196 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 196 FOR 2001 CALENDAR YEAR TOTAL 46030.59 1981 1981 2000 1971 1996 FY STATISTICS FOR 2001 CALENDAR YEAR TOTAL 46030.59 1981 1981 2000 1971 1996 FY STATISTICS FOR 2001 CALENDAR YEAR TOTAL 46030.59 1986 CENT EXCEEDS 119 1992 1993 119 1903 119 1905 119 | OCT NOV DEC JAN FEB MAR 0.10 0.56 5.4 1.5 e4.7 e7.8 0.09 0.60 2.7 1.5 e4.6 8.5 0.08 0.61 1.9 1.5 e4.1 8.6 0.07 0.64 1.5 1.6 e4.1 8.6 0.07 0.66 1.3 1.8 e9.7 8.8 0.07 0.69 1.2 2.1 854 9.0 0.07 0.73 1.1 2.2 199 9.1 0.08 0.73 17 2.2 37 9.2 0.09 0.93 44 2.3 19 9.4 0.10 0.99 4.3 2.4 e13 8.9 0.12 0.96 1.9 2.2 e9.3 9.1 0.14 1.1 401 2.1 e7.9 9.3 3.2 1.1 117 2.0 e7.9 9.3 3.2 1.1 117 2.0 e7.2 9.7 4.5 1.1 17 2.2 e6.9 10 1.6 1.0 11 2.2 e6.1 10 0.83 1.1 2390 2.3 e6.5 9.9 0.62 1.1 5100 2.3 e6.5 13 0.57 1.1 1060 2.4 e6.4 16 0.58 1.2 46 2.5 e6.8 17 0.52 1.2 9.7 2.5 8.6 781 0.50 1.2 5.7 2.7 e12 158 0.47 1.4 4.3 2.9 e10 46 0.50 2.3 3.9 3.1 e8.7 28 0.49 2.2 3.4 3.8 e8.1 23 0.48 1.9 3.0 3.2 e7.7 19 0.47 1.8 1.7 e3.3 e7.4 16 0.51 2.6 1.7 e3.3 e7.4 16 0.51 2.6 1.7 e3.3 e7.4 16 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.6 15 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.6 15 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.6 15 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.6 15 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.6 15 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.6 15 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.8 60 0.53 181 18380 157 2560 4050 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS
1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR DATE YEARS 1968 - 2002 FICS OF MONTHLY MEAN DATA FOR DATE YEARS 1968 - 2002 FICS OF BASE YEAR STAGE RUNOFF (AC-FT) 91300 PEAK FLOW WEAK TARBEN TAGE RUNO | OCT NOV DEC JAN FEB MAR APR 0.10 0.56 5.4 1.5 e4.7 e7.8 84 0.09 0.60 2.7 1.5 e4.6 8.5 40 0.08 0.61 1.9 1.5 e4.3 8.4 29 0.07 0.64 1.5 1.6 e4.1 8.6 23 0.07 0.66 1.3 1.8 e9.7 8.8 20 0.07 0.69 1.2 2.1 854 9.0 19 0.08 0.73 17 2.2 37 9.2 78 0.09 0.99 4.3 2.4 e13 8.9 61 0.10 0.99 4.3 2.4 e13 8.9 61 0.10 0.99 4.3 2.4 e13 8.9 61 0.11 17 2.0 e7.2 9.7 29 4.5 1.1 117 2.0 e7.2 9.7 29 4.5 1.1 117 2.0 e7.2 9.7 29 4.5 1.1 117 2.2 e6.9 10 148 1.6 1.0 11 2.2 e6.1 10 52 0.83 1.1 2390 2.3 e6.5 9.9 33 0.62 1.1 5100 2.3 e6.5 13 26 0.58 1.2 46 2.5 e6.8 17 0.55 1.2 9.7 2.5 8.6 781 0.50 1.2 5.7 2.7 e12 158 0.47 1.4 4.4 3.2 9.9 e10 46 17 0.50 1.2 5.7 2.7 e12 158 0.47 1.4 1.4 4.3 2.9 e10 46 17 0.50 2.3 3.9 3.1 e8.7 28 0.47 1.4 1.6 e3.6 15 0.48 1.9 3.0 3.2 e7.7 19 17 0.47 1.9 2.2 e3.3 e7.5 16 16 0.47 1.8 1.7 e3.3 e7.7 19 17 0.47 1.9 2.2 e3.3 e7.5 16 16 0.47 1.8 1.7 e3.3 e7.7 19 17 0.47 1.9 2.2 e3.3 e7.5 16 16 0.50 1.2 5.7 2.7 e12 158 0.47 1.4 1.6 e3.6 15 0.51 44 1.6 e3.6 15 0.51 44 1.6 e3.8 60 0.51 2.6 1.7 e3.3 e7.4 16 0.52 14 1.6 e3.8 60 0.53 1.1 1880 157 2560 4050 3730 FICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2002, BY WATE 1974 1999 1992 1998 1998 1986 1990 1997 0.000 0.000 0.000 0.000 0.12 0.45 0.25 0.000 0 M PEAK TIOW STAGE M ENDOR TION EXCEEDS 119 23 1011 19 223 | OCT NOV DEC JAN FEB MAR APR MAY 0.10 0.56 5.4 1.5 e4.7 e7.8 84 15 0.09 0.60 2.7 1.5 e4.6 8.5 40 15 0.09 0.60 1.9 1.5 e4.6 8.5 40 15 0.07 0.64 1.5 1.6 e4.1 8.6 23 14 0.07 0.66 1.3 1.8 e9.7 8.8 20 15 0.07 0.69 1.2 2.1 854 9.0 19 14 0.07 0.69 1.2 2.1 854 9.0 19 14 0.08 0.73 17 2.2 199 9.1 19 14 0.08 0.73 17 2.2 199 9.1 19 14 0.08 0.73 17 2.2 199 9.1 19 14 0.09 0.93 44 2.3 19 9.4 216 15 0.10 0.99 4.3 2.4 e13 8.9 61 14 0.12 0.96 1.9 2.2 e9.3 9.1 43 14 0.14 1.1 401 2.1 e7.9 9.3 35 15 3.2 1.1 117 2.0 e7.2 9.7 29 15 4.5 1.1 17 2.2 e6.9 10 148 14 1.6 1.0 11 2.2 e6.1 10 52 13 0.83 1.1 2390 2.3 e6.5 9.9 33 14 0.62 1.1 5100 2.3 e6.5 13 26 24 0.57 1.1 1060 2.4 e6.4 16 22 36 0.58 1.2 46 2.5 e6.8 17 20 19 0.50 1.2 5.7 2.7 e12 158 18 14 0.50 1.2 5.7 2.7 e12 158 18 14 0.47 1.4 4.3 2.9 e10 46 17 13 0.49 2.2 3.4 e3.3 e7.3 17 13 0.47 1.4 4.3 2.9 e10 46 17 13 0.49 2.2 3.4 e3.3 e7.3 17 15 18 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.49 1.9 2.2 6.3 3.9 3.1 e8.7 28 17 13 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.49 1.2 5.7 2.7 e12 158 18 14 0.50 2.3 3.9 3.1 e8.7 28 17 13 0.49 1.2 5.7 2.7 e12 158 18 14 0.40 1.9 3.0 3.2 e7.7 19 17 13 0.47 1.8 1.9 3.0 3.2 e7.7 19 17 13 0.49 1.9 2.2 e3.3 e7.5 16 16 16 13 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.49 1.9 3.0 3.2 e7.7 19 17 13 0.47 1.9 2.2 e3.3 e7.5 16 16 16 13 0.49 1.9 2.2 e3.3 e7.5 16 16 16 13 0.49 1.9 2.2 e3.3 e7.5 16 16 16 13 0.49 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.0 1.9 1.9 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | OCT NOV DEC JAN FEB MAR APR MAY JUN 0.10 0.56 5.4 1.5 e4.7 e7.8 84 15 13 0.09 0.60 2.7 1.5 e4.6 8.5 40 15 6.9 0.08 0.61 1.9 1.5 e4.6 8.5 40 15 6.9 0.08 0.61 1.9 1.5 e4.6 8.5 40 15 1.3 0.07 0.66 1.3 1.8 e9.7 8.8 20 15 1.3 0.07 0.66 1.3 1.8 e9.7 8.8 20 15 1.3 0.07 0.66 1.3 1.8 e9.7 8.8 20 15 1.3 0.07 0.68 0.61 1.9 2.2 1854 9.0 19 14 0.66 0.08 0.07 0.73 1.1 2.2 199 9.1 19 14 0.56 0.08 0.73 1.1 2.2 199 9.1 19 14 0.56 0.08 0.73 1.1 2.2 199 9.1 19 14 0.56 0.08 0.73 1.1 2.2 199 9.1 19 14 0.56 0.08 0.73 1.1 2.2 199 9.4 216 15 0.51 0.10 0.99 4.3 2.4 e13 8.9 61 14 0.55 0.09 0.93 44 2 2.3 19 9.4 216 15 0.51 0.10 0.99 4.3 2.4 e13 8.9 61 14 0.56 0.14 0.56 0.14 1.1 40.1 2.1 e7.9 9.3 35 15 0.54 3.2 1.1 117 2.0 e7.2 e9.7 29 15 0.52 4.5 1.1 117 2.2 e6.1 10 52 13 0.50 0.54 1.9 1.6 1.0 11 2.2 e6.1 10 52 13 0.50 0.62 1.1 5100 2.3 e6.5 13 26 24 0.63 0.57 1.1 1060 2.3 e6.5 13 26 24 0.63 0.57 1.1 1060 2.4 e6.4 16 22 36 0.60 0.55 1.2 9.7 2.5 8.6 781 19 16 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 16 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 16 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 10 17 13 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 10 17 13 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 10 17 13 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 10 17 13 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 10 17 13 0.49 0.49 0.2 3 46 0.60 0.58 1.2 46 0.5 3.9 9.1 48 17 13 0.46 0.55 0.52 1.2 9.7 2.5 8.6 781 19 17 13 0.49 0.49 0.2 3 48 18 18 18 14 0.44 0.49 1.4 4.3 2.9 e10 46 17 13 0.49 0.55 0.52 1.2 9.7 2.5 8.6 781 19 17 13 0.49 0.49 0.2 3 3.9 3.1 e8.7 28 17 13 0.40 0.49 0.2 3 3.9 3.1 e8.7 28 17 13 0.40 0.40 0.50 0.52 1.2 9.7 2.5 8.6 81 17 20 19 0.55 0.52 1.2 9.7 2.5 8.6 81 17 20 19 0.55 0.50 0.52 1.2 9.7 2.5 8.6 81 17 13 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5 | DAILY MEAN VALUES OCT NOV DEC JAN FEB MAR APR MAY JUN JUL | OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 0.10 0.56 5.4 1.5 e4.7 e7.8 94 15 13 0.48 0.09 0.09 0.60 2.7 1.5 e4.3 8.4 29 114 3.9 3.8 e0.04 0.07 0.68 1.5 1.9 1.5 e4.3 8.4 29 114 3.9 3.8 e0.04 0.07 0.66 1.3 1.8 e9.7 8.8 20 15 1.3 0.75 0.04 0.07 0.66 1.3 1.8 e9.7 8.8 20 15 1.3 0.75 0.04 0.07 0.69 1.2 2.1 854 9.0 19 14 0.66 0.59 0.03 0.08 0.70 1.2 2.1 854 9.0 19 14 0.66 0.59 0.03 0.09 0.93 14 2.2 199 9.1 199 14 0.66 0.59 0.03 0.09 0.93 44 2.3 19 9.4 216 15 0.50 0.53 0.03 0.09 0.99 4.3 2.4 e13 8.9 61 14 0.56 0.43 0.05 0.12 0.96 1.9 2.2 e9.3 9.1 43 14 0.56 0.43 0.05 0.14 1.1 401 2.1 e7.9 9.3 35 15 0.54 0.36 0.05 0.14 1.1 1 220 e6.9 110 52 13 0.50 0.33 0.04 1.5 1.1 17 2.2 e6.9 10 5 12 13 0.50 0.33 0.04 1.5 1.1 117 2.2 e6.9 10 5 12 13 0.50 0.33 0.04 1.5 1.1 100 2.3 e6.5 9.9 33 14 0.59 0.77 0.03 0.63 1.1 2390 2.3 e6.5 9.9 33 14 0.59 0.77 0.03 0.63 1.1 2390 2.3 e6.5 9.9 33 14 0.59 0.77 0.03 0.55 1.1 1060 2.3 e6.5 13 26 24 0.63 9.2 0.03 0.55 1.2 6.7 2.7 e12 158 18 14 0.59 0.77 0.03 0.55 1.2 6.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.55 1.2 6.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.50 1.2 5.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.50 1.2 5.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.50 1.2 5.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.50 1.2 5.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.50 1.2 5.7 2.7 e12 158 18 14 0.44 0.59 0.72 0.03 0.50 1.2 5.7 2.7 e12 158 18 0.40 0.40 0.72 0.00 0.49 2.2 3.4 3.8 e8.1 22 17 13 0.46 0.41 0.00 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.46 0.41 0.00 0.49 2.2 3.4 3.8 e8.1 23 17 13 0.40 0.40 0.72 0.00 0.49 2.2 3.4 4.3 84 8.8 1.2 2.1 17 13 0.46 0.41 0.00 0.51 1.4 1.6 e3.6 155 15 500 Dec 17 0.40 1.99 0.99 0.99 0.99 0.99 0.99 0.99 0.9 | e Estimated g At site and datum then in use. 08064700 Tehuacana Creek near Streetman, TX--Continued # 08064700 Tehuacana Creek near Streetman, TX--Continued # WATER-QUALITY RECORDS | | | | | | WATE | R-QUALITY | RECORDS | | | | | | | |------------------|------------------------|-----------------|-----------------|------------------|------------------|-------------------|------------------|-----------------|-----------------|--------------------|-------------------|-------------------|-------------------| | PERIOD OF R | | 1060 +0 | Cont 10 | 00E Oct | 1000 +0 0 | | -020 | | | | | | | | | DATA: Feb
CAL DATA: | | to curre | ent year. | | _ | | 1 TO SEPT | EMBER 200 | 12 | | | | | | | DIS- | | PH | | | OXYGEN, | OXYGEN | | HARD- | | | | | | | CHARGE, | SPE- | WATER | | | DIS- | DEMAND, | HARD- | NESS | | MAGNE- | | | | | INST.
CUBIC | CIFIC
CON- | WHOLE
FIELD | TEMPER- | OXYGEN, | SOLVED
(PER- | BIO-
CHEM- | NESS
TOTAL | NONCARB
DISSOLV | CALCIUM
DIS- | SIUM,
DIS- | SODIUM,
DIS- | | | | FEET | DUCT- | (STAND- | ATURE | DIS- | CENT | ICAL, | (MG/L | FLD. AS | SOLVED | SOLVED | SOLVED | | Date | Time | PER
SECOND | ANCE
(US/CM) | ARD
UNITS) | WATER
(DEG C) | SOLVED
(MG/L) | SATUR-
ATION) | 5 DAY
(MG/L) | AS
CACO3) | CACO3
(MG/L) | (MG/L
AS CA) | (MG/L
AS MG) | (MG/L
AS NA) | | | | (00061) | (00095) | (00400) | (00010) | (00300) | (00301) | (00310) | (00900) | (00904) | (00915) | (00925) | (00930) | | OCT | | | | | | | | | | | | | | | 23 | 1005 | .52 | 460 | 7.3 | 21.0 | 4.5 | 51 | <2.0 | 120 | 42 | 30.3 | 11.6 | 37.6 | | DEC
12 | 0915 | 231 | 126 | 7.8 | 10.5 | 8.9 | 81 | 6.9 | 36 | 7 | 9.15 | 3.25 | 8.38 | | FEB
14 | 0845 | 6.9 | 520 | 7.5 | 8.0 | 10.4 | 88 | 2.7 | 150 | | 38.1 | 13.3 | 46.1 | | APR
17 | 1020 | 26 | 365 | 7.4 | 22.5 | 6.2 | 73 | 3.3 | 110 | 29 | 27.3 | 9.36 | 29.8 | | MAY
08 | 1215 | 14 | 1270 | 7.4 | 26.5 | 6.3 | 81 | 4.3 | 340 | 130 | 83.1 | 31.1 | 139 | | JUN
20 | 1030 | .50 | 1200 | 7.6 | 27.5 | 6.5 | 85 | 2.9 | 320 | 110 | 80.2 | 29.6 | 124 | | | | | | | | | | | | | | | | | | CODILIM | | DOM's G | CAR- | BICAR- | ALKA- | | CITT O | FILLIO | 077.703 | SOLIDS, | SOLIDS, | RESIDUE | | | SODIUM
AD- | | POTAS-
SIUM, | BONATE
WATER | BONATE
WATER | LINITY
WAT DIS | SULFATE | CHLO-
RIDE, | FLUO-
RIDE, | SILICA,
DIS- | RESIDUE
AT 180 | SUM OF
CONSTI- | TOTAL
AT 105 | | | SORP- | | DIS- | DIS IT | DIS IT | TOT IT | DIS- | DIS- | DIS- | SOLVED | DEG. C | TUENTS, | DEG. C, | | Date | TION
RATIO | SODIUM | SOLVED
(MG/L | FIELD
MG/L AS | FIELD
MG/L AS | FIELD
MG/L AS | SOLVED
(MG/L | SOLVED
(MG/L | SOLVED
(MG/L | (MG/L
AS | DIS-
SOLVED | DIS-
SOLVED | SUS-
PENDED | | | (00021) | PERCENT | AS K) | CO3 | HCO3 | CACO3 | AS SO4) | AS CL) | AS F) | SIO2) | (MG/L) | (MG/L) | (MG/L) | | | (00931) | (00932) | (00935) | (00452) | (00453) | (39086) | (00945) | (00940) | (00950) | (00955) | (70300) | (70301) | (00530) | | OCT
23
DEC | 1 | 38 | 5.74 | <1 | 100 | 82 | 60.5 | 50.3 | .2 | 6.48 | 272 | 252 | 24 | | 12 | .6 | 31 | 3.95 | <1 | 35 | 29 | 13.9 | 8.53 | .2 | 5.76 | 96 | 72 | 912 | | FEB
14
APR | 2 | 39 | 4.52 | | | | 75.4 | 54.0 | .2 | 9.59 | 326 | | 36 | | 17
MAY | 1 | 37 | 4.79 | <1 | 94 | 78 | 43.1 | 34.0 | .1 | 8.88 | 233 | 204 | 32 | | 08
JUN | 3 | 47 | 5.31 | 1 | 248 | 205 | 172 | 168 | .4 |
14.1 | 790 | 737 | 10 | | 20 | 3 | 45 | 6.08 | <1 | 258 | 213 | 157 | 152 | .3 | 11.3 | 716 | 688 | 11 | | | | | | | | | | | | | | | | | | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN,AM- | PHOS- | ORTHO-
PHOS- | PHOS-
PHATE, | | ALUM- | ANTI- | | | | NITRATE | NITRITE | NO2+NO3 | AMMONIA | ORGANIC | MONIA + | PHORUS | PHATE, | ORTHO, | CARBON, | INUM, | MONY, | ARSENIC | | | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | ORGANIC
DIS. | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | ORGANIC
TOTAL | DIS-
SOLVED | DIS-
SOLVED | DIS-
SOLVED | | Date | (MG/L (UG/L | (UG/L | (UG/L | | | AS N) | AS N) | AS N) | AS N) | AS N)
(00607) | AS N) | AS P)
(00666) | AS P) | AS PO4) | AS C)
(00680) | AS AL) | AS SB)
(01095) | AS AS)
(01000) | | | (00618) | (00613) | (00631) | (00608) | (00607) | (00623) | (00000) | (00671) | (00660) | (00000) | (01106) | (01095) | (01000) | | OCT
23 | | E.005 | E.04 | E.02 | | .49 | E.03 | .02 | .055 | 9.9 | 1 | .11 | E2 | | DEC
12 | .29 | .009 | .30 | .06 | .58 | .64 | .054 | .03 | .098 | 28.1 | 6 | .08 | <2 | | FEB
14 | | E.007 | .21 | <.04 | | .53 | .029 | <.02 | | 10.5 | 2 | .09 | <2 | | APR
17 | .09 | .009 | .10 | .05 | .76 | .80 | .061 | .04 | .117 | 13.0 | 3 | .30 | E1 | | MAY
08 | | <.008 | <.05 | <.04 | | .34 | .014 | <.02 | | 7.4 | | | | | JUN
20 | | <.008 | <.05 | <.04 | | .44 | .013 | <.02 | | 8.3 | <1 | .16 | 2 | | | | | | | | | | | | | | | | | | BARIUM, | BERYL-
LIUM, | CADMITTM | CHRO-
MIUM, | COBALT, | COPPER, | IRON, | LEAD, | MANGA-
NESE, | MERCURY | MOLYB-
DENUM, | NICKEL, | SELE-
NIUM, | | | DIS- | DIS- | CADMIUM
DIS- | DIS- DENOM,
DIS- | DIS- | DIS- | | | SOLVED | Date | (UG/L
AS BA) | (UG/L
AS BE) | (UG/L
AS CD) | (UG/L
AS CR) | (UG/L
AS CO) | (UG/L
AS CU) | (UG/L
AS FE) | (UG/L
AS PB) | (UG/L
AS MN) | (UG/L
AS HG) | (UG/L
AS MO) | (UG/L
AS NI) | (UG/L
AS SE) | | | (01005) | (01010) | (01025) | (01030) | (01035) | (01040) | (01046) | (01049) | (01056) | (71890) | (01060) | (01065) | (01145) | | OCT | | | | | | | | | | | | | | | 23
DEC | 60 | <.06 | <.04 | <.8 | .59 | 1.6 | 17 | <.08 | 441 | <.01 | .5 | 2.18 | <2 | | 12
FEB | 17 | <.06 | <.04 | <.8 | .36 | 1.5 | 76 | .11 | 12.6 | | .3 | 2.53 | <2 | | 14
APR | 62 | <.06 | <.04 | <.8 | .90 | 2.6 | 55 | .09 | 259 | <.01 | .3 | 2.34 | <2 | | 17 | 51 | <.06 | <.04 | <.8 | .44 | 2.7 | 93 | .09 | 89.0 | <.01 | .3 | 2.98 | <2 | | MAY
08 | <10 | | 70.8 | | | | | | JUN
20 |
97 | <.06 | <.04 | <.8 | .24 | 2.2 | <10
<10 | <.08 | 70.8
16.7 | <.01 | .8 | 1.85 | <2 | # 08064700 Tehuacana Creek near Streetman, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | AS ZN) | (UG/L
AS U) | |------|---|--------|----------------| | OCT | | | | | 23 | <1 | <1 | .45 | | DEC | | | | | 12 | <1 | 2 | .11 | | FEB | | | | | 14 | <1 | 1 | 1.28 | | APR | | _ | | | 17 | <1 | 2 | .66 | | MAY | | | | | 08 | | | | | JUN | | | | | 20 | <1 | 1 | 2.67 | Remark codes used in this report: < -- Less than E -- Estimated value ### 08065000 Trinity River near Oakwood, TX LOCATION.--Lat 31°38′54", long 95°47′21", Anderson County, Hydrologic Unit 12030201, on left bank at downstream side of bridge on U.S. Highways 79 and 84, 1.5 mi upstream from Missouri Pacific Railroad Co. bridge, 6.0 mi northeast of Oakwood, and at mile 313.4. DRAINAGE AREA. -- 12,833 mi². PERIOD OF RECORD.--Oct. 1923 to Sept. 1924 (monthly discharge only), Oct. 1924 to current year. Records of Jan. 1905 to Sept. 1923, published in WSP 850 and 878, have been found unreliable and should not be used. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service. vicinity since 1904 are contained in reports of the National Weather Service. Water-quality records.--Sediment data: Dec. 1976 to Sept. 1981. Specific conductance: Dec. 1976 to Sept. 1981. Water temperature: Dec. 1976 to Sept. 1981. Suspended sediment data: Dec. 1976 to Sept. 1981. REVISED RECORDS.--WSP 1442: 1934. WSP 1922: Drainage area. WDR TX-81-1: 1980 (M,m). GAGE.--Water-stage recorder. Datum of gage is 175.06 ft above NGVD of 1929. Prior to July 1932, nonrecording gage at site 1.5 mi downstream at datum 1.06 ft lower. July 15, 1932, to Oct. 7, 1934, nonrecording gage at present site and datum. Satellite telemeter at station. REMARKS.--Records fair. Since installation of gage in water year 1924, at least 10% of contributing drainage area has been regulated. These structures control runoff from 614 mi² in the Richland, Chambers, and Tehuacana Creeks drainage basins. The Industrial Generating Co. at Fairfield makes a minor diversion from the river at a site about 34 mi upstream. The diversion to Fairfield Lake (capacity 50,600 acre-ft) is used to maintain the normal pool elevation for that lake. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1890 reached a stage of 53 ft (discharge about 180,000 ft³/s) and was the highest since that date, from information in local newspapers. Flood of June 4, 1908, reached a stage of 52.2 ft, present site and datum, from information by the National Weather Service (discharge, about 164,000 ft³/s). | | | DISCHARGE | FROM DCP, | CUBIC F | | ECOND, WA
LY MEAN V | | OCTOBER 20 | 01 TO SEI | PTEMBER 20 | 02 | | |----------------------------------|--|--------------------------------------|--|--|--------------------------|--|---|--|--------------------------------------|--|---|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1190 | 1050 | 1940 | 6330 | 2040 | 1770 | 25100 | 12200 | 6720 | 1900 | 973 | 1440 | | 2 | 1090 | 1050 | 2150 | 5690 | 5020 | 1760 | 23600 | 10200 | 4460 | 2430 | 1030 | 1130 | | 3 | 1060 | 1040 | 1770 | 5460 | 9910 | 1650 | 22400 | 8200 | 2460 | 2930 | 1220 | 991 | | 4 | 1040 | 1050 | 1550 | 5080 | 12400 | 1640 | 21600 | 6510 | 1840 | 4300 | 1160 | 929 | | 5 | 1050 | 1050 | 1410 | 4790 | 14200 | 1670 | 21300 | 6100 | 1630 | 4770 | 1060 | 888 | | 6 | 1120 | 1070 | 1330 | 4740 | 16300 | 1800 | 21500 | 6620 | 1540 | 4770 | 988 | 890 | | 7 | 1090 | 1040 | 1290 | 4480 | 17100 | 1770 | 22100 | 7880 | 1480 | 4390 | 922 | 886 | | 8 | 1560 | 1050 | 1380 | 3350 | 17800 | 1680 | 23900 | 10400 | 1390 | 3070 | 906 | 885 | | 9 | 1770 | 1050 | 1510 | 2770 | 18400 | 1640 | 24700 | 12300 | 1420 | 2340 | 915 | 954 | | 10 | 1350 | 1030 | 1810 | 2900 | 18800 | 1590 | 24500 | 13600 | 1680 | 2100 | 910 | 938 | | 11 | 1170 | 1050 | 1710 | 3310 | 19000 | 1560 | 24100 | 14200 | 1770 | 1630 | 938 | 1290 | | 12 | 1170 | 1080 | 2480 | 3350 | 18000 | 1640 | 23600 | 13300 | 2070 | 1430 | 1090 | 2240 | | 13 | 2120 | 1190 | 3010 | 3700 | 13300 | 1660 | 23000 | 12200 | 2130 | 1430 | 3290 | 1930 | | 14 | 5880 | 1310 | 3230 | 3920 | 7860 | 1560 | 22500 | 12100 | 2250 | 2010 | 4220 | 1360 | | 15 | 8810 | 1730 | 2750 | 2710 | 5200 | 1530 | 22500 | 12400 | 2120 | 3780 | 2930 | 1100 | | 16 | 9950 | 1690 | 5330 | 1890 | 4010 | 1510 | 22700 | 12800 | 1870 | 3140 | 1650 | 1000 | | 17 | 8560 | 1460 | 13100 | 1600 | 2630 | 1540 | 23000 | 12900 | 1990 | 2620 | 1310 | 942 | | 18 | e5430 | 1260 | 16800 | 1520 | 2200 | 1870 | 22900 | 12300 | 1910 | 7180 | 1850 | 865 | | 19 | e4080 | 1230 | 19200 | 1490 | 2130 | 1850 | 22300 | 11500 | 2430 | 8570 | 1650 | 873 | | 20 | e3130 | 1210 | 22600 | 1490 | 3110 | 3950 | 21600 | 11400 | 2580 | 6500 | 1260 | 1070 | | 21 | e2450 | 1250 | 36800 | 1470 | 4580 | 9410 | 20900 | 11300 | 1950 | 4360 | 1110 | 1110 | | 22 | e1950 | 1290 | 53200 | 1460 | 4220 | 14000 | 20400 | 9640 | 1440 | 2570 | 1040 | 1920 | | 23 | e1540 | 1210 | 51900 | 1470 | 3270 | 16200 | 20400 | 7000 | 1280 | 1680 | 1070 | 2260 | | 24 | 1380 | 1140 | 46800 | 1490 | 2440 | 17500 | 20400 | 5740 | 1260 | 1360 | 1050 | 1640 | | 25 | 1310 | 1100 | 42100 | 1580 | 2150 | 18600 | 20300 | 5390 | 1340 | 1230 | 982 | 1210 | | 26
27
28
29
30
31 | 1250
e1180
e1140
1090
1060
1050 | 1090
1100
1330
1620
1750 | 37800
32300
22800
11300
6590
6520 | 2790
5850
6470
4450
2530
1950 | 1990
1860
1780
 | 19600
20700
22100
23600
24900
26300 | 19900
19000
17300
15200
13700 | 4620
4380
3540
4020
5550
6640 | 1230
1150
1150
1260
1500 | 1150
1080
1020
985
971
1000 | 932
920
944
1060
2000
2020 | 1060
959
869
823
808 | | TOTAL | 78020 | 36570 | 454460 | 102080 | 231700 | 248550 | 646400 | 286930 | 59300 | 88696 | 43400 | 35260 | | MEAN | 2517 | 1219 | 14660 | 3293 | 8275 | 8018 | 21550 | 9256 | 1977 | 2861 | 1400 | 1175 | | MAX | 9950 | 1750 | 53200 | 6470 | 19000 | 26300 | 25100 | 14200 | 6720 | 8570 | 4220 | 2260 | | MIN | 1040 | 1030 | 1290 | 1460 | 1780 | 1510 | 13700 | 3540 | 1150 | 971 | 906 | 808 | | AC-FT | 154800 | 72540 | 901400 | 202500 | 459600 | 493000 | 1282000 | 569100 | 117600 | 175900 | 86080 | 69940 | | STATIS | TICS OF | MONTHLY MI | EAN DATA F | OR WATER | YEARS 192 | 25 - 2002 | , BY WATE | R YEAR (WY |) | | | | | MEAN | 2443 | 3646 | 5225 | 5269 | 6477 | 7872 | 7861 | 11400 | 7781 | 2720 | 1259 | 1459 | | MAX | 14250 | 25900 | 33280 | 31870 | 35060 | 40450 | 45710 | 56050 | 33550 | 15240 | 7050 | 7361 | | (WY) | 1974 | 1975 | 1992 | 1998 | 1932 | 1945 | 1945 | 1990 | 1957 |
1941 | 1982 | 1962 | | MIN | 85.0 | 100 | 146 | 166 | 222 | 242 | 278 | 812 | 151 | 74.2 | 62.7 | 62.8 | | (WY) | 1925 | 1925 | 1926 | 1940 | 1925 | 1925 | 1925 | 1971 | 1925 | 1925 | 1925 | 1930 | # 08065000 Trinity River near Oakwood, TX--Continued | SUMMARY STATISTICS | FOR 2001 CALENDAR YE | CAR FOR 2002 WAT | TER YEAR | WATER YEARS | 1925 - 2002 | |--------------------------|----------------------|------------------|----------|-------------|-------------| | ANNUAL TOTAL | 3734946 | 2311366 | | | | | ANNUAL MEAN | 10230 | 6333 | | 5276 | | | HIGHEST ANNUAL MEAN | | | | 15240 | 1992 | | LOWEST ANNUAL MEAN | | | | 657 | 1925 | | HIGHEST DAILY MEAN | 55600 Mar | 6 53200 | Dec 22 | 153000 | Apr 29 1942 | | LOWEST DAILY MEAN | 873 Aug | 11 808 | Sep 30 | 28 | Nov 1 1924 | | ANNUAL SEVEN-DAY MINIMUM | 893 Aug | 7 910 | Sep 4 | 38 | Aug 19 1925 | | MAXIMUM PEAK FLOW | | 54800 | Dec 22 | 153000 | Apr 29 1942 | | MAXIMUM PEAK STAGE | | 45.07 | Dec 22 | 51.64 | Apr 29 1942 | | ANNUAL RUNOFF (AC-FT) | 7408000 | 4585000 | | 3822000 | = | | 10 PERCENT EXCEEDS | 33400 | 20400 | | 15000 | | | 50 PERCENT EXCEEDS | 3230 | 1990 | | 1510 | | | 90 PERCENT EXCEEDS | 1040 | 1040 | | 310 | | ### e Estimated ### 08065200 Upper Keechi Creek near Oakwood, TX LOCATION.--Lat 31°34′11", long 95°53′17", Leon County, Hydrologic Unit 12030201, at right bank at downstream side of bridge on U.S. Highway 79, 1.9 mi upstream from Missouri Pacific Railroad Co. bridge, 2.0 mi southwest of Oakwood, 11 mi upstream from Buffalo Creek, and 21 mi upstream from mouth. DRAINAGE AREA.--150 mi². PERIOD OF RECORD.--Apr. 1962 to current year. Water-quality records.--Chemical data: June 1962 to Apr. 1964, Nov. 1967 to Sept. 1975. water quarrey records. Chemical data tune 1702 to Apr. 1707, Nov. 1707 to Sept. 1773. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 240.11 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, about 21 ft in 1932, from information by local residents. | | | DISCHARGE : | FROM DCP, | CUBIC FEE | | OND, WAT
MEAN VA | | CTOBER 200 | 1 TO SE | PTEMBER 20 | 02 | | |---|--|--|--|--|--|--|--|---|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.7
1.7
1.6
1.5
4.8 | 7.8
9.0
9.5
11
12 | 49
29
23
22
20 | 26
26
26
25
44 | 56
58
35
29
54 | 29
30
29
27
26 | 272
327
87
47
37 | 14
13
12
12
12 | 104
27
19
15
13 | 16
84
91
156
192 | 0.03
0.03
0.03
0.04
0.03 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 36
68
17
8.7
6.7 | 11
11
12
14
16 | 19
18
36
63
51 | 115
89
45
36
33 | 204
351
430
120
57 | 26
27
28
30
29 | 34
34
262
302
385 | 11
11
9.8
8.8
8.4 | 14
11
9.0
9.1 | 34
16
8.1
5.3
3.9 | 0.04
0.05
0.04
0.03
0.03 | 0.00
0.00
0.00
0.07
0.10 | | 11
12
13
14
15 | 8.4
40
109
159
218 | 17
18
17
16
16 | 41
169
295
508
250 | 32
29
27
26
25 | 44
38
36
34
33 | 27
28
27
27
27 | 169
63
47
40
40 | 7.7
6.1
5.7
5.3
5.0 | 12
9.4
7.9
6.9
5.9 | 3.1
2.3
1.8
1.5 | 0.03
0.03
0.02
0.00
0.00 | 0.07
0.05
0.04
0.05
0.04 | | 16
17
18
19
20 | 76
20
14
11
10 | 19
17
16
16
18 | 503
2270
975
532
178 | 25
25
25
26
28 | 31
30
29
45
165 | 26
29
135
83
207 | 39
34
31
28
26 | 4.7
23
84
121
32 | 6.8
9.7
9.6
8.4
6.7 | 2.2
4.4
17
7.8
3.9 | 0.00
0.00
0.00
0.00 | 0.06
0.09
0.12
0.60
0.93 | | 21
22
23
24
25 | 9.6
9.3
8.5
8.0
7.6 | 19
17
18
18 | 78
60
53
43
37 | 28
27
28
33
35 | 371
317
70
47
39 | 291
448
142
56
46 | 24
23
24
23
21 | 15
8.9
6.6
5.6
5.2 | 5.8
5.3
5.1
4.6
4.3 | 2.3
1.4
0.95
0.61
0.49 | 0.00
0.00
0.00
0.00
0.00 | 0.34
0.36
0.34
0.41
0.51 | | 26
27
28
29
30
31 | 6.9
6.9
6.1
5.5
5.8
6.3 | 17
16
40
126
128 | 34
32
30
32
29
27 | 34
30
26
27
27
29 | 33
30
29
 | 40
35
33
35
94
279 | 19
18
18
18
16 | 5.0
4.8
39
138
217
249 | 5.9
7.2
7.7
8.1
12 | 0.23
0.13
0.07
0.06
0.04
0.03 | 0.00
0.00
0.00
0.00
0.00 | 0.67
0.81
0.83
0.86
0.90 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 893.6
28.83
218
1.5
1770
0.19
0.22 | 700.3
23.34
128
7.8
1390
0.16
0.17 | 6506
209.9
2270
18
12900
1.40
1.61 | 1057
34.10
115
25
2100
0.23
0.26 | 2815
100.5
430
29
5580
0.67
0.70 | 2396
77.29
448
26
4750
0.52
0.59 | 2508
83.60
385
16
4970
0.56
0.62 | 1100.6
35.50
249
4.7
2180
0.24
0.27 | 382.4
12.75
104
4.3
758
0.08
0.09 | 658.11
21.23
192
0.03
1310
0.14
0.16 | 0.43
0.014
0.05
0.00
0.9
0.00 | 8.25
0.275
0.93
0.00
16
0.00
0.00 | | STATIST | rics of | MONTHLY ME. | | | | | | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 43.43
371
1974
0.000
1964 | 54.84
513
1975
0.000
1964 | 110.6
878
1992
0.36
1964 | 107.1
614
1999
4.03
1964 | 122.2
425
1997
8.28
1964 | 125.4
461
1973
8.79
1996 | 114.3
574
1966
8.41
1971 | 136.3
1413
1965
1.82
1972 | 65.69
517
1976
0.48
1963 | 12.68
128
1981
0.000
1964 | 5.379
54.5
1979
0.000
1963 | 13.97
246
1974
0.000
1963 | | SUMMAR | Y STATIS | STICS | FOR | 2001 CALEN | DAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEAR | RS 1962 - | 2002 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILLY MEAN LOWEST DAILLY MEAN LOWEST DAILLY MEAN LOWEST DAILLY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 0.09 | Dec 17
Aug 15
Aug 10 | | 0.0
0.0
2900 | Dec 17
0 Aug 14
0 Aug 14
Dec 17
2 Dec 17 | | 0.0
0.0
24000 | 2
Jan 29
0 Aug 5
0 Aug 5
May 16
9 Jan 29 | 1962
1962
1965 | | 08065200 Upper Keechi Creek near Oakwood, TX--Continued ### 08065330 Houston County Lake near Crockett, TX LOCATION.--Lat 31°24′24", long 95°36′06", Houston County, Hydrologic Unit 12030201, at Houston County Water Control and Improvement District No. 1 pump station on Little Elkhart Creek, 10 miles northwest of Crockett. DRAINAGE AREA. -- 49 mi². PERIOD OF RECORD. -- May 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The lake is formed by a rolled earthfill dam 1,250 ft long, including a 500-ft uncontrolled spillway. Deliberate impoundment began in Nov. 1966. The uncontrolled spillway is an excavated channel cut through natural ground and located at the right end of the dam. The low-flow outlet consists of an 18-inch concrete pressure pipe through the dam with valve on the upstream side. Water is used for municipal and industrial purposes in the area. There are no known diversions. The dam is owned by the Houston County WC&ID No. 1. In 2000, levels were used to determine elevations from NGVD of 1929. The reference elevation was found to differ from the TWDB published value by -0.60 ft. Conservation pool storage is 17,665 acre-ft. Data regarding the dam use the datum from TWDB Report 126 and are given in the following table: | | Elevation | |--------------------------------|-----------| | | (feet) | | Top of dam | 277.0 | | Crest of uncontrolled spillway | 265.0 | | Top of conservation pool | 259.5 | | Lowest gated outlet | 234.0 | COOPERATION.--The capacity table, furnished by the Texas Water Development Board, dated Mar. 11, 1999, is from a Jan. 1999 survey. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 23,450 acre-ft, June 8, 2001, elevation, 264.87 ft; minimum contents, 15,540 acre-ft, Oct. 15, 2000, elevation, 258.21 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 19,280 acre-ft, Dec. 17, elevation, 261.36 ft; minimum contents, 17,120 acre-ft, Sept. 7, 8, elevation, 259.54 ft. RESERVOIR STORAGE FROM DCP, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP |
----------------------------------|--|---|--|--|-----------------------------|--|---|--|---|--|--|---| | 1 | 17800 | 17860 | 18170 | 18000 | 18030 | 17940 | 18280 | 17840 | 18040 | 17850 | 17570 | 17250 | | 2 | 17780 | e17880 | 18130 | 17980 | 18020 | 17930 | 18230 | 17830 | 18000 | 17850 | 17560 | 17240 | | 3 | 17770 | e17880 | 18100 | 17970 | 18010 | 17920 | 18170 | 17820 | 17950 | 17890 | 17540 | 17220 | | 4 | 17770 | e17870 | 18080 | 17960 | 18000 | 17910 | 18110 | 17810 | 17910 | 17880 | 17520 | 17200 | | 5 | 17890 | e17870 | 18060 | 18040 | 18070 | 17910 | 18070 | 17800 | 17910 | 17850 | 17530 | 17180 | | 6 | 18310 | 17860 | 18050 | 18140 | 18240 | 17920 | 18030 | 17780 | 17880 | 17830 | 17520 | 17160 | | 7 | 18330 | 17860 | 18030 | 18130 | 18260 | 17930 | 18010 | 17780 | 17840 | 17820 | 17510 | 17140 | | 8 | 18240 | 17860 | 18080 | 18100 | 18210 | 17940 | 18370 | 17760 | 17830 | 17810 | 17490 | 17210 | | 9 | 18170 | 17860 | 18080 | 18090 | 18170 | 17940 | 18490 | 17760 | 17850 | 17780 | 17470 | 17280 | | 10 | 18120 | 17860 | 18060 | 18080 | 18120 | 17930 | 18400 | 17750 | 17900 | 17760 | 17490 | 17280 | | 11 | 18190 | 17870 | 18070 | 18070 | 18090 | 17920 | 18310 | 17730 | 17920 | 17730 | 17460 | 17280 | | 12 | 18330 | 17870 | 18290 | 18050 | 18070 | 17930 | 18240 | 17710 | 17870 | 17710 | 17450 | 17270 | | 13 | 18520 | 17870 | 18330 | 18030 | 18050 | 17930 | 18180 | 17700 | 17830 | 17730 | 17430 | 17260 | | 14 | 18700 | 17870 | 18310 | 18020 | 18030 | 17930 | 18140 | 17690 | 17810 | 17780 | 17420 | 17260 | | 15 | 18570 | 17870 | 18360 | 18000 | 18020 | 17940 | 18100 | 17670 | 17750 | 17770 | 17400 | 17250 | | 16 | 18410 | 17870 | 18640 | 18000 | 18010 | 17930 | 18070 | 17660 | 17790 | 17840 | 17390 | 17240 | | 17 | 18280 | 17870 | 19190 | 18000 | 18000 | 17940 | 18040 | 17770 | 17790 | 17940 | 17380 | 17240 | | 18 | 18200 | 17870 | 19070 | 17990 | 17990 | 18000 | 18020 | 17950 | 17770 | 17930 | 17380 | 17240 | | 19 | 18140 | 17870 | 18790 | 18030 | 18030 | 18010 | 18000 | 17940 | 17750 | 17900 | 17360 | 17270 | | 20 | 18090 | 17860 | 18590 | 18060 | 18100 | 18140 | 17970 | 17900 | 17730 | 17870 | 17350 | 17340 | | 21 | 18060 | 17860 | 18450 | 18050 | 18100 | 18160 | 17950 | 17880 | 17720 | 17840 | 17330 | 17340 | | 22 | 18030 | 17850 | 18360 | 18050 | 18080 | 18120 | 17940 | 17850 | 17710 | 17820 | 17320 | 17320 | | 23 | 18020 | 17870 | 18300 | 18050 | 18060 | 18080 | 17930 | 17820 | 17700 | 17790 | 17310 | 17300 | | 24 | 18000 | 17870 | 18240 | 18050 | 18030 | 18050 | 17910 | 17810 | 17700 | 17770 | 17290 | 17270 | | 25 | 17960 | 17860 | 18180 | 18050 | 18020 | 18040 | 17890 | 17790 | 17690 | 17740 | 17270 | 17250 | | 26
27
28
29
30
31 | 17930
17900
17880
17870
17870
17860 | 17870
17890
18080
18230
18220 | 18130
18100
18080
18060
18030
18010 | 18030
18020
18010
18010
18020
18030 | 17970
17960
17950
 | 18010
17990
17980
17990
18040
18290 | 17870
17860
17870
17870
17850 | 17780
17770
17890
18020
18140
18090 | 17710
17770
17780
17790
17820 | 17710
17680
17650
17630
17610
17590 | 17260
17290
17310
17300
17280
17260 | 17230
17210
17200
17190
17180 | | MEAN | 18100 | 17900 | 18270 | 18040 | 18060 | 17990 | 18070 | 17820 | 17820 | 17790 | 17400 | 17240 | | MAX | 18700 | 18230 | 19190 | 18140 | 18260 | 18290 | 18490 | 18140 | 18040 | 17940 | 17570 | 17340 | | MIN | 17770 | 17850 | 18010 | 17960 | 17950 | 17910 | 17850 | 17660 | 17690 | 17590 | 17260 | 17140 | | (+) | 260.16 | 260.47 | 260.29 | 260.31 | 261.24 | 260.52 | 260.16 | 260.36 | 260.13 | 259.94 | 259.66 | 259.59 | | (@) | +60 | +360 | -210 | +20 | -80 | +340 | -440 | +240 | -270 | -230 | -330 | -80 | CAL YR 2001 MAX 23140 MIN 17360 (@) -510 WTR YR 2002 MAX 19190 MIN 17140 (@) -620 e Estimated ⁽⁺⁾ Elevation, in feet, at end of month. ^(@) Change in contents, in acre-feet. 08065330 Houston County Lake near Crockett, TX--Continued ### 08065350 Trinity River near Crockett, TX LOCATION.--Lat 31°20′18", long 95°39′22", Houston-Leon County line, Hydrologic Unit 12030201, on left bank at an abandoned bridge abutment near left end of an abandoned lock and dam, 1,000 ft upstream from State Highway 7, 6.9 mi downstream from Upper Keechi Creek, 11.9 mi west of Crockett, and at mile 265.4. DRAINAGE AREA.--13,911 mi^2 . #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Jan. 1964 to current year. GAGE.--Water-stage recorder. Datum of gage is 141.15 ft above NGVD of 1929. Prior to Oct. 13, 1983, water-stage recorder at site 1,000 ft downstream at datum 4.56 ft lower. Satellite telemeter at station. REMARKS.--Records fair. Since installation of gage in water year 1964, at least 10% of contributing drainage area has been regulated. There are many diversions above station for irrigation, municipal, and industrial uses. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1900, 56.1 ft, Apr. 30 or May 1, 1942, at former site and datum, from information by Texas Department of Transportation. DISCHARGE From DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | 1 | DISCHARGE | From DCP, | CORIC F | | COND, WA
Y MEAN V | | OCTOBER 20 | OI TO SE | PTEMBER 20 | 02 | | |----------|---------------|--------------|---------------------|--------------|--------------------------------------|----------------------|------------------------------|-------------------------------------|--------------|--------------|----------------------------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1660 | 1400 | 1850 | 6570 | 2200 | 2110 | 24000 | 13300 | 7190 | 1980 | 952 | 1890 | | 2 | 1540 | 1410 | 1850 | 5720 | 2500 | 2120 | 23100 | 11700 | 6250 | 2390 | 919 | 1510 | | 3 | 1460 | 1420 | 1770 | 5370 | 6190 | 2080 | 22100 | 9540 | 3890 | 2830 | 1050 | 1200 | | 4
5 | 1430 | 1430 | 1560 | 4700
4910 | 10700 | 2010
2000 | 21200 | 7250
5740 | 2630 | 3140 | 1290 | 996
904 | | 5 | 1740 | 1470 | 1410 | 4910 | 13000 | 2000 | 20300 | | 2300 | 3900 | 1220 | | | 6
7 | 3020
2490 | 1480
1480 | 1310
1300 | 5320
4830 | 15900
17300 | 2050
2120 | 19700
19600 | 5650
6280 | 2170
2090 | 4170
4260 | 1060
953 | 846
851 | | 8 | 1880 | 1460 | 1300 | 4090 | 17500 | 2110 | 21300 | 8210 | 2000 | 3720 | 851 | 892 | | 9 | 2410 | 1470 | 1360 | 3190 | 17900 | 2080 | 23400 | 10900 | 2030 | 2830 | 825 | 958 | | 10 | 2320 | 1470 | 1400 | 2860 | 18400 | 2030 | 23400 | 12500 | 2200 | 2500 | 846 | 1010 | | 11 | 2010 | 1470 | 1540 | 3050 | 18700 | 1990 | 22900 | 13600 | 2230 | 2270 | 843 | 947 | | 12 | 2070 | 1490 | 2730 | 3240 | 18400 | 2000 | 22500 | 13800 | 2260 | 1980 | 864 | 1550 | | 13 | 4340 | 1520 | 3510 | 3260 | 16900 | 2070 | 21900 | 12900 | 2380 | 1860 | 1400 | 2070 | | 14 | 7410 | 1570 | 3190 | 3530 | 12400 | 2040 | 21200 | 12100 | 2410 | 1850 | 2920 | 1820 | | 15 | 9160 | 1640 | 3350 | 3330 | 7120 | 1960 | 20600 | 12100 | 2450 | 2540 | 3050 | 1460 | | 16 | 10300 | 1780 | 6790 | 2580 | 4500 | 1900 | 20400 | 12400 | 2360 | 3240 | 2300 | 1190 | | 17
18 | 10700
8030 | 1740 | 14100 | 2200
2070 | 3340
2600 | 1870 | 20400 | 13000 | 2270 | 2830 | 1670
1550 | 1050
958 | | 19 | 3770 | 1630
1550 | 19100
21400 | 2070 | 2420 | 2140 | 20500
20400 | 13300
12700 | 2330
2330 | 3410
7130 | 1880 | 958
872 | | 20 | 2660 | 1530 | 21600 | 2060 | 2800 | 1970
2140
2670 | 20100 | 12100 | 2670 | 7270 | 1670 | 961 | | 21 | 2230 | 1520 | 22000 | 2040 | 3580 | 5320 | 19600 | 12100 | 2550 | 4950 | 1400 | 1220 | | 22 | 2040 | 1570 | e26900 | 2030 | 4270 | 10900 | 19200 | 11600 | 2120 | 3250 | 1210 | 1330 | | 23 | 1930 | 1620 | e31500 | e2020 | 3880 | 14400 | 18900 | 9250 | 1810 | 2340 | 1130 | 2010 | | 24 | 1770 | 1550 | 36600 | e2040 | 3240 | 16100 | 18800 | 6580 | 1670 | 1850 | 1140 | 2040 | | 25 | 1550 | 1500 | 38200 | e2500 | 3580
4270
3880
3240
2740 | 17100 | 18800 | 5510 | 1640 | 1600 | 1110 | 1650 | | 26 | 1470 | 1480 | 38300 | e3000 | 2400 | 17600 | 18700 | 4870 | 1680 | 1450 | 991 | 1320 | | 27 | 1420 | 1490 | 36200 | e3500 | 2250 | 18100 | 18400 | 3820 | 1770 | 1320 | 918 | 1110 | | 28 | 1410 | 1810 | 32000 | 6100 | 2150 | 18800 | 17600 | 3290 | 1660 | 1180 | 965 | 933 | | 29 | 1410 | 2500 | 25000 | 5430 | | 19700 | 16300 | 3210
4290 | 1610 | 1080 | 980 | 804 | | 30
31 | 1400
1410 | 2080 | 14000
7460 | 3430
2460 | | 20700
23200 | 14800 | 5940 | 1760
 | 993
944 | 1270
2000 | 730
 | | TOTAL | 98440 | 47530 | 420580 | 109470 | 235280 | 223240 | 610100 | 289530 | 74710 | 87057 | 41227 | 37082 | | MEAN | 3175 | 1584 | 13570 | 3531 | 8403 | 7201 | 20340 | 9340 | 2490 | 2808 | 1330 | 1236 | | MAX | 10700 | 2500 | 38300 | 6570 | 18700 | 23200 | 24000 | 13800 | 7190 | 7270 | 3050 | 2070 | | MIN | 1400 | 1400 | 1300 | 2020 | 2150 | 1870 | 14800 | 3210 | 1610 | 944 | 825 | 730 | | AC-FT | 195300 | 94280 | 834200 | 217100 | 466700 | 442800 | 1210000 | 574300 | 148200 | 172700 | 81770 | 73550 | | STATIS | TICS OF | MONTHLY ME | EAN DATA F | OR WATER | YEARS 196 | 4 - 2002 | 2, BY WATI | ER YEAR (WY | 7) | | | | | MEAN | 3160 | 5566 | 7595 | 6545 | 8145 | 10450 | 9115 | 12880 | 9298 | 3311 | 1790 | 1795 | | MAX | 16840 | 26110 | 35440 | 33620 | 30490 | 39700 | 25960 | 62100 | 29570 | 15030 | 7188 | 6932 | | (WY) | 1974 | 1975 | 1992
719
1967 |
1992 | 1992 | 2001 | 1977 | 1990 | 1989 | 1989 | 1982 | 1974 | | MIN | 548 | 619 | 719 | 514 | 670 | 730 | 931 | 939 | 822 | 374 | 413 | 513 | | (WY) | 1979 | 1967 | 1967 | 1964 | 1967 | 1967 | 1972 | 1971 | 1971 | 1964 | 1967 | 1972 | | SUMMAR | Y STATIS | rics | FOR | 2001 CAL | ENDAR YEAR | | FOR 2002 | WATER YEAR | 2 | WATER YEAR | RS 1964 - | 2002 | | ANNUAL | TOTAL | | | 3849563 | | | 2274246 | | | | | | | ANNUAL | | | | 10550 | | | 6231 | | | 6745 | May 10
Aug 12
Aug 10 | | | | T ANNUAL | | | | | | | | | 16810 | | 1992 | | LOWEST | ANNUAL I | MEAN | | E9400 | Max 0 | | 20200 | Dog 26 | | 1352 | Morr 10 | 1971 | | LOMEGE | DATES M | ALT WIN | | 984 | Mar 12 | | 30300
730 | Sen 30 |) | 278 | May 10 | 1990 | | ANNIJAT. | SEVEN-D | AY MINTMIN | M | 1010 | Aug 12 | | 38300
730
892
38700 | Aug 6 | | 293 | Aua 10 | 1964 | | MAXIMU | M PEAK FI | LOW | | | | | 38700 | Dec 25 | ; | 109000 | May 10 | T990 | | MAXIMU | M PEAK S | TAGE | | | | | 40 | .11 Dec 25 | j | 48.5 | 4 May 10 | 1990 | | ANNUAL | RUNOFF | (AC-FT) | | 7636000 | | | 4511000 | | | 4886000 | | | | 10 PER | CENT EXC | EEDS | | 30500 | | | 19100 | | | 19200 | | | | 50 PER | CENT EXC | EEDS | | 4090 | | | 2340 | Dec 26
Sep 36
Aug 6
Dec 25 | | 2450 | | | | 90 PER | CENT EXC | TEDS | | 1260 | | | 1160 | | | 765 | | | e Estimated 08065350 Trinity River near Crockett, TX--Continued #### 08065350 Trinity River near Crockett, TX--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD.-CHEMICAL DATA: Feb. 1964 to current year. BIOCHEMICAL DATA: Feb. 1968 to current year. PESTICIDE DATA: Nov. 1971 to July 1981. SEDIMENT DATA:: Nov. 1972 to Sept. 1977. PERIOD OF DAILY RECORD. -- RIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Feb. 1964 to current year. pH: Mar. 1975 to current year. WATER TEMPERATURE: Feb. 1964 to Sept. 1971, Mar. 1975 to current year. DISSOLVED OXYGEN: Mar. 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1972 to Sept. 1977. INSTRUMENTATION .-- Water-quality monitor since Mar. 1975. REMARKS.--Records fair. Interruptions in the record were caused by malfunctions of the instrument. Mean monthly and annual concentrations and loads for selected chemical constituents have been computed for previous years using the daily (or continuous) records of specific conductance and a regression relation between each chemical constituent and specific conductance. The computation of the selected constituent loads might include estimated discharge or specific conductance data. Regression equations developed for this station may be obtained from the U.S. Geological Survey Texas District Office EXTREMES FOR PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Maximum, 2,370 microsiemens/cm, Sept. 22, 1964; minimum, 89 microsiemens/cm, June 8, 2001. pH: Maximum, 9.6 units, Aug. 11-12, 1981; minimum, 5.9 units, Aug. 12, 1977. WATER TEMPERATURE: Maximum, 37.0°C, July 4, 1970, Sept. 4, 1978; minimum, 1.0°C, Jan. 17, 1978, Nov. 24, 1984. DISSOLVED OXYGEN: Maximum, 19.3 mg/L, Feb. 10, 1981; minimum, 0.0 mg/L, Apr. 20, 1976. EXTREMES FOR CURRENT YEAR. -- SPECIFIC CONDUCTANCE: Maximum, 820 microsiemens/cm, Dec. 31; minimum, 142 microsiemens/cm, July 19. pH: Maximum, 8.5 units, Mar. 12, 13; minimum, 6.4 units, Dec. 13. WATER TEMPERATURE: Maximum, 32.7°C, Aug. 4, 6; minimum, 7.8°C, Nov. 30, Jan. 6, 8. DISSOLVED OXYGEN: Maximum, 13.1 mg/L, Mar. 13; minimum, 4.6 mg/L, June 1. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | Time | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |--|--|---|--|---|---|---|---|---|--|--|--|--|--| | FEB | 1004 | 15400 | 240 | | 0.0 | 550 | 10.4 | 0.0 | 0.0 | 100 | 20 | 10.0 | 2.52 | | 07
MAR | 1204 | 17400 | 340 | 7.9 | 8.8 | 770 | 10.4 | 89 | 2.3 | 120 | 32 | 40.8 | 3.69 | | 27
MAY | 1615 | 18200 | 328 | 7.8 | 15.0 | 766 | 8.1 | 80 | 2.2 | 120 | 25 | 41.9 | 3.46 | | 14
JUN | 1515 | 12000 | 342 | 7.7 | 24.3 | 765 | 8.3 | 99 | 2.1 | 120 | 23 | 41.3 | 3.13 | | 17
JUL | 1622 | 2260 | 572 | 7.7 | 29.0 | 760 | 6.6 | 86 | 1.5 | 160 | 47 | 55.1 | 5.72 | | 17
AUG | 0842 | 2900 | 520 | 7.7 | 28.3 | 762 | 6.3 | 81 | 2.6 | 150 | 48 | 50.6 | 5.26 | | 30 | 1200 | 1190 | 618 | 7.9 | 29.0 | 763 | 7.3 | 95 | 1.6 | 160 | 63 | 54.6 | 6.02 | | | | | | | | | | | | | | | | | Date | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | FEB 07 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | | FEB
07
MAR
27 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | FEB
07
MAR
27
MAY
14 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | FEB
07
MAR
27
MAY
14
JUN
17 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
18.3 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.32
4.47 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
40.8 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) | | FEB 07 MAR 27 MAY 14 JUN | DIS-
SOLVED
(MG/L
AS NA)
(00930)
18.3
15.2 | AD-SORP-
TION RATIO (00931) |
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.32
4.47
4.25 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
85
94
93 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
40.8
36.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
19.8
15.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.3
5.9
6.5 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
.94
.67 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
.014
.024 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.95
.70 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .05 .05 | # 08065350 Trinity River near Crockett, TX--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | AS P) | (MG/L
AS P) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | |-----------|-------|--|-------|----------------|--| | FEB | | | | | | | 07
MAR | .37 | .42 | .10 | .08 | .245 | | MAR
27 | .39 | .44 | .08 | .07 | .227 | | MAY | | 2.5 | | 1.0 | 210 | | 14
JUN | | .36 | .11 | .10 | .310 | | 17 | | .60 | .51 | .49 | 1.50 | | JUL
17 | | .54 | . 46 | . 47 | 1.44 | | AUG | | | . 10 | . 1/ | 1,11 | | 30 | | .42 | .69 | .65 | 1.98 | Remark codes used in this report: < -- Less than SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 517 | 483 | 500 | 581 | 555 | 568 | 463 | 376 | 436 | 433 | 393 | 407 | | 2 | 516 | 507 | 510 | 595 | 579 | 585 | 510 | 463 | 485 | 442 | 374 | 408 | | 3 | 515 | 499 | 508 | 610 | 595 | 602 | 586 | 509 | 544 | 374 | 296 | 319 | | 4 | 519 | 499 | 508 | 618 | 610 | 615 | 568 | 538 | 552 | 329 | 297 | 316 | | 5 | 544 | 472 | 519 | 624 | 618 | 622 | 568 | 561 | 565 | 340 | 329 | 334 | | 6 | 472 | 243 | 319 | 638 | 622 | 629 | 561 | 556 | 558 | 356 | 324 | 341 | | 7 | 395 | 353 | 376 | 638 | 636 | 637 | 562 | 550 | 557 | 348 | 326 | 340 | | 8 | 492 | 392 | 447 | 654 | 637 | 645 | 550 | 529 | 537 | 350 | 347 | 348 | | 9 | 535 | 492 | 519 | 671 | 654 | 661 | 533 | 520 | 524 | 349 | 348 | 348 | | 10 | 611 | 535 | 573 | 676 | 670 | 672 | 521 | 500 | 510 | 395 | 346 | 361 | | 11 | 629 | 558 | 591 | 679 | 672 | 675 | 508 | 457 | 500 | 407 | 395 | 403 | | 12 | 560 | 491 | 522 | 672 | 663 | 666 | 457 | 373 | 402 | 416 | 407 | 411 | | 13 | 534 | 283 | 413 | 669 | 663 | 665 | 380 | 285 | 316 | 419 | 409 | 414 | | 14 | 341 | 292 | 315 | 671 | 665 | 668 | 377 | 300 | 361 | 418 | 416 | 417 | | 15 | 586 | 312 | 454 | 689 | 670 | 678 | 392 | 293 | 357 | 416 | 410 | 414 | | 16 | 493 | 336 | 387 | 690 | 684 | 687 | 293 | 228 | 258 | 420 | 414 | 417 | | 17 | 336 | 309 | 317 | 685 | 672 | 677 | 287 | 226 | 251 | 435 | 420 | 424 | | 18 | 352 | 312 | 331 | 676 | 672 | 673 | 282 | 239 | 264 | 481 | 435 | 470 | | 19 | 367 | 343 | 358 | 675 | 656 | 665 | 243 | 201 | 222 | 541 | 481 | 521 | | 20 | 362 | 354 | 356 | 674 | 654 | 662 | 229 | 210 | 218 | 548 | 541 | 544 | | 21 | 362 | 337 | 345 | 674 | 575 | 630 | 248 | 229 | 237 | 561 | 548 | 555 | | 22 | 345 | 340 | 342 | 596 | 575 | 588 | 369 | 248 | 271 | 570 | 561 | 566 | | 23 | 353 | 339 | 344 | 588 | 581 | 585 | 449 | 369 | 417 | 581 | 568 | 574 | | 24 | 413 | 353 | 390 | 608 | 578 | 586 | 482 | 449 | 470 | 582 | 522 | 563 | | 25 | 447 | 413 | 431 | 615 | 583 | 605 | 537 | 482 | 513 | 550 | 511 | 526 | | 26
27
28
29
30
31 | 466
500
514
531
553
555 | 447
466
500
508
531
552 | 456
484
509
515
543
554 | 583
578
578
456
377 | 570
570
456
271
261 | 572
574
547
380
315 | 593
627
652
656
820
820 | 537
593
627
650
656
390 | 567
608
642
653
712
504 | 567
640
665
581
433
417 | 548
567
536
433
417
410 | 555
594
602
491
424
413 | | MONTH | 629 | 243 | 443 | 690 | 261 | 611 | 820 | 201 | 452 | 665 | 296 | 446 | 08065350 Trinity River near Crockett, TX--Continued SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPECIF | IC CONDUC | LIANCE | FROM DCP, | III US/CM | @ 25C, | WAIER YEA | R OCTOBER | 2001 10 | SEPTEMBER | 2002 | | |---|---|---|--|---|--|--|--|--|---|---|---|--| | DAY | MAX | MIN | MEAN | | DAI | MAA | MILIN | MEAN | MAA | MIIN | MEAN | MAIN | MILIN | MEAN | MAN | INITIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | | | | | | | | | | | | | | 1 | 413 | 408 | 411 | 568 | | 558 | 330 | | 322 | 540 | 476 | 501 | | 2 | 456 | 408 | 434 | 574 | | 567 | 330 | | 323 | 476 | 432 | 455 | | 3 | 521 | 386 | 467 | 568 | | 558 | 318 | | 309 | 432 | 421 | 425
429 | | 4
5 | 564
328 | 323
318 | 413
321 | 586
603 | | 577
592 | 295
300 | 291
291 | 293
295 | 441
448 | 420
441 | 445 | | 3 | 320 | 510 | 321 | 003 | 303 | 3,72 | 500 | 271 | 2,5 | 110 | | 113 | | 6 | 338 | 319 | 328 | 617 | | 609 | 321 | 300 | 309 | 455 | 448 | 452 | | 7 | 344 | 335 | 338 | 629 | | 622 | | | 332 | 453 | 447 | 449 | | 8 | 361 | 331 | 351 | 631 | | 630 | 340 | | 335 | 468 | 446 | 451 | | 9 | 334 | 322 | 330 | 628 | 617 | 621 | | 308 | 314 | 476 | 312 | 381 | | 10 | 324 | 320 | 322 | 628 | 620 | 623 | 331 | 311 | 324 | 345 | 320 | 333 | | 11 | 323 | 320 | 321 | 629 | 624 | 626 | 331 | 324 | 326 | 366 | 345 | 355 | | 12 | 332 | 320 | 325 | 634 | | 629 | 326 | | 318 | 374 | 366 | 370 | | 13 | 336 | 332 | 334 | 635 | 626 | 631 | | | 307 | 418 | 374 | 387 | | 14 | 338 | 329 | 331 | 626 | | 622 | 310 | 303 | 306 | 420 | 354 | 384 | | 15 | 360 | 338 | 355 | 626 | 613 | 620 | 333 | 310 | 321 | 389 | 351 | 367 | | 1.6 | 200 | 250 | 201 | 616 | 610 | 610 | 254 | 222 | 244 | 200 | 252 | 270 | | 16
17 | 399
415 | 359
399 | 381
404 | 616
625 | | 613
620 | 354
366 | | 344
361 | 382
379 | 373
364 | 379 | | 18 | 426 | 415 | 422 | 624 | 619 | 621 | 372 | | 369 | 381 | 369 | 371
375 | | 19 | 478 | 419 | 428 | 620 | 602 | 616 | | | 375 | 398 | 377 | 389 | | 20 | 483 | 470 | 477 | 602 | | 552 | | | 374 | 400 | 379 | 393 | | | | | | | | | | | | | | | | 21 | 522 | 470 | 496 | 537 | | 490 | | | 377 | 408 | 379 | 393 | | 22 | 498 | 409 | 456 | 517 | | 423 | 522 | 416 | 471 | 399 | 390 | 393 | | 23 | 433 | 380 | 416 | 409 | 336 | 379 | 584 | | 556 | 410 | 389 | 393 | | 24 | 393 | 380 | 386 | 336 | | 310 | 634 | | 609 | 442 | 410 | 427 | | 25 | 411 | 392 | 399 | 304 | 293 | 298 | 660 | 634 | 650 | 463 | 442 | 454 | | 26 | 423 | 411 | 418 | 307 | 298 | 301 | 672 | 656 | 665 | 463 | 456 | 459 | | 27 | 531 | 423 | 464 | 321 | | 315 | 680 | | 674 | 457 | 442 | 453 | | 28 | 549 | 531 | 539 | 338 | 321 | 330 | 685 | | 676 | | | | | 29 | | | | 355 | | 348 | 674 | | 658 | | | | | 30 | | | | 361 | 348 | 358 | 634 | | 594 | | | | | 31 | | | | 349 | 319 | 334 | | | | 428 | 396 | 410 | MONTH | 564 | 318 | 395 | 635 | 293 | 516 | 685 | 291 | 416 | | | | | MONTH | 564 | 318 | 395 | 635 | 293 | 516 | 685 | 291 | 416 | | | | | | | | | | | | | | | | | | | MONTH | 564
MAX | 318
MIN | 395
MEAN | 635
MAX | | 516
MEAN | | | 416
MEAN | MAX | MIN | MEAN | | | | | | | | | | | | | | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN | MEAN | MAX | MIN
SEPTEMB | MEAN
ER | | DAY
1 | MAX
426 | MIN
JUNE
339 | MEAN
369 | MAX | MIN
JULY | MEAN | MAX
481 | MIN
AUGUST
463 | MEAN
472 | MAX
678 | MIN
SEPTEMB | MEAN
ER
666 | | DAY
1
2 | MAX
426
392 | MIN
JUNE
339
353 | MEAN
369
375 |
MAX
 | MIN
JULY
 | MEAN
 | MAX
481
503 | MIN
AUGUST
463
481 | MEAN
472
489 | MAX
678
704 | MIN
SEPTEMB
654
670 | MEAN
ER
666
681 | | DAY 1 2 3 | MAX
426
392
424 | MIN
JUNE
339
353
392 | MEAN
369
375
409 | MAX
 | MIN
JULY
 | MEAN

 | MAX
481
503
518 | MIN
AUGUST
463
481
488 | MEAN
472
489
504 | MAX
678
704
731 | MIN
SEPTEMB
654
670
704 | MEAN
ER
666
681
718 | | DAY 1 2 3 4 | MAX
426
392
424 | MIN
JUNE
339
353
392 | MEAN
369
375
409 | MAX

 | MIN
JULY

 | MEAN

 | MAX
481
503
518
539 | MIN
AUGUST
463
481
488
505 | MEAN
472
489
504
519 | MAX
678
704
731
764 | MIN
SEPTEMB
654
670
704
728 | MEAN
ER
666
681
718
754 | | DAY 1 2 3 | MAX
426
392
424 | MIN
JUNE
339
353
392 | MEAN
369
375
409 | MAX
 | MIN
JULY
 | MEAN

 | MAX
481
503
518 | MIN
AUGUST
463
481
488
505 | MEAN
472
489
504 | MAX
678
704
731 | MIN
SEPTEMB
654
670
704 | MEAN
ER
666
681
718 | | DAY 1 2 3 4 | MAX
426
392
424 | MIN
JUNE
339
353
392 | MEAN
369
375
409 | MAX

 | MIN
JULY

 | MEAN

 | MAX
481
503
518
539 | MIN AUGUST 463 481 488 505 536 | MEAN
472
489
504
519 | MAX
678
704
731
764 | MIN
SEPTEMB
654
670
704
728 | MEAN ER 666 681 718 754 763 | | DAY 1 2 3 4 5 | MAX 426 392 424 485 488 | MIN JUNE 339 353 392 | MEAN 369 375 409 477 485 | MAX | MIN JULY | MEAN | 481
503
518
539
561
586
593 | MIN AUGUST 463 481 488 505 536 560 583 | MEAN 472 489 504 519 554 571 586 | MAX 678 704 731 764 764 762 684 | MIN SEPTEMB 654 670 704 728 761 684 525 | MEAN ER 666 681 718 754 763 739 595 | | DAY 1 2 3 4 5 6 7 8 | MAX 426 392 424 485 488 500 | MIN JUNE 339 353 392 471 482 487 | MEAN 369 375 409 477 485 492 | MAX | MIN JULY | MEAN | 481
503
518
539
561
586
593
606 | MIN AUGUST 463 481 488 505 536 560 583 590 | MEAN 472 489 504 519 554 571 586 597 | MAX 678 704 731 764 764 762 684 553 | MIN SEPTEMB 654 670 704 728 761 684 525 526 | MEAN ER 666 681 718 754 763 739 595 538 | | DAY 1 2 3 4 5 6 7 8 9 | MAX 426 392 424 485 488 500 507 | MIN JUNE 339 353 392 471 482 487 445 | MEAN 369 375 409 477 485 492 481 | MAX | MIN JULY | MEAN | 481
503
518
539
561
586
593
606
613 | MIN AUGUST 463 481 488 505 536 560 583 590 602 | MEAN 472 489 504 519 554 571 586 597 609 | 678
704
731
764
764
762
684
553
575 | MIN SEPTEMB 654 670 704 728 761 684 525 526 5526 | MEAN ER 666 681 718 754 763 739 595 538 566 | | DAY 1 2 3 4 5 6 7 8 | MAX 426 392 424 485 488 500 | MIN JUNE 339 353 392 471 482 487 | MEAN 369 375 409 477 485 492 | MAX | MIN JULY | MEAN | 481
503
518
539
561
586
593
606 | MIN AUGUST 463 481 488 505 536 560 583 590 602 | MEAN 472 489 504 519 554 571 586 597 | MAX 678 704 731 764 764 762 684 553 | MIN SEPTEMB 654 670 704 728 761 684 525 526 | MEAN ER 666 681 718 754 763 739 595 538 | | DAY 1 2 3 4 5 6 7 8 9 10 | 426
392
424

485
488
500
507
546 | MIN JUNE 339 353 392 471 482 487 445 468 | MEAN 369 375 409 477 485 492 481 517 | MAX 465 | MIN JULY 424 | MEAN | MAX
481
503
518
539
561
586
593
606
613
613 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 | MEAN 472 489 504 519 554 571 586 597 609 610 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 | MAX 426 392 424 485 488 500 507 546 | MIN JUNE 339 353 392 471 482 487 445 468 523 | MEAN 369 375 409 477 485 492 481 517 542 | MAX 465 | MIN JULY 424 | MEAN 435 | MAX
481
503
518
539
561
586
593
606
613
613 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 | MEAN 472 489 504 519 554 571 586 597 609 610 | 678
704
731
764
762
684
553
575
569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | 426
392
424

485
488
500
507
546
552
550 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 | MEAN 369 375 409 477 485 492 481 517 542 539 | MAX 465 444 369 | MIN JULY 424 337 278 | MEAN 435 383 325 | MAX
481
503
518
539
561
586
593
606
613
613
616 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 | 426
392
424

485
488
500
507
546
552
550
615 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 | MEAN 369 375 409 477 485 492 481 517 542 539 591 | MAX 465 444 369 298 | MIN JULY 424 337 278 256 | MEAN 435 383 325 281 | MAX 481 503 518 539 561 586 593 606 613 613 616 632 635 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 | 678
704
731
764
762
684
553
575
569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | 426
392
424

485
488
500
507
546
552
550 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 | MEAN 369 375 409 477 485 492 481 517 542 539 | MAX 465 444 369 | MIN JULY 424 337 278 | MEAN 435 383 325 | MAX
481
503
518
539
561
586
593
606
613
613
616 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 | 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 426
392
424

485
488
500
507
546
552
655
662 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 615 653 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 | MAX 465 444 369 298 356 406 | MIN JULY 424 337 278 256 295 251 | MEAN 435 383 325 281 316 331 | MAX
481
503
518
539
561
586
593
606
613
616
632
635
598
630 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 | 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 426
392
424

485
488
500
507
546
552
550
615
665
662 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 | MAX 465 444 369 298 356 406 | MIN JULY 424 337 278 256 295 251 | MEAN 435 383 325 281 316 331 | MAX
481
503
518
539
561
586
593
606
613
613
616
632
635
598
630 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 | 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 426
392
424
485
488
500
507
546
552
550
615
655
662 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 | MAX 465 444 369 298 356 406 | MIN JULY 424 337 278 256 295 251 213 223 | MEAN 435 383 325 281 316 331 234 232 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 | 784
704
731
764
762
684
553
575
569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 426
392
424

485
488
500
507
546
552
550
615
655
662
664
615
555 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 | MAX 465 444 369 298 356 406 255 234 235 | MIN JULY 424 337 278 256 295 251 213 223 184 | MEAN 435 383 325 281 316 331 234 232 217 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 | MEAN 472 489 504 519 554 571 586 597 609 610 612 622 583 616 503 482 526 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 426
392
424

485
488
500
507
546
552
550
615
665
662
664
615
555
578 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 | MAX 465 444 369 298 356 406 255 234 235 184 | MIN JULY 424 337 278 256 295 251 213 223 184 142 | MEAN 435 383 325 281 316 331 234 232 217 164 | MAX 481 503 518 539 561 586 593 606 613 613 616 632 635 598 630 597 531 534 551 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450
450 450 522 493 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 | 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 426
392
424

485
488
500
507
546
552
550
615
655
662
664
615
555 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 | MAX 465 444 369 298 356 406 255 234 235 | MIN JULY 424 337 278 256 295 251 213 223 184 | MEAN 435 383 325 281 316 331 234 232 217 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 450 522 493 | MEAN 472 489 504 519 554 571 586 597 609 610 612 622 583 616 503 482 526 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 426
392
424

485
488
500
507
546
552
550
615
665
662
664
615
555
578 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 | MAX 465 444 369 298 356 406 255 234 235 184 | MIN JULY 424 337 278 256 295 251 213 223 184 142 | MEAN 435 383 325 281 316 331 234 232 217 164 | MAX 481 503 518 539 561 586 593 606 613 613 616 632 635 598 630 597 531 534 551 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 452 493 471 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 | 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 426
392
424
488
500
507
546
552
550
615
665
662
664
615
555
578
588 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 551 572 | MAX 465 444 369 298 356 406 255 234 235 184 268 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 | MEAN 435 383 325 281 316 331 234 232 217 164 197 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534
551
493 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 450 452 493 471 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 | 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 426
392
424

485
488
500
507
546
552
550
615
655
662
664
615
555
578
588
583
599 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 550 582 583 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 551 572 569 589 | MAX 465 444 369 298 356 406 255 234 235 184 268 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534
551
493
491
525
566 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 452 493 471 472 490 518 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 504 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 426
392
424

485
488
500
507
546
552
550
615
665
662
664
615
555
578
588 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 582 582 583 585 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 551 572 569 589 588 597 | MAX 465 444 369 298 356 406 255 234 235 184 268 323 412 414 393 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 | MAX 481 503 518 539 561 586 593 606 613 616 632 635 598 630 597 531 534 551 493 491 525 566 627 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 504 510 | MAX 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 426
392
424

485
488
500
507
546
552
550
615
655
662
664
615
555
578
588
583
599 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 550 582 583 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 551 572 569 589 | MAX 465 444 369 298 356 406 255 234 235 184 268 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534
551
493
491
525
566 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 504 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 426
392
424
427
485
488
500
507
546
552
550
615
655
662
664
615
555
578
588
588
599
602
585 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 582 582 583 585 | MEAN 369 375 409 477 485 492 481 517 542 539 591 654 578 545 551 572 569 589 588 597 564 | MAX 465 444 369 298 356 406 255 234 235 184 268 323 412 414 393 370 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 332 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534
551
493
491
525
566
627
662 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 584 627 | MEAN 472 489 504 519 554 571 586 597 609 610 612 622 583 616 503 482 526 531 486 480 504 504 652 | MAX 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 426
392
424

485
488
500
507
546
552
550
615
665
662
664
615
555
578
588
588
599
602
585 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 550 582 582 583 585 552 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 551 572 569 589 589 587 564 | MAX 465 444 369 298 356 406 255 234 235 234 235 412 414 393 370 409 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 332 365 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 | MAX 481 503 518 539 561 586 593 606 613 616 632 635 598 630 597 531 534 551 493 491 525 566 627 662 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 584 627 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 542 610 652 | MAX 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | 426
392
424
427
485
488
500
507
546
552
550
615
655
662
664
615
555
578
588
588
599
602
585 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 5550 550 582 583 585 552 | MEAN 369 375 409 477 485 492 481 517 542 539 591 654 578 545 551 572 569 589 588 597 564 | MAX 465 444 369 298 356 406 255 234 235 184 235 184 268 323 412 414 393 370 409 461 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 388 323 365 401 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 | MAX 481 503 518 539 561 586 593 606 613 613 616 632 635 598 630 597 531 534 4551 493 491 525 566 627 662 666 643 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 584 627 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 542 610 652 | MAX 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 426
392
424

485
488
500
507
546
552
555
662
664
615
5578
588
583
596
599
602
585 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 535 535 550 582 583 585 552 | MEAN 369 375 409 477 485 492
481 517 542 539 591 633 657 654 578 545 551 572 569 588 597 564 | MAX 465 444 369 298 356 406 255 234 235 234 235 412 414 393 370 409 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 332 365 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 | MAX
481
503
518
539
561
586
593
606
613
613
632
635
598
630
597
531
534
551
493
491
525
566
627
662
666
643
596
643
596
643
659
666
667
668
668
668
669
669
669
669
669 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 584 627 | MEAN 472 489 504 519 554 571 586 597 609 610 612 622 583 616 503 482 526 531 486 480 504 504 612 652 666 611 588 | 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 754 763 739 595 538 566 564 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | 426
392
424
488
500
507
546
552
550
615
655
662
664
615
555
578
588
588
599
602
599
602
599 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 550 582 583 585 552 | MEAN 369 375 409 477 485 492 517 542 539 591 633 657 654 578 545 551 572 569 588 597 564 | MAX 465 444 369 298 356 406 255 234 235 184 268 323 412 414 393 370 409 461 474 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 388 323 365 401 431 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 384 444 443 454 | MAX 481 503 518 539 561 586 593 606 613 613 616 632 635 598 630 597 531 534 4551 493 491 525 566 627 662 666 643 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 450 522 493 471 472 490 518 584 627 643 585 586 604 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 542 610 652 | 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 426
392
424

485
488
500
507
546
552
550
615
655
662
664
615
578
588
583
596
602
585 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 550 582 582 583 585 552 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 551 572 569 589 588 597 564 | MAX 465 444 369 298 356 406 255 234 235 234 235 234 2414 393 370 409 461 474 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 332 365 401 431 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 384 443 454 | MAX 481 503 518 539 561 586 593 606 613 616 632 635 598 630 597 531 534 551 493 491 525 566 627 662 666 643 591 612 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 584 627 643 585 586 604 612 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 542 610 652 656 611 588 607 | 678 704 731 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 718 754 763 739 595 538 566 564 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 426
392
424

485
488
500
507
546
552
550
615
662
664
615
5578
588
588
596
599
602
585 | MIN JUNE 339 353 392 471 482 487 445 468 523 520 550 615 653 615 555 535 550 582 583 585 552 | MEAN 369 375 409 477 485 492 481 517 542 539 591 633 657 654 578 545 572 569 589 587 564 | MAX 465 444 369 298 356 406 255 234 235 184 268 323 412 414 393 370 409 461 474 | MIN JULY 424 337 278 256 295 251 213 223 184 142 143 268 323 388 323 332 365 401 431 | MEAN 435 383 325 281 316 331 234 232 217 164 197 303 371 402 357 353 384 443 454 | MAX
481
503
518
539
561
586
593
606
613
613
616
632
635
598
630
597
531
534
493
491
525
566
627
662
666
643
591
612
613
614
615
615
615
615
615
615
615
615 | MIN AUGUST 463 481 488 505 536 560 583 590 602 605 606 615 589 576 597 450 450 522 493 471 472 490 518 584 627 643 585 586 604 612 648 | MEAN 472 489 504 519 554 571 586 597 609 610 612 621 622 583 616 503 482 526 531 486 480 504 542 610 652 656 611 588 607 627 | 678 704 731 764 764 762 684 553 575 569 | MIN SEPTEMB 654 670 704 728 761 684 525 526 553 559 | MEAN ER 666 681 754 763 739 595 538 566 564 | 311 TRINITY RIVER BASIN 08065350 Trinity River near Crockett, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------|----------|---------------------------------|--------------------------|--|---------------------------------| | | OCT | OBER | NOVEN | MBER. | DECEM | BER . | JAN | JARY | FEBRU | JARY | MAI | RCH | | 1
2
3
4
5 | 7.6
7.7
7.9
8.0
7.9 | 7.4
7.4
7.5
7.7 | 7.4
7.5
7.6
7.7
7.8 | 7.1
7.1
7.0
7.3
7.3 | 7.1
7.3
7.4
7.4
7.5 | 6.5
6.5
6.9
7.0
7.2 |

 | |
 | | 7.5
7.5
7.6
7.6
7.7 | 7.1
7.2
7.1
6.9
7.0 | | 6
7
8
9
10 | 7.7
7.1
7.3
7.5
7.5 | 7.0
6.9
7.0
7.2
7.3 | 7.8
7.8
7.7
7.8
7.7 | 7.2
7.4
7.4
7.5
7.3 | 7.4
7.4
7.4
7.3
7.3 | 7.3
7.3
7.2
6.9 |

 | |

 |

 | 7.8
8.0
8.0
7.9 | 7.3
7.5
7.7
7.4 | | 11
12
13
14
15 | 7.3
7.2
7.2
7.1
7.3 | 7.2
7.1
7.0
7.0
7.1 | 7.7
7.7
7.7
7.7
7.6 | 7.5
7.3
7.5
7.3
7.5 | 7.3
7.2
7.1
7.1
7.1 | 6.6
6.8
6.4
6.5
6.8 |

 | |

 | | 8.5
8.3
8.3 |
7.9
8.0
7.7 | | 16
17
18
19
20 | 7.3
7.3
7.3
7.4
7.3 | 7.2
7.2
7.3
7.2
7.3 | 7.7
7.7
7.7
7.6
7.6 | 7.3
7.5
7.4
7.2
7.1 | 7.1
7.2
7.5
7.6 | 7.0
6.9
6.9
7.0 |

 | |

 |

 | 8.2
8.1
8.1
8.0
7.8 | 7.5
7.4
7.7
7.5
7.3 | | 21
22
23
24
25 | 7.5
7.5
7.3
7.2
7.2 | 7.3
7.4
7.1
7.0
7.1 | 7.6
7.6
7.7
7.7
7.7 | 7.0
7.5
7.5
7.2
7.2 |

 |

 |

 | | 7.5
7.5
7.5
7.5
7.5 | 7.3
7.2
7.3
7.3 | 7.5
7.5
7.5
7.5
7.5 | 6.9
6.9
7.0
6.9
6.8 | | 26
27
28
29
30
31 | 7.2
7.3
7.3
7.3
7.5
7.5 | 7.1
7.0
7.0
6.7
6.9
6.9 | 7.6

 | 7.3

 |

 |

 |

 |

 | 7.4
7.3
7.4
 | 6.9
6.9
6.9
 | 7.4
7.3
7.3
7.3
7.4
7.3 | 6.9
7.0
7.1
7.2
7.2 | | MONTH | 8.0 | 6.7 | | | | | | | | | | | 08065350 Trinity River near Crockett, TX--Continued PH, WH, FIELD FROM DCP, in (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|---------------------------------| | | APF | RIL | MA | Y | JUI | ΝE | JUL | Ϋ́ | AUGU | JST | SEPTE | MBER | | 1
2
3
4
5 | 7.3
7.3
7.3
7.4
7.4 | 7.2
7.1
7.2
7.1
7.1 | 7.4
7.5
7.6
7.6 | 7.2
7.3
7.0
7.5
7.5 | 7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.6
7.5
7.3 | 7.7
7.7
7.7
7.6
7.6 | 7.6
7.6
7.4
7.4
7.4 | 8.3
8.3
8.3
7.8 | 7.8
7.6
7.9
7.8
7.1 | 7.5
7.4
7.5
7.4
7.5 | 7.2
7.2
7.1
7.2
7.2 | | 6
7
8
9
10 | 7.5

 | 7.3

 | 7.6
7.6
7.6
7.5
7.4 | 7.5
7.6
7.5
7.4
7.4 | 7.5
7.6
7.6
7.6
7.7 | 7.4
7.5
7.5
7.5
7.5 | 7.4
7.4
7.5
7.5 | 7.3
7.3
7.3
7.3
7.1 | 7.2
7.6
7.6
7.4
7.6 | 7.0
7.0
7.2
7.2
7.2 | 7.5
7.4
7.4
7.6
7.8 | 7.2
7.2
7.2
7.2
7.3 | | 11
12
13
14
15 |

 |

 | 7.5
7.5
7.5
7.5
7.5 | 7.4
7.4
7.4
7.4
7.4 | 7.6
7.6
7.8
7.7 | 7.5
7.5
7.6
7.7
7.7 | 7.3
7.2
7.3
7.2
7.3 | 7.2
7.2
7.2
7.2
7.2 | 7.5
7.8
7.7
7.4
7.2 | 7.2
7.3
7.4
7.2
7.1 | 7.8
7.8
7.7
7.6
7.4 | 7.2
7.6
7.6
7.4
7.4 | | 16
17
18
19
20 |

 |

 | 7.6
7.6
7.5
7.6
7.6 | 7.5
7.5
7.5
7.5
7.5 | 7.7
7.7
7.7
7.7
7.7 | 7.7
7.7
7.7
7.7
7.7 | 7.3
7.2
7.3
7.3 | 7.2
7.2
7.2
7.1
7.1 | 7.2
7.3
7.3
7.4
7.4 | 7.0
7.0
7.1
7.1
7.2 | 7.4
7.4
7.6
7.6
7.7 | 7.3
7.3
7.3
7.4
7.4 | | 21
22
23
24
25 | 7.7

7.7
7.7 | 7.6

7.5
7.5 | 7.6
7.6
7.6
7.6
7.6 | 7.5
7.5
7.5
7.5
7.5 | 7.7
7.7
7.7
7.7
7.7 | 7.7
7.7
7.6
7.6
7.6 | 7.3
7.3
7.3
7.3
7.4 | 7.1
7.1
7.1
7.1
7.1 | 7.5
7.6
7.8
7.8
7.9 | 7.2
7.2
7.3
7.3
7.4 |
7.8
7.9
7.9
7.7
7.6 | 7.5
7.7
7.7
7.5
7.4 | | 26
27
28
29
30
31 | 7.7
7.6
7.5
7.6
7.5 | 7.4
7.4
7.2
7.3
7.3 | 7.7
7.7
7.7
7.6
7.6
7.5 | 7.6
7.6
7.6
7.5
7.5 | 7.8
7.7
7.7
7.7
7.7 | 7.6
7.5
7.5
7.6
7.6 | 7.5
7.6
7.6
7.8
8.1
8.2 | 7.1
7.2
7.3
7.3
7.6
7.7 | 8.0
7.6
8.0
8.0
7.6
7.9 | 7.4
7.5
7.4
7.4
7.4
7.3 | 7.4
7.5
7.5
7.4
7.5 | 7.4
7.4
7.4
7.3
7.3 | | MONTH | | | 7.7 | 7.0 | 7.8 | 7.3 | 8.2 | 7.1 | 8.3 | 7.0 | 7.9 | 7.1 | TRINITY RIVER BASIN 313 # 08065350 Trinity River near Crockett, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|--|---|--|---|---|--|---|--|--|--|--| | | | OCTOBER | | | NOVEMBER | | Ι | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 23.8
23.6 | 22.3
22.1
22.1
22.6
22.8 | 23.1
22.9
22.9
23.2
23.4 | 19.3
20.2
20.9
21.0
20.8 | 18.0
19.1
19.6
19.8
19.7 | | 10.9
11.5
12.1
13.6
14.8 | 10.8 | 10.4
11.1
11.7
12.9
14.3 | 9.7
9.3
8.9
8.4
8.3 | 9.5
8.9
8.4
8.0 | 9.6
9.1
8.6
8.2
8.2 | | 6
7
8
9
10 | 22.8
21.0
21.5
21.7
22.5 | 19.9 | 21.2
20.5
20.7
21.2
22.1 | 20.4
20.0
19.9
19.8
19.4 | 19.2
19.0
19.0
19.3
19.0 | 19.9
19.6
19.5
19.6
19.2 | 15.9
16.8
16.8
15.8
14.7 | 14.8
15.8
15.8
14.7
13.8 | 15.3
16.4
16.5
15.2
14.3 | 8.1
8.4
8.4
9.3
10.3 | 7.8
7.9
7.8
8.2
9.3 | 8.1 | | 11
12
13
14
15 | 22.7
22.3
22.2
19.9
21.4 | 21.6
19.9
19.0 | 22.5
22.0
21.1
19.5
20.6 | 19.5
19.5
19.7
19.9
19.7 | 18.7
19.0
18.8
19.0
19.2 | 19.1
19.3
19.2
19.4
19.4 | 13.8
13.2
13.2
12.7
12.3 | 12.8
12.6
12.7
12.2
11.8 | 13.3
12.9
13.0
12.4
12.0 | 10.6
11.0
10.9
10.8
10.4 | 10.2 | 10.6 | | 16
17 | 21.0
19.4
18.7
19.1
19.6 | 18.5
18.0
18.2 | 20.1
18.8
18.4
18.6
19.1 | 19.5
19.6
19.6
19.1
18.3 | 19.2
19.0
18.7
18.3
17.1 | 19.4
19.3
19.1
18.8
17.7 | 14.7
15.0
14.6
13.5
12.9 | | 13.0
14.7
13.7
13.1
12.4 | | 9.9
10.4
10.7
10.6
10.1 | 10.6
10.7
10.8 | | 21
22
23
24
25 | 22.0 | 19.8
20.8
21.7 | | 17.1
16.8
17.7
18.1
17.6 | | | 12.0
11.9
12.0
11.7
11.1 | | 11.7
11.6
11.9
11.5
10.8 | | 10.0
10.4
11.2
11.9
11.2 | 10.4
10.8
11.9
12.5
11.6 | | 26
27
28
29
30
31 | 21.6
20.8
20.1
19.2
18.8
18.5 | 19.8
19.0
18.1
17.5 | | | 16.7
15.9
11.8
8.3
7.8 | | 10.5
9.7
9.7
9.8
9.9
9.8 | | | | 10.9
11.3
12.5 | 11.3
11.2
11.7
12.9
13.1
13.7 | | MONTH | 23.9 | 17.4 | 20.7 | 21.0 | 7.8 | 18.0 | 16.8 | 9.3 | 12.4 | 13.9 | 7.8 | 10.4 | | 11011111 | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | MEAN | | | 13.3
12.2
12.4
12.6 | FEBRUARY | | | MARCH | | | APRIL | | MAX 23.5 24.3 24.3 24.6 24.5 | MAY | MEAN 22.7 23.9 24.2 24.1 24.3 | | DAY 1 2 3 4 5 6 7 8 9 | 13.3
12.2
12.4
12.6
10.0
9.1
9.0
9.0
9.0 | 12.2
11.8
11.5
10.0
9.1
8.7
8.6
8.6
8.7
8.5 | 12.7
12.0
11.9
11.3
9.4 | | MARCH
11.2
9.8
8.7
8.3
8.7 | | 16.7
17.2
17.2
17.2
17.1 | 16.4
16.4
17.0
16.8
16.7 | 16.6
16.8
17.1
17.0
16.9 | | MAY 22.2 23.5 24.0 23.7 24.1 | 22.7
23.9
24.2
24.1
24.3
24.1
23.9 | | DAY 1 2 3 4 5 6 7 8 9 10 | 13.3
12.2
12.4
12.6
10.0
9.1
9.0
9.0
9.0 | 12.2
11.8
11.5
10.0
9.1 | 12.7
12.0
11.9
11.3
9.4
8.8
8.8
8.8
8.8 | 11.5
11.5
9.8
9.7
10.2 | MARCH
11.2
9.8
8.7
8.3
8.7
9.6
10.9
12.6
13.7
13.2 | 11.4
10.9
9.3
9.0
9.4
10.4
11.9
13.2
14.1 | 16.7
17.2
17.2
17.2
17.1 | APRIL 16.4 17.0 16.8 16.7 16.3 16.2 16.1 16.4 17.1 | 16.6
16.8
17.1
17.0
16.9
16.4
16.5
16.3
16.8
17.4 | 23.5
24.3
24.3
24.6
24.5 | MAY 22.2 23.5 24.0 23.7 24.1 23.8 23.6 23.3 23.8 24.0 | 22.7
23.9
24.2
24.1
24.3
24.1
23.9
23.8
24.0
24.4 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 | 13.3
12.2
12.4
12.6
10.0
9.1
9.0
9.0
9.0
9.0
9.0
9.0 | FEBRUARY 12.2 11.8 11.5 10.0 9.1 8.7 8.6 8.6 8.7 8.5 8.6 8.7 9.7 10.1 10.2 | 12.7
12.0
11.9
11.3
9.4
8.8
8.8
8.8
8.8
8.8
8.8
9.0
9.4 | 11.5
9.8
9.7
10.2
11.0
12.7
13.8
14.6
14.3
13.7
14.7
15.5
16.6 | MARCH 11.2 9.8 8.7 8.3 8.7 9.6 10.9 12.6 13.7 13.2 13.5 13.8 14.8 16.5 | 11.4
10.9
9.3
9.0
9.4
10.4
11.9
13.7
13.6
14.0
15.8 | 16.7
17.2
17.2
17.2
17.1
16.7
16.5
17.2
17.6
18.3
19.3
20.1
20.9 | APRIL 16.4 17.0 16.8 16.7 16.3 16.2 16.1 17.1 17.4 18.2 19.2 20.0 | 16.6
16.8
17.1
17.0
16.9
16.4
16.3
16.8
17.4
17.8
18.6
19.6
20.4 | 23.5
24.3
24.6
24.5
24.6
24.1
24.2
24.2
24.8
25.2
25.5
25.4 | MAY 22.2 23.5 24.0 23.7 24.1 23.8 23.6 23.3 23.8 24.0 24.6 24.8 24.9 23.9 | 22.7
23.9
24.2
24.1
24.3
24.1
23.9
23.8
24.0
24.4
24.9
25.1
25.1
24.2 | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 | 13.3
12.2
12.4
12.6
10.0
9.1
9.0
9.0
9.0
9.0
9.0
9.1
9.7
10.5
10.9
10.8
11.6 | FEBRUARY 12.2 11.8 11.5 10.0 9.1 8.7 8.6 8.6 8.7 8.5 8.6 8.7 9.0 9.7 10.1 10.2 10.7 11.6 12.4 13.1 13.8 | 12.7
12.0
11.9
11.3
9.4
8.8
8.8
8.8
8.8
8.9
9.4
10.1
10.5
10.6
11.1
12.0 | 11.5
9.8
9.7
10.2
11.0
12.7
13.8
14.6
14.3
13.7
14.7
15.5
16.6
17.8
17.3
17.1
17.9
18.4 | MARCH 11.2 9.8 8.7 8.3 8.7 9.6 10.9 12.6 13.7 13.2 13.5 13.5 13.8 14.8 16.5 16.8 16.6 16.9 17.6 | 11.4
10.9
9.3
9.0
9.4
10.4
11.9
13.7
13.6
14.0
15.8
17.1
17.0
16.9
17.4
18.1 | 16.7
17.2
17.2
17.2
17.1
16.7
16.5
17.2
17.6
18.3
19.3
20.1
20.9
21.5
21.7
21.9
22.3
22.9 | APRIL 16.4 17.0 16.8 16.7 16.3 16.2 16.1 17.4 18.2 19.2 20.0 20.7 21.2 21.4 21.5 22.1 | 16.6
16.8
17.1
17.0
16.9
16.4
16.3
16.8
17.4
17.8
18.6
20.4
21.1
21.4
21.6
21.9
22.5 | 23.5
24.3
24.6
24.5
24.6
24.1
24.2
24.2
24.2
25.5
25.4
24.9
24.3
24.4
24.0
23.1
23.0 | MAY 22.2 23.5 24.0 23.7 24.1 23.8 23.6 23.3 23.8 24.0 24.6 24.8 24.9 23.9 23.8 22.7 22.7 | 22.7
23.9
24.2
24.1
24.3
24.1
23.8
24.0
24.4
24.9
25.1
25.1
24.2
24.1
24.0
23.5
22.8 | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 13.3
12.2
12.4
12.6
10.0
9.1
9.0
9.0
9.0
9.0
9.1
9.7
10.5
10.9
10.8
11.6
12.5
13.5 | FEBRUARY 12.2 11.8 11.5 10.0 9.1 8.7 8.6 8.6 8.7 8.5 8.6 8.5 8.7 9.0 9.7 10.1 10.2 10.7 11.6 12.4 13.1 13.8 13.2 13.0 13.6 11.8 | 12.7
12.0
11.9
11.3
9.4
8.8
8.8
8.8
8.8
9.0
9.4
10.1
10.5
10.6
11.1
12.0
12.9
13.5
14.0
13.6 | 11.5
9.8
9.7
10.2
11.0
12.7
13.8
14.6
14.3
13.7
14.7
15.5
16.6
17.8
17.3
17.1
17.9
18.4
18.1 | MARCH 11.2 9.8 8.7 8.3 8.7 9.6 10.9 12.6 13.7 13.2 13.5 13.8 14.8 16.5 16.8 16.6 17.4 16.9 17.6 17.4 | 11.4
10.9
9.3
9.0
9.4
10.4
11.9
13.7
13.6
14.1
15.8
17.1
17.0
16.9
17.4
18.1
17.8 | 16.7
17.2
17.2
17.2
17.1
16.7
16.5
17.2
17.6
18.3
19.3
20.1
20.9
21.5
21.7
21.9
22.3
22.9
23.1 | APRIL 16.4 17.0 16.8 16.7 16.3 16.2
16.1 17.1 17.4 18.2 19.2 20.0 20.7 21.2 21.4 21.5 22.5 22.5 22.6 22.1 22.1 | 16.6
16.8
17.1
17.0
16.9
16.4
16.3
16.8
17.4
17.8
18.6
19.6
20.4
21.1
21.4
21.6
21.9
22.5
22.8
22.8
22.7
22.4 | 23.5
24.3
24.6
24.5
24.6
24.1
24.2
24.2
24.8
25.2
25.5
25.4
24.9
24.3
24.9
24.3
24.9
24.3
24.9
24.3 | MAY 22.2 23.5 24.0 23.7 24.1 23.8 23.6 23.3 23.8 24.0 24.6 24.8 24.9 23.9 23.8 22.9 23.8 22.9 22.3 22.3 | 22.7
23.9
24.2
24.1
24.3
24.1
23.9
24.0
24.4
24.9
25.1
24.2
24.1
24.0
23.5
22.6
22.6
22.6
22.5
22.5
22.5 | DAILY MEAN WATER TEMPERATURE, IN DEGREES CENTIGRADE 08065350 Trinity River near Crockett, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | 1 | 25.6 | 24.6 | 25.2 | 28.4 | 27.4 | 27.8 | 32.3 | 30.9 | 31.6 | 30.1 | 28.9 | 29.5 | | 2 | 26.3 | 25.4 | 25.9 | 28.6 | 27.4 | 27.9 | 32.6 | 30.9 | 31.8 | 30.1 | 29.1 | 29.6 | | 3 | 27.1 | 26.0 | 26.5 | 28.9 | 27.7 | 28.2 | 32.5 | 31.3 | 31.9 | 30.2 | 28.9 | 29.6 | | 4 | 27.8 | 26.5 | 27.1 | 29.1 | 27.7 | 28.4 | 32.7 | 30.9 | 31.8 | 29.9 | 29.1 | 29.5 | | 5 | 28.6 | 27.0 | 27.7 | 29.1 | 28.3 | 28.7 | 32.2 | 30.5 | 31.5 | 30.2 | 28.8 | 29.5 | | 6 | 29.2 | 27.6 | 28.4 | 28.8 | 27.7 | 28.3 | 32.7 | 30.9 | 31.8 | 29.9 | 29.0 | 29.4 | | 7 | 29.8 | 28.3 | 29.0 | 29.2 | 28.3 | 28.7 | 32.6 | 31.2 | 31.9 | 29.3 | 28.6 | 28.9 | | 8 | 29.9 | 28.8 | 29.3 | 29.8 | 28.8 | 29.3 | 32.2 | 31.2 | 31.7 | 28.7 | 28.0 | 28.3 | | 9 | 29.4 | 28.4 | 28.8 | 30.6 | 29.3 | 29.9 | 31.8 | 31.0 | 31.3 | 28.7 | 27.8 | 28.2 | | 10 | 30.2 | 28.3 | 29.2 | 31.2 | 29.7 | 30.4 | 31.8 | 30.7 | 31.2 | 29.1 | 27.7 | 28.4 | | 11 | 30.1 | 29.0 | 29.6 | 31.6 | 30.1 | 30.9 | 31.9 | 30.4 | 31.1 | 29.3 | 27.9 | 28.7 | | 12 | 30.6 | 29.3 | 30.0 | 31.5 | 30.7 | 31.0 | 31.7 | 30.5 | 31.1 | 29.5 | 28.0 | 28.8 | | 13 | 31.0 | 29.8 | 30.3 | 31.6 | 30.3 | 30.8 | 31.7 | 30.2 | 30.9 | 29.4 | 28.5 | 29.0 | | 14 | 30.7 | 29.7 | 30.1 | 30.3 | 29.2 | 29.7 | 30.8 | 30.2 | 30.5 | 29.6 | 28.8 | 29.2 | | 15 | 30.1 | 29.3 | 29.7 | 29.2 | 28.8 | 28.9 | 30.3 | 28.5 | 29.5 | 29.0 | 28.2 | 28.6 | | 16 | 29.3 | 28.5 | 28.9 | 29.0 | 28.5 | 28.8 | 28.7 | 27.8 | 28.3 | 28.2 | 27.4 | 27.8 | | 17 | 29.2 | 27.9 | 28.6 | 29.2 | 28.2 | 28.6 | 29.7 | 28.0 | 28.8 | 27.9 | 27.0 | 27.4 | | 18 | 29.3 | 28.1 | 28.7 | 29.4 | 28.4 | 28.9 | 30.4 | 28.9 | 29.6 | 28.0 | 27.2 | 27.7 | | 19 | 29.5 | 28.2 | 28.8 | 28.8 | 27.7 | 28.1 | 30.6 | 29.2 | 29.9 | 27.9 | 27.5 | 27.6 | | 20 | 29.4 | 28.8 | 29.0 | 28.5 | 27.3 | 27.9 | 30.9 | 29.4 | 30.1 | 28.0 | 26.6 | 27.3 | | 21 | 29.6 | 28.4 | 28.9 | 29.8 | 28.4 | 29.1 | 31.3 | 29.6 | 30.4 | 27.7 | 26.0 | 26.9 | | 22 | 29.8 | 28.4 | 29.1 | 30.7 | 29.4 | 30.0 | 31.4 | 29.7 | 30.6 | 27.4 | 25.9 | 26.7 | | 23 | 29.6 | 28.6 | 29.0 | 31.5 | 30.2 | 30.8 | 31.5 | 30.0 | 30.8 | 26.9 | 25.9 | 26.3 | | 24 | 30.1 | 28.3 | 29.1 | 32.2 | 30.5 | 31.3 | 31.6 | 30.1 | 30.9 | 26.2 | 25.4 | 25.8 | | 25 | 30.3 | 28.6 | 29.4 | 32.5 | 30.8 | 31.6 | 32.0 | 30.4 | 31.2 | 26.0 | 24.9 | 25.4 | | 26
27
28
29
30
31 | 30.2
29.0
29.4
29.0
28.1 | 28.7
27.6
27.5
28.1
27.7 | 29.4
28.3
28.4
28.5
27.8 | 32.3
32.1
31.9
32.1
32.2
32.4 | 30.8
30.8
30.5
30.4
30.8
30.9 | 31.6
31.5
31.2
31.3
31.5
31.6 | 31.9
31.3
30.7
30.2
29.8
30.0 | 30.5
29.8
29.1
28.9
28.6
28.6 | 31.2
30.4
29.8
29.5
29.3 | 26.0
26.0
26.1
26.3
26.5 | 24.7
24.3
24.5
24.8
25.3 | 25.3
25.2
25.3
25.5
25.9 | | MONTH | 31.0 | 24.6 | 28.6 | 32.5 | 27.3 | 29.8 | 32.7 | 27.8 | 30.6 | 30.2 | 24.3 | 27.7 | | YEAR | 32.7 | 7.8 | 20.7 | | | | | | | | | | TRINITY RIVER BASIN 315 08065350 Trinity River near Crockett, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | MAX | | | MAX | MIN | | MAX | MIN | MEAN | |---|---|--|--|--|--|--|--|--|--|---|--|--| | | | OCTOBER | | | NOVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 9.3
9.7
10.4
11.1
9.6 | 8.4
8.6
8.8
8.9
8.2 | 8.9
9.1
9.5
9.7
8.9 | 9.4
9.0
9.2
10.0
10.3 | 8.6
8.3
8.1
8.1 | 9.0
8.6
8.5
9.0
9.5 | 12.0
12.0
11.4
11.9
10.8 | 11.3
10.9 | 11.7
11.6
11.2
10.9
10.4 | 11.5
11.9
11.4 | 10.8
10.9
10.8 | 11.1
11.2
11.1 | | 6
7
8
9
10 | 8.2
7.2
7.6
7.8
7.2 | 6.5
6.4
6.3
6.8
5.7 | 7.0
6.9
6.9
7.2
6.3 | 10.6
10.7
10.2
10.2
9.6 | 9.0
9.1
9.2
8.9
8.7 | 9.7
9.7
9.6
9.5
9.1 | 10.2
9.7
9.9
10.3
10.7 | 9.6
9.1
9.0
9.1
9.6 | 9.9
9.4
9.2
9.6
9.9 | 12.6
11.9
11.9
11.4
10.6 | 10.6
10.6
11.0
10.6
10.2 | 11.3
11.1
11.3
11.0
10.4 | | 11
12
13
14
15 | 6.2
6.3
7.1
 | 5.6
5.9
5.7
 | 6.0
6.2
6.4
 | 9.8
9.4
9.3
9.6
9.4 | 8.7
8.7
8.6
8.6
8.5 |
9.1
8.9
8.9
8.9 | 10.7
11.2
10.0
11.0
11.1 | 9.5
9.8 | 10.5
10.5
9.8
10.3
10.5 | 11.3
11.1
10.7
10.6
10.9 | 10.1
9.9
9.9
10.2
10.4 | 10.4
10.4
10.4
10.4
10.6 | | 16
17
18
19
20 |

 |

 |

 | 9.3
9.3
10.0
9.7
9.8 | 9.0
8.8
8.7
8.7 | 9.1
9.0
9.1
9.0
9.3 | 10.8
9.2
 | 9.2
8.7
 | 9.1
 | 10.9
10.8
10.6
10.3
10.4 | 10.2
10.1
10.0
9.9
9.8 | 10.5
10.4
10.2
10.1 | | 21
22
23
24
25 | 8.8
8.6
8.5
8.3 | 8.1
8.1
7.4
7.9 | 8.6
8.5
8.1
8.1 | 10.0
10.0
10.0
10.0
10.1 | 9.0
9.4
9.5
9.4
9.4 | 9.5
9.7
9.7
9.7
9.7 |

 |

 |

 | 11.0
10.9
10.9
10.2
10.4 | 10.1
10.2
9.7
9.6
9.6 | 10.4
10.5
10.2
9.8
10.0 | | 26
27
28
29
30
31 | 8.6
8.9
9.8
9.7
10.1
9.9 | 8.1
8.3
8.7
8.9
9.2
8.7 | 8.3
8.6
9.0
9.3
9.6
9.3 | 9.9
9.9
11.9
12.3
12.7 | 9.1
9.5 | 9.6
9.5
10.2
11.6
12.1 |

 |

 |

 | 10.4
10.5
10.4
9.7
9.5
9.6 | 9.9
9.9
9.1
8.6
9.0 | 10.1
10.2
9.7
8.9
9.2
9.2 | | MONTH | | | | 12.7 | 8.1 | 9.5 | | | | | | | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3 | 9.5 | | 0 0 | 10.1 | 9.5 | 0.7 | 0 1 | 7.3 | 7.5 | | | | | 4
5 | 9.8
10.0
9.8
10.5 | 9.0
9.3
9.3
8.6
9.7 | 9.3
9.5
9.6
9.2 | 10.3
11.1
11.4
11.5 | 9.4
9.9
10.6 | 9.7
9.8
10.5
10.9
11.0 | 8.1
8.5
8.1
8.1
8.6 | 7.5
7.5
7.6
7.8 | 7.8
7.8
7.7
8.0 | 6.6
6.7
6.8 | 6.5
6.6
6.6 | 6.6
6.6
6.7 | | | 10.0
9.8 | 9.3
9.3
8.6
9.7
9.9
9.8
9.8 | 9.5
9.6
9.2 | 10.3
11.1
11.4 | 9.4
9.9
10.6
10.6
10.5
10.3
9.5
9.1 | 9.8
10.5
10.9 | 8.5
8.1
8.1 | 7.5
7.5
7.6 | 7.8
7.7 |
6.6
6.7 | 6.5
6.6 | 6.6
6.6 | | 5
6
7
8
9
10
11
12 | 10.0
9.8
10.5
10.6
10.4
10.9
10.9
11.3 | 9.3
9.3
8.6
9.7
9.9
9.8
10.0
10.2 | 9.5
9.6
9.2
10
10.2
10.0
10.2
10.3 | 10.3
11.1
11.4
11.5
11.5
12.0
10.5
10.8
11.7 | 9.4
9.9
10.6
10.6
10.5
10.3
9.5
9.1
9.4 | 9.8
10.5
10.9
11.0
10.9
10.8
10.2
9.9 | 8.5
8.1
8.6
8.4
8.8
9.4
8.6 | 7.5
7.5
7.6
7.8
7.9
8.0
7.9
7.7
7.7 | 7.8
7.7
8.0
8.1
8.3
8.2
7.9 | 6.6
6.7
6.8
7.0
7.0
6.9
6.6 | 6.5
6.6
6.6
6.8
6.9
6.5
5.3
5.5 | 6.6
6.7
6.9
7.0
6.7
5.8 | | 5
6
7
8
9
10
11
12
13
14 | 10.0
9.8
10.5
10.6
10.4
10.9
11.3
10.6
10.8
11.6
10.7 | 9.3
9.3
8.6
9.7
9.9
9.8
10.0
10.2 | 9.5
9.6
9.2
10
10.2
10.0
10.2
10.3
10.6
10.3
10.3
10.3 | 10.3
11.1
11.4
11.5
11.5
12.0
10.5
10.8
11.7
10.5
12.3
13.1
12.7 | 9.4
9.9
10.6
10.6
10.5
10.3
9.5
9.1
9.4
9.5
9.0
10.3 | 9.8
10.5
10.9
11.0
10.8
10.2
9.9
10.4
10.1
10.5
11.7
11.3 | 8.5
8.1
8.6
8.4
8.8
9.4
8.6
8.7
9.3
8.2
8.3 | 7.5
7.5
7.6
7.8
7.9
8.0
7.9
7.7
7.7
7.5
7.4
7.2 | 7.8
7.7
8.0
8.1
8.3
8.2
7.9
7.9
7.9 | 6.6
6.7
6.8
7.0
7.0
6.9
6.6
5.8
6.0
6.0
6.1
6.1 | 6.5
6.6
6.6
6.9
6.5
5.3
5.9
5.9
5.5 | 6.6
6.6
6.7
6.9
7.0
6.7
5.8
5.7
5.9
6.0
5.8 | | 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 10.0
9.8
10.6
10.4
10.9
10.9
11.3
10.6
10.8
11.6
10.7
10.7 | 9.3
9.3
8.6
9.7
9.9
9.8
10.0
10.2
10.0
9.9
10.0
9.9
10.1
10.2
9.9 | 9.5
9.6
9.2
10
10.2
10.3
10.3
10.3
10.3
10.3
10.3
10.4
10.2 | 10.3
11.1
11.4
11.5
11.5
12.0
10.5
10.8
11.7
10.5
12.3
13.1
12.7
11.7 | 9.4
9.9
10.6
10.6
10.5
10.3
9.5
9.1
9.4
9.5
9.0
10.3
10.4
9.7 | 9.8
10.5
10.9
11.0
10.8
10.2
9.9
10.4
10.1
10.5
11.7
11.3
10.6
9.9
9.3
9.3 | 8.5
8.1
8.6
8.4
8.8
9.4
8.6
8.7
9.3
8.2
8.3
8.0
7.5
7.3
7.2
7.3 | 7.5
7.6
7.8
7.9
8.0
7.9
7.7
7.7
7.9
7.5
7.4
7.2
6.8
6.7
6.8
6.7 | 7.8
7.7
8.0
8.1
8.3
8.2
7.9
7.9
7.9
7.5
7.1
7.0
7.0
7.1 | 6.6
6.7
6.8
7.0
7.0
6.9
6.6
5.8
6.0
6.1
6.1
6.4
6.6
6.6
6.6
6.6 | 6.5
6.6
6.8
6.5
5.3
5.8
5.9
5.5
6.3
6.4
6.5
6.5 | 6.6
6.6
6.7
6.9
7.0
6.7
5.8
5.7
5.9
6.0
5.8
6.5
6.6
6.6 | | 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 10.0
9.8
10.5
10.6
10.4
10.9
10.9
11.3
10.6
10.7
10.7
10.7
10.7
10.5
10.3
9.7
9.3
9.3
9.4 | 9.3
9.3
8.6
9.7
9.9
9.8
10.0
10.0
9.9
10.1
10.2
9.9
9.9
10.1
10.2
9.9
9.8
9.8 | 9.5
9.6
9.2
10.0
10.2
10.3
10.3
10.3
10.3
10.3
10.3
10.4
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10. | 10.3
11.1
11.4
11.5
11.5
12.0
10.5
10.8
11.7
10.5
12.3
13.1
12.7
11.7
10.6
10.1
10.5
9.3
8.1 | 9.4
9.9
10.6
10.6
10.5
10.3
9.5
9.1
9.4
9.5
9.0
10.3
10.4
9.7
9.1
8.7
8.0
7.4
7.2
6.9
7.4
7.7 | 9.8
10.5
10.9
11.0
10.8
10.2
9.9
10.4
10.1
10.5
11.7
11.3
10.6
9.9
9.3
9.2
8.7
7.8
7.5
7.2
7.7 | 8.5
8.1
8.6
8.4
8.8
9.4
8.6
8.7
9.3
8.0
7.5
7.3
7.2
7.4
7.3 | 7.5
7.6
7.8
7.9
8.0
7.9
7.7
7.7
7.9
7.5
7.4
7.2
6.8
6.7
6.8
6.7 | 7.8 7.7 8.0 8.1 8.3 8.2 7.9 7.9 8.1 7.5 7.1 7.0 7.0 7.1 7.0 | 6.6
6.7
6.8
7.0
7.0
6.9
6.6
5.8
6.0
6.1
6.1
6.4
6.6
6.6
6.7
6.7
6.8 | | 6.6
6.6
6.7
6.9
7.0
5.8
5.7
5.9
6.0
6.8
6.6
6.8
6.6
6.8
6.6
7 | DAILY MEAN DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER 08065350 Trinity River near Crockett, TX--Continued OXYGEN DISSOLVED FROM DCP, in (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------|---------------------------|---------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | I | AUGUST | | 5 |
SEPTEMBE | R | | 1
2
3
4
5 | 5.1
6.0
6.1
6.1
6.2 | 4.6
5.0
5.9
5.9
5.8 | 4.8
5.6
6.0
6.0 |

 |

 |

 | 10.8
11.3
11.5
10.8
8.6 | 7.0
7.8
8.9
7.5
6.5 | 9.0
9.5
10.1
9.1
7.5 | 6.8
5.7
6.1
6.6
6.9 | 5.4
5.3
5.3
5.6
6.0 | 5.9
5.5
5.7
6.1
6.4 | | 6
7
8
9
10 | 6.3
6.4
6.7
6.6
6.7 | 5.8
6.0
6.1
6.0
6.0 | 6.1
6.3
6.4
6.4 |

 |

 |

 | 7.7
7.0
7.0
6.9
7.0 | 5.6
5.3
5.5
5.5
5.5 | 6.5
6.1
6.1
6.2 | 7.4
7.4
7.7
8.1
8.3 | 6.2
6.3
6.6
7.0
7.2 | 6.7
6.8
7.2
7.5
7.7 | | 11
12
13
14
15 | 6.5
6.4
6.8
6.5
6.4 | 5.8
5.6
6.0
5.9
6.0 | 6.1
6.0
6.2
6.1 |

 |

 |

 | 7.6
7.8
7.3
6.5
5.5 | 5.8
6.2
6.3
5.4
5.2 | 6.6
6.8
6.7
5.9
5.3 | 8.4
8.3
7.3
6.7
6.5 | 7.4
7.0
6.6
6.2
6.1 | 7.8
7.5
6.9
6.4
6.2 | | 16
17
18
19
20 | 6.3
6.7
6.6
6.7
6.6 | 6.0
6.2
6.2
6.2 | 6.1
6.3
6.3
6.4
6.3 |

 |

 |

 | 6.1
6.3
6.3 |
5.7
6.1
6.3 | 6.0
6.2
6.3 | 6.2
6.5
6.8
7.0
7.5 | 6.0
6.0
6.3
6.6 | 6.1
6.2
6.4
6.6
7.0 | | 21
22
23
24
25 | 6.4
6.1
6.3
6.7
6.6 | 6.0
5.8
5.8
5.9 | 6.2
6.0
6.0
6.1
6.1 |

 |

 |

 | 6.5
6.8
7.2
7.5
8.0 | 6.2
6.3
6.4
6.6
6.8 | 6.3
6.5
6.8
7.0
7.3 | 8.2
8.7
8.0
7.3
6.9 | 6.8
7.1
7.2
6.7
6.4 | 7.3
7.7
7.6
7.0
6.7 | | 26
27
28
29
30
31 | 6.4
6.3
6.4
6.0 | 5.9
5.6
5.6
5.6 | 6.1
6.0
5.9
5.8 |
8.7
9.3
10.0 |

7.8
7.4
7.7 |

8.3
8.2
8.7 | 8.2
7.5
8.1
8.6
7.7
7.9 | 6.8
6.9
6.8
7.0
7.0 | 7.4
7.1
7.3
7.7
7.3
7.2 | 7.0
7.3
7.2
7.5
7.7 | 6.3
6.6
6.6
6.8 | 6.6
6.8
6.9
7.0
7.1 | | MONTH | | | | | | | | | | 8.7 | 5.3 | 6.8 | THIS PAGE IS INTENTIONALLY BLANK ### 08065800 Bedias Creek near Madisonville, TX LOCATION.--Lat 30°53′05", long 95°46′40", Madison-Walker County line, Hydrologic Unit 12030202, on right bank at downstream side of bridge on U.S. Highways 75 and 190, 0.5 mi upstream from Interstate Highway 45, 1.5 mi downstream from Caney Creek, and 9.5 mi southeast of Madisonville. DRAINAGE AREA. -- 321 mi². PERIOD OF RECORD. -- Oct. 1967 to current year. Water-quality records. --Chemical data: July 1962 to Apr. 1964, Jan. 1968 to Sept. 1974, Oct. 1984 to Sept. 1987. Biochemical data: Sept. 1970 to Sept. 1974, Apr. 1985 to June 1988, Apr. 1993 to Sept. 1995. Pesticide data: Apr. 1985 to Apr. 1988. Suspended sediment data: Oct. 1984 to Sept. 1986. Specific conductance: Oct. 1984 to Sept. 1987. Water temperature: Oct. 1984 to Sept. 1987. GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 150.00 ft above NGVD of 1929. Satellite telemeter at station REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Flow may be slightly affected at times by discharge from the flood-detention pools of three floodwater-retarding structures. These structures control runoff from 2.71 mi² in the upper Caney Creek and Town Branch drainage basins. No flow at times. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1910, 34 ft in May 1922 (discharge unknown), from information by local resident. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER Y | EAR OCTOBER
ALUES | 2001 T | O SEPTEMB | ER 2002 | | | |--|--|--|---------------------------------------|---|---------------------------------------|---------------------------------------|---|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.8
4.5
4.3
4.1
4.2 | 3.1
2.9
2.9
2.8
2.8 | 518
116
55
37
27 | 17
16
15
14
142 | 17
17
15
14
51 | 14
13
13
12
12 | 13
13
11
10
9.0 | 4.4
4.1
3.7
3.5
3.0 | 2.3
3.8
3.4
2.3
2.0 | 75
64
38
27
18 | 3.8
3.4
3.0
2.8
2.7 | 1.4
1.3
1.4
1.3 | | 6
7
8
9
10 | 4.6
6.2
48
27
16 | 2.8
2.8
2.9
2.9
3.2 | 20
17
228
703
1050 | 677
1000
745
152
80 | 962
1690
2650
642
146 | 11
11
12
12
11 | 8.0
7.3
201
898
1180 | 2.9
2.4
2.1
2.0
1.9 | 1.2
1.5
1.4
1.6 | 11
7.7
5.6
66
88 | 2.5
2.8
2.8
2.4
2.2 | 1.3
1.4
31
24
25 | | 11
12
13
14
15 | 11
11
309
589
835 | 3.9
6.3
6.1
4.5
4.1 | 722
579
960
2170
1270 | 57
43
34
28
24 | 146
85
59
45
37
32 | 11
11
10
10 | 621
105
56
38
28 | 1.7
1.4
1.3
1.3 | 0.53
0.41
1.9
1.6
1.1 | 34
16
13
152
220 | 2.2
2.3
2.2
2.3
2.6 | 14
6.5
3.5
2.3
1.5 | | 16
17
18
19
20 | 500
71
36
23
16 | | 1070
3250
5020
3100
755 | 22
19
18
18
31 | 27
24
22
21
21 | 10
10
9.8
9.6
15 | 13 | 3.3 | 4.6 | 1350
207 | | 1.2
1.3
1.4
1.2
1.9 | | 21
22
23
24
25 | 12
9.7
7.6
6.6
5.6 | 2.8
2.5
2.6
3.2
3.2 | | 59
38
26
24
48 | | | 12
10
9.7
8.8
8.0 | | | 49
29
20
15 | 2.6
2.2
2.1
1.9 | 1.2
0.59
0.29
0.06
0.02 | | 26
27
28
29
30
31 | 4.7
4.3
3.7
3.3
3.1
3.1 | 3.4
3.9
161
541
746 | 34
28
25
22
20
19 | 44
37
30
23
19
18 | 18
15
14
 | 17
15
13
12
11 | 7.4
6.7
6.0
5.4
4.8 | 1.4
1.3
1.4
1.5
2.0 | 44
577
666
356
126 | 9.2
7.5
6.4
5.6
4.9
4.3 | 2.1
1.9
1.9
2.0
1.8
1.5 | 0.10
0.32
0.40
0.41
0.38 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2588.4
83.50
835
3.1
5130 | 1541.2
51.37
746
2.5
3060 | 22230
717.1
5020
17
44090 | 3518
113.5
1000
14
6980 | 6812
243.3
2650
14
13510 | 611.4
19.72
140
9.6
1210 | 3363.1
112.1
1180
4.8
6670 | 65.2
2.103
4.4
1.3
129 | 1820.64
60.69
666
0.41
3610 | 4563.2
147.2
1350
4.3
9050 | 79.3
2.558
3.8
1.5
157 | 128.07
4.269
31
0.02
254 | | STATIS | TICS OF M | IONTHLY MEA | AN DATA F | OR WATER Y | EARS 1968 | - 2002 | , BY WATER | YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 200.9
3021
1985
0.000
1979 | 175.4
1495
2001
0.025
1989 | 260.7
1083
2001
0.22
1968 | 314.4
2015
1991
1.99
1971 | 298.9
1580
1992
3.84
2000 | 285.0
1353
2001
3.13
1971 | 230.7
1333
1969
2.30
1981 | 291.8
1046
1969
2.10
2002 | 268.5
1745
1968
0.43
1998 | 25.28
260
1979
0.013
1977 | 25.33
266
1995
0.000
1969 | 90.70
1551
1974
0.000
1969 | | SUMMAR' | Y STATIST | CICS | FOR | 2001 CALEN | DAR YEAR | : | FOR 2002 WA' | TER YEA | 2 | WATER YEAR | RS 1968 - | 2002 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 141297.62
387.1
12800
0.50
0.61
280300
899
27
1.9 | Jun 8 | | 47320.51
129.6
5020
0.02
0.23
5480
17.84
93860
225
10
1.4 | Dec 1
Sep 2
Sep 2
Dec 1
Dec 1 | 8
5
3
8
8 | 205.1
530
32.6
23000
0.00
0.00
33800
25.07
148600
413
8.9
0.08 | Jan 10
0 Aug 31
0 Aug 31
Sep 14
7 Sep 14 | 1968
1968
1974 | 08065800 Bedias Creek near Madisonville, TX--Continued #### 08066170 Kickapoo Creek near Onalaska, TX LOCATION.--Lat 30°54′25", long 95°05′18", Polk County, Hydrologic Unit 12030202, on right bank 114 ft upstream from old bridge site, 1.2 mi downstream from Magnolia Creek, 6.2 mi upstream from Rocky Creek, 7.3 mi northeast of Onalaska, and 15.9 mi upstream from mouth. DRAINAGE AREA. -- 57.0 mi². PERIOD OF RECORD.--Dec. 1965 to current year. Water-quality records.--Chemical data: Dec. 1963 to Sept. 1974. Biochemical data: Oct. 1969 to Sept. 1974. GAGE.--Water-stage recorder and crest-stage gages. Datum of gage is 139.85 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records fair. No known regulation or diversions. Low flow is sustained by wastewater effluent that enters the creek upstream from this station. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES APR DAY OCT NOV DEC FEB MAR MAY JUN AUG SEP JAN JUL 1.2 2.3 9.5 29 0.89 0.77 0.53 1 1.3 13 54 1.3 1.3 2 1.2 1.8 9.5 3.8 52
15 1.2 0.87 0.82 0.48 1.1 3 1.0 1.0 1.2 9 9 2.8 13 11 1.2 0.84 0.87 0.88 0.49 2.5 9.6 0.84 1.0 9.0 7.1 1.1 0.52 4 1.1 0.77 1.00 0.90 5 1.0 0.97 1.3 50 125 5.4 9.1 0.75 0.85 0.90 0.56 1.1 0.94 1.2 6.9 0.70 0.70 0.87 0.53 6 2.1 284 4.9 1.1 48 1.6 0.94 0.86 12 40 4.9 6.5 0.64 0.84 0.69 1.1 8 1.2 0.94 4.2 6.7 8 7 18 3.8 1240 1 0 0.62 0.84 0.77 0.72 2.0 0.87 0.96 1.7 8.5 14 3.5 121 0.63 1.2 10 1.2 0.89 3.1 7.2 11 4.2 36 0.93 0.64 1.0 1.2 1.1 11 2.4 0.93 36 8.4 8.2 4.2 20 0.87 0.63 0 91 1.3 0.84 2550 5.9 0.77 12 2.4 1.1 4.4 11 0.83 0.90 0.96 6.7 4.7 1.3 4.7 1.0 13 230 235 8.5 5 0 0.82 0.58 1.1 0.83 3.9 0.57 1.3 126 8.1 0.76 0.78 14 29 15 6.1 1.2 76 8.3 4.1 2.9 2.6 0.70 0.52 1.7 0.80 16 3.5 1.1 335 8.1 4.0 2.1 2.1 0.74 1.1 1.8 1.3 0.78 2.7 0.71 807 7.3 2.6 2.0 0.95 1.0 1.7 1.0 1.2 18 2.5 0.86 83 7 7 3.5 5.2 3 2 2.4 1.3 0 77 1 6 0 93 2 5 2.3 8.1 2.9 1.4 19 0.79 44 0.83 0.90 1.9 20 2.2 0.73 26 8.3 32 20 2.0 1.0 1.2 1.2 0.87 1.9 0.63 13 8.6 9.6 17 0.93 0.94 0.82 21 2.0 1.5 22 1.8 0.73 11 8.8 5.6 7.3 1.3 0.85 0.76 0.93 1.3 1.7 9 6 23 0.76 8 8 4 4 5 6 1 3 0.82 0.63 0.88 1 4 1 0 0.88 9.2 4.3 4.9 1.5 0.81 0.82 404 9.6 25 1.4 1.0 9.1 93 3.2 1.1 0.81 0.90 0.78 0.85 0.86 1.2 9.0 3.0 175 0.81 0.74 0.80 0.78 26 1.1 27 0.88 2.2 9.1 7.5 2.7 25 1.1 0.78 5.2 0.75 1.0 0.72 3.0 9.0 1.2 1.6 28 0.85 5.1 2.6 11 0.78 0.78 1.0 0.86 29 0.82 4.3 9.3 5.2 7.6 0.94 1.0 1.3 0.78 0.78 0.92 30 0.98 3.6 9.9 5.5 ---51 1.0 1.2 2.1 0.77 0.64 0.61 18 243 1.0 31 1.1 9.5 ------0.76 0.61 38.17 1552.54 51.75 29 95 TOTAL 309.97 4449.46 834.0 625.4 760.5 30.43 32.34 29 63 30.36 0.966 9.999 26.90 1.014 1.043 0.956 MEAN 1.272 143.5 22.34 24.53 1.012 230 4.3 2550 404 284 243 1240 1.3 5.2 2.5 MAX MTN 0.82 0.63 0.86 5.1 2.5 2.1 0.94 0.70 0.52 0.58 0.61 0.48 AC-FT 615 1650 1510 60 76 8830 1240 3080 59 64 59 60 0.02 0.02 CFSM 0.18 2.52 0.47 0.39 0.43 0.91 0.02 0.02 0.02 0.02 IN. 0.20 0.02 2.90 0.54 0.41 0.50 1.01 0.02 0.02 0.02 0.02 0.02 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2002, BY WATER YEAR (WY) 39.13 56.32 MEAN 68.82 56.89 78.82 72.24 65.82 54.06 55.48 10.53 6.534 11.23 MAX 1891 416 177 320 288 236 270 1979 202 1982 365 100 51.4 107 1999 1992 1989 1973 (WY) 1995 1966 1974 1990 1973 1975 1.17 0.25 MIN 0.31 0.82 1.67 1.00 0.76 1.13 0.86 0.31 0.083 0.37 1988 1991 2000 2000 2000 1971 1971 1988 1971 1971 2000 1989 (WY) FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR SUMMARY STATISTICS WATER YEARS 1966 - 2002 24001.40 8722.75 ANNUAL TOTAL ANNUAL MEAN 65.76 23.90 47.77 HIGHEST ANNUAL MEAN 223 1995 LOWEST ANNUAL MEAN 1.53 2000 HIGHEST DAILY MEAN 38800 2550 Dec 12 2550 Dec 12 Oct 17 1994 0.48 Sep 2 0.53 Aug 31 0.02 Sep 27 1967 0.63 Nov 21 LOWEST DAILY MEAN 0.02 Sep 27 1967 ANNUAL SEVEN-DAY MINIMUM 0.74 Nov 17 MAXIMUM PEAK FLOW 5480 Dec 12 84600 41.85 Oct 17 1994 16.79 Dec 12 MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) 47610 17300 34610 ANNUAL RUNOFF (CFSM) 0.42 0.84 ANNUAL RUNOFF (INCHES) 15.66 11.39 5.69 10 PERCENT EXCEEDS 75 59 15 3.3 50 PERCENT EXCEEDS 4.1 1.3 90 PERCENT EXCEEDS 1.2 0.76 0.50 # 08066170 Kickapoo Creek near Onalaska, TX--Continued ### 08066190 Livingston Reservoir near Goodrich, TX LOCATION.--Lat 30°38′00", long 95°00′36", Polk-San Jacinto County line, Hydrologic Unit 12030202, at left end of gated spillway at Livingston Dam on Trinity River, 4.4 mi northwest of Goodrich, 7.0 mi southwest of Livingston, 11.7 mi upstream from Long King Creek, and at mile 129.2. DRAINAGE AREA. -- 16,583 mi². #### WATER-CONTENT RECORDS PERIOD OF RECORD. -- Sept. 1968 to current year. GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (levels by Trinity River Authority). Prior to Feb. 26, 1969, temporary nonrecording gages at site about 200 ft upstream and at same datum. Satellite telemeter at station. REMARKS.--Records good except those for estimated daily contents, which are fair. The reservoir is formed by an earthfill dam 14,400 ft long. The dam was completed Sept. 29, 1968, and deliberate impoundment began June 26, 1969. The reservoir is operated for industrial water supply in the Houston metropolitan area. The spillway has twelve 40 x 35 ft tainter gates located near the left end of dam. Low-flow releases may be made through multi-gated inlet tower. There are five gated openings at various elevations located in the tower, and all discharge into a 10-foot-diameter concrete conduit through the dam. Flow is affected at times by discharge from the flood-detention pools of 255 floodwater-retarding structures. These structures control runoff from 617 mi² in the Richland, Chambers, Tehuacana, and Bedias Creeks drainage basins. Conservation pool storage is 1,750,000 agreeft. pool storage is 1,750,000 acre-ft. Data regarding the dam are given in the following table: | | Elevation | |---|-----------| | | (feet) | | Top of dam | 145.0 | | Design flood | 135.0 | | Top of tainter gates | 134.0 | | Top of conservation pool | 131.1 | | Crest of spillway (sill of tainter gates) | 99.0 | | Lowest gated outlet (invert) | 58.0 | COOPERATION. -- The capacity table, furnished by the Trinity River Authority, is based on a survey by the Bureau of Reclamation dated Dec. 1991. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 2,081,000 acre-ft, Oct. 17, 1994, elevation, 134.39 ft; minimum since conservation pool capacity was reached on Nov. 2, 1971, 1,345,000 acre-ft, Oct. 25, 1988, elevation, 125.22 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,861,000 acre-ft, Dec. 26, 29, elevation, 132.39 ft; minimum contents, 1,717,000 acre-ft, May 6, elevation, 130.70 ft. RESERVOIR STORAGE, in (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | 1 | 1743000 | 1730000 | 1765000 | 1799000 | 1803000 | 1744000 | 1818000 | 1734000 | 1755000 | 1763000 | 1745000 | 1741000 | | 2 | 1740000 | 1733000 | 1761000 | 1771000 | 1797000 | 1760000 | 1823000 | 1738000 | 1761000 | 1759000 | 1743000 | 1741000 | | 3 | 1738000 | 1735000 | 1755000 | 1750000 | 1796000 | 1751000 | 1829000 | 1736000 | 1764000 | 1755000 | 1746000 | 1741000 | | 4 | 1736000 | 1735000 | 1750000 | 1730000 | 1800000 | 1740000 | 1827000 | 1736000 | 1764000 | 1753000 | 1747000 | 1740000 | | 5 | 1740000 | 1734000 | 1745000 | 1734000 | 1810000 | 1738000 | 1826000 | 1731000 | 1770000 | 1754000 | 1750000 | 1736000 | | 6 | 1750000 | 1733000 | 1741000 | 1743000 | 1822000 | 1739000 | 1819000 | 1725000 | 1768000 | 1760000 | 1750000 | 1735000 | | 7 | 1745000 | 1731000 | 1738000 | 1745000 | 1826000 | 1741000 | 1807000 | 1724000 | 1760000 | 1761000 | 1748000 | 1732000 | | 8 | 1743000 | 1731000 | 1747000 | 1739000 | 1822000 | 1741000 | 1828000 | 1730000 | 1760000 | 1764000 | 1746000 | 1737000 | | 9 | 1739000 | 1734000 | 1751000 | 1741000 | 1821000 | 1753000 | 1836000 | 1737000 | 1758000 | 1763000 | 1742000 | 1742000 | | 10 | 1741000 | 1732000 | 1751000 | 1747000 | 1825000 | 1750000 | 1823000 | 1747000 | 1757000 | 1763000 | 1742000 | 1744000 | | 11 | 1747000 | 1731000 | 1754000 | 1754000 | 1816000 | 1748000 | 1810000 | 1752000 | | 1758000 | 1741000 | 1743000 | | 12 | 1749000 | 1731000 | 1816000 | 1759000 | 1809000 | 1755000 | 1797000 | 1764000 | | 1755000 | 1736000 | 1743000 | | 13 | 1766000 | 1730000 | 1833000 | 1757000 | 1805000 | 1749000 | 1780000 | 1783000 | | e1755000 | 1736000 | 1743000 | | 14 | 1783000 | 1728000 | 1820000 | 1766000 | 1796000 | 1748000 | 1766000 | 1783000 | | e1762000 | 1735000 | 1745000 | | 15 | 1781000 | 1727000 | e1807000 | 1768000 | 1786000 | 1754000 | 1756000 | 1783000 | | 1766000 | 1736000 | 1747000 | | 16 | 1782000 | 1728000 | e1796000 | 1772000 | 1765000 | 1754000 | 1760000 | 1784000 | 1759000 | 1765000 | 1741000 | 1744000 | | 17 | 1774000 | 1730000 | 1804000 | 1778000 | 1737000 | 1750000 | 1770000 | 1793000 | 1762000 | 1771000 | 1744000 | 1740000 | | 18 | 1769000 | 1730000 | 1819000 | 1780000 | 1727000 | 1746000 | 1768000 | 1794000 | 1759000 | 1773000 | 1744000 | 1742000 | | 19 | 1763000 | 1735000 | 1842000 | 1783000 | 1730000 | 1746000 | 1768000 | 1789000 | 1757000 | 1774000 | 1743000 | 1744000 | | 20 | 1754000 | 1734000 | 1840000 | 1774000 | 1736000 | 1759000 | 1765000 | 1791000 | 1761000 | 1786000 | 1744000 | 1751000 | | 21
22
23
24
25 | 1746000
1740000
1739000
1740000
1739000 | 1729000
1726000
1725000
1732000
1729000 | 1836000
1832000
1832000
1833000
1841000 | 1775000
1775000
1775000
1788000
1792000 | 1739000
1743000
1741000
1742000
1750000 | 1757000
1756000
1757000
1769000
1789000 | 1766000
1766000
1760000
1755000
1753000 | 1790000
1785000
1779000
1777000 | 1767000
1769000
1770000
1767000
1766000 | 1791000
1791000
1790000
1787000
1778000 | 1748000
1745000
1744000
1745000
1745000 | 1746000
1748000
1743000
1740000
1747000 | | 26
27
28
29
30
31 | 1738000
1738000
1734000
1735000
1734000
1732000 | 1729000
1752000
1754000
1762000
1762000 | 1850000
1850000
1856000
1857000
1851000
1832000 | 1781000
1781000
1781000
1785000
1791000
1802000 | 1754000
1742000
1738000
 |
1800000
1798000
1798000
1800000
1806000
1819000 | 1745000
1737000
1743000
1743000
1738000 | 1755000
1744000
1740000
1742000
1748000
1752000 | 1764000
1763000
1765000
1765000
1765000 | 1772000
1765000
1760000
1762000
1754000
1749000 | 1745000
1747000
1745000
1745000
1742000
1740000 | 1740000
1735000
1730000
1732000
1733000 | | MEAN | 1748000 | 1734000 | 1803000 | 1768000 | 1778000 | 1762000 | 1783000 | 1759000 | 1762000 | 1766000 | 1744000 | 1741000 | | MAX | 1783000 | 1762000 | 1857000 | 1802000 | 1826000 | 1819000 | 1836000 | 1794000 | 1770000 | 1791000 | 1750000 | 1751000 | | MIN | 1732000 | 1725000 | 1738000 | 1730000 | 1727000 | 1738000 | 1737000 | 1724000 | 1753000 | 1749000 | 1735000 | 1730000 | | (+) | 130.87 | 131.23 | 132.06 | 131.71 | 130.95 | 131.91 | 130.95 | 131.04 | 131.27 | 131.08 | 130.98 | 130.89 | | (@) | -15000 | +30000 | +70000 | -30000 | -64000 | +81000 | -81000 | +8000 | +19000 | -16000 | -9000 | -7000 | MAX 1906000 MIN 1706000 (@) -4000 MAX 1857000 MIN 1724000 (@) -14000 CAT. YR 2001 WTR YR 2002 - e Estimated - (+) Elevation, in feet, at end of month. - (@) Change in contents, in acre-feet. # 08066190 Livingston Reservoir near Goodrich, TX--Continued ### 08066190 Livingston Reservoir near Goodrich, TX--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--CHEMICAL DATA: Oct. 1969 to current year. BIOCHEMICAL DATA: Oct. 1969 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 303807095011101 -- Livingston Res Site AC | | | | | | | | _ | | | | | | | |--|--|--|--|--|--|--|---|---|---|--|--|--|--| | Date | Time | RESER-
VOIR
STORAGE
(AC-FT)
(00054) | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | | MAR 12 12 12 12 12 12 12 22 22 22 22 22 22 | 1300
1302
1304
1306
1308
1310
1312
1314
1305
1307
1309
1311
1313
1315
1317 | 1760000

1750000

 | 1.00
10.0
20.0
30.0
40.0
50.0
60.0
73.0
1.00
10.0
20.0
30.0
40.0
50.0 | 320
310
315
315
310
325
330
335
325
330
330
330
330
330
330
335 | 8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.7
7.8
7.5
7.5
7.5 | 12.0
12.0
11.5
11.5
11.5
11.5
11.5
29.0
28.5
28.0
28.0
28.0
28.0
28.0 | 760
760
760
760
760
760
760
765
765
765
765
765
765 | 10.5
10.4
10.3
10.3
10.3
10.4
10.4
10.3
6.7
3.5
2.3
2.3
2.3 | 98
97
95
95
96
96
95
87
45
29
29 | 110

110
100

 | 14

19

 | 36.4

36.7
34.0

 | 3.67

3.70
4.06

 | | 22 | 1317 | | 68.0 | 345 | 7.2 | 27.5 | 765
765 | .6 | 8 | 130 | | 43.4 | 4.42 | | Date | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | SODIUM
PERCENT
(00932) | 30380 POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | | MAR
12 | 19.0 | .8 | 27 | 4.73 | 92 | 33.6 | 21.3 | .3 | 7.0 | 186 | | <.008 | 1.00 | | 12 | 19.0 | . 0 | | 4.73 | | | | | | 100 | | | | | 12 | | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | | 12 | | | | | | | | | | | | <.008 | 1.00 | | 12
12 | 12
AUG | 19.1 | .8 |
27 | 4.73 |
88 | 33.6 | 21.5 | .3 | 7.0 | 184 | | <.008 | 1.00 | | 12
AUG
22 | 19.1
23.1 | .8 | 27
32 | 4.73
4.82 | 88
133 | 33.6
15.4 | 21.5
12.0 | .3 | 7.0
2.5 | 184
176 | | <.008 | 1.00 | | 12
AUG
22
22 | 19.1
23.1
 | .8
1
 | 27
32
 | 4.73
4.82 | 88
133
 | 33.6
15.4
 | 21.5
12.0
 | .3 | 7.0
2.5
 | 184
176
 |
 | <.008
<.008
 | 1.00 | | 12
AUG
22
22
22 | 19.1
23.1
 | .8
1

 | 27
32

 | 4.73
4.82
 | 88
133

 | 33.6
15.4
 | 21.5
12.0
 | .3 | 7.0
2.5
 | 184
176
 |

 | <.008
<.008
 | 1.00
<.05
 | | 12
AUG
22
22
22 | 19.1
23.1
 | .8
1
 | 27
32
 | 4.73
4.82 | 88
133
 | 33.6
15.4
 | 21.5
12.0
 | .3 | 7.0
2.5
 | 184
176
 |

 | <.008
<.008

 | 1.00
<.05

 | | 12
AUG
22
22
22 | 19.1
23.1

 | .8
1

 | 27
32

 | 4.73
4.82

 | 88
133

 | 33.6
15.4

 | 21.5
12.0

 | .3 | 7.0
2.5

 | 184
176

 |

 | <.008
<.008
 | 1.00
<.05
 | | 12
AUG
22
22
22
22 | 19.1
23.1

 | .8
1

 | 27
32

 | 4.73
4.82

 | 88
133

 | 33.6
15.4

 | 21.5
12.0

 | .3

 | 7.0
2.5

 | 184
176

 |

.14 | <.008 <.008009 | 1.00
<.05

.15 | | 12 AUG 22 22 22 22 22 22 | 19.1
23.1

 | .8
1

 | 27
32

 | 4.73
4.82

 | 88
133

 | 33.6
15.4

 | 21.5
12.0

 | .3 | 7.0
2.5

 | 184
176

 |

.14 | <.008 <.008009 <.008 | 1.00 <.0515 E.03 | # 08066190 Livingston Reservoir near Goodrich, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date MAR 12 12 12 12 12 | NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.04 <.04 <.04 | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |-----------------------------------|---|--|---|---|--|--|---|---| | 12 | | | | | | | | | | 12
AUG | <.04 | | .40 | .10 | .09 | . 267 | | | | 22
22 | <.04 | | .33 | E.05 | .03 | .104 | <10 | <2.0 | | 22 | | | | | | | | | | 22
22 | .05 | .32 | .38 | .07 | .06 | .175 |
<10 | 13.9 | | 22
22 | .30 | .36 | .65
 | .14 | .13 | .399 | 15
 | 336 | | 22 | 3.77 | .37 | 4.1 | 1.86 | 1.66 | 5.08 | 733 | 1410 | | | | 303821095 | 005001 | Livingst | on Res Si | te AL | | | | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | MAR | 1400 | 1 00 | 215 | 0 1 | 12.0 | 760 | 10 E | 0.0 | | 12
12
12
12
12
AUG |
1400
1402
1404
1406
1408
1410 | 1.00
10.0
20.0
30.0
40.0
47.0 | 315
315
315
315
315
315 | 8.1
8.1
8.0
8.0
8.0 | 12.0
12.0
12.0
12.0
11.5 | 760
760
760
760
760
760 | 10.5
10.5
10.4
10.4
10.6 | 98
98
97
97
98
98 | | 22
22
22
22
22
22 | 1439
1441
1443
1445
1447
1449 | 1.00
10.0
20.0
30.0
40.0
49.0 | 325
330
330
330
330
335 | 8.7
7.7
7.5
7.5
7.5
7.5 | 29.5
30.0

28.5
28.5
28.5 | 759
759
759
759
759
759 | 7.3
3.4
29.0
2.2
2.1
1.9 | 96
45

29
27
25 | | | | 303935095 | 055401 | Livingst | on Res Si | te BC | | | | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | | MAR 12 12 12 12 12 12 12 | 1215
1217
1219
1221
1223
1225
1227 | 1.00
10.0
20.0
30.0
40.0
50.0 | 320
320
320
320
320
320
320 | 8.0
8.0
8.0
8.0
8.0
8.0 | 12.0
12.0
12.0
12.0
12.0
12.0
12.0 | 760
760
760
760
760
760
760 | 10.5
10.5
10.5
10.5
10.5
10.5 | 98
98
98
98
98
98 | | AUG
22
22
22
22
22 | 1203
1205
1207
1209
1211
1213 | 1.00
10.0
20.0
30.0
40.0
47.0 | 330
335
335
335
340
345 | 8.6
8.2
8.3
8.3
7.9
7.4 | 30.0
29.0
29.0
29.0
29.0
29.0 | 765
765
765
765
765
765 | 6.6
5.0
5.0
4.9
3.6 | 87
65
65
64
47
5 | ### 08066190 Livingston Reservoir near Goodrich, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 304144095073001 -- Livingston Res Site CC | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|---|--|--|---|---|--|---| | MAR | | | | | | | | | | 12 | 1148 | 1.00 | 320 | 8.1 | 12.0 | 760 | 10.5 | 98 | | 12 | 1150 | 10.0 | 320 | 8.1 | 12.0 | 760 | 10.5 | 98 | | 12 | 1152 | 20.0 | 320 | 8.1 | 12.0 | 760 | 10.5 | 98 | | 12 | 1154 | 30.0 | 325 | 8.1 | 12.0 | 760 | 10.5 | 98 | | 12 | 1156 | 40.0 | 325 | 8.1 | 12.0 | 760 | 10.5 | 98 | | 12 | 1158 | 52.0 | 320 | 8.1 | 12.0 | 760 | 10.6 | 99 | | AUG | | | | | | | | | | 22 | 1127 | 1.00 | 330 | 8.7 | 30.0 | 765 | 6.4 | 84 | | 22 | 1129 | 10.0 | 335 | 8.4 | 29.5 | 765 | 4.6 | 60 | | 22 | 1131 | 20.0 | 335 | 8.2 | 29.0 | 765 | 4.4 | 57 | | 22 | 1133 | 30.0 | 340 | 8.0 | 29.0 | 765 | 3.5 | 45 | | 22 | 1135 | 40.0 | 340 | 7.6 | 29.0 | 765 | 2.0 | 26 | | 22 | 1137 | 46.0 | 345 | 7.5 | 29.0 | 765 | .7 | 9 | # 304521095075501 -- Livingston Res Site DC | | | | SPE-
CIFIC | PH
WATER
WHOLE | | BARO-
METRIC
PRES- | | OXYGEN,
DIS-
SOLVED | NITRO-
GEN,
NITRATE | NITRO-
GEN,
NITRITE | NITRO-
GEN,
NO2+NO3 | NITRO-
GEN,
AMMONIA | NITRO-
GEN,
ORGANIC | |------|------|---------|---------------|----------------------|---------|--------------------------|---------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | | | SAM- | CON- | FIELD | TEMPER- | SURE | OXYGEN, | (PER- | DIS- | DIS- | DIS- | DIS- | DIS- | | | | PLING | DUCT- | (STAND- | ATURE | (MM | DIS- | CENT | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | Date | Time | DEPTH | ANCE | ARD | WATER | OF | SOLVED | SATUR- | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | HG) | (MG/L) | ATION) | AS N) | | | | (00003) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | (00618) | (00613) | (00631) | (00608) | (00607) | | MAR | | | | | | | | | | | | | | | 12 | 1105 | 1.00 | 320 | 8.2 | 12.5 | 760 | 10.4 | 98 | | <.008 | 1.02 | < .04 | | | 12 | 1107 | 10.0 | 320 | 8.2 | 12.5 | 760 | 10.4 | 98 | | | | | | | 12 | 1109 | 20.0 | 320 | 8.1 | 12.5 | 760 | 10.4 | 98 | | | | | | | 12 | 1111 | 30.0 | 325 | 8.1 | 12.5 | 760 | 10.4 | 98 | | | | | | | 12 | 1113 | 40.0 | 330 | 8.0 | 12.0 | 760 | 10.5 | 98 | | | | | | | 12 | 1115 | 53.0 | 330 | 8.0 | 12.0 | 760 | 10.6 | 99 | | <.008 | 1.01 | <.04 | | | AUG | 1113 | 33.0 | 330 | 0.0 | 12.0 | 700 | 10.0 | 99 | | <.000 | 1.01 | <.04 | | | 22 | 1015 | 1.00 | 330 | 8.7 | 30.0 | 765 | 6.7 | 88 | | <.008 | <.05 | <.04 | | | | | | | | | | | | | | | | | | 22 | 1019 | 10.0 | 330 | 8.7 | 30.0 | 765 | 6.3 | 83 | | | | | | | 22 | 1023 | 20.0 | 335 | 8.6 | 29.5 | 765 | 5.6 | 73 | | | | | | | 22 | 1029 | 30.0 | 335 | 8.5 | 29.5 | 765 | 5.2 | 68 | | <.008 | <.05 | < .04 | | | 22 | 1032 | 40.0 | 340 | 8.3 | 29.5 | 765 | 4.1 | 54 | | | | | | | 22 | 1036 | 49.0 | 355 | 7.6 | 29.5 | 765 | 1.1 | 14 | .15 | .029 | .18 | .07 | .38 | ### 304521095075501 -- Livingston Res Site DC | Date | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | (MG/L
AS P) | | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|----------------|-------|---|---| | MAR | | | | | | | | 12 | .40 | .07 | .08 | .239 | E8 | E1.6n | | 12 | | | | | | | | 12 | | | | | | | | 12 | | | | | | | | 12 | | | | | | | | 12 | .39 | .09 | .08 | .242 | E6 | E.9n | | AUG | | | | | | | | 22 | .30 | E.03 | .02 | .074 | <10 | E1.3 | | 22 | | | | | | | | 22 | | | | | | | | 22 | .34 | E.04 | .04 | .110 | <10 | <2.0 | | 22 | | | | | | | | 22 | . 45 | .10 | . 09 | . 285 | <10 | 19.8 | ### 08066190 Livingston Reservoir near Goodrich, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 304453095064901 -- Livingston Res Site DL | | | | | PH | | BARO- | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------|---------| | | | | SPE- | WATER | | METRIC | | DIS- | | | | | CIFIC | WHOLE | | PRES- | | SOLVED | | | | SAM- | CON- | FIELD | TEMPER- | SURE | OXYGEN, | (PER- | | | | PLING | DUCT- | (STAND- | ATURE | (MM | DIS- | CENT | | Date | Time | DEPTH | ANCE | ARD | WATER | OF | SOLVED | SATUR- | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | HG) | (MG/L) | ATION) | | | | (00003) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | | | | | | | | | | | MAR | | | | | | | | | | 12 | 1034 | 1.00 | 315 | 8.1 | 12.5 | 760 | 10.5 | 99 | | 12 | 1036 | 10.0 | 320 | 8.1 | 12.5 | 760 | 10.5 | 99 | | 12 | 1038 | 18.0 | 325 | 8.0 | 12.0 | 760 | 10.7 | 100 | | AUG | | | | | | | | | | 22 | 0948 | 1.00 | 330 | 8.8 | 30.0 | 765 | 6.3 | 83 | | 22 | 0950 | 10.0 | 330 | 8.7 | 30.0 | 765 | 5.9 | 78 | | 22 | 0953 | 18.0 | 340 | 8.0 | 29.5 | 765 | 3.4 | 44 | | | | | | | | | | | # 304659095052001 -- Livingston Res Site EC | | | | | PH | | BARO- | | OXYGEN, | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | |------|------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | | SPE- | WATER | | METRIC | | DIS- | GEN, | GEN, | GEN, | GEN, | GEN, | | | | | CIFIC | WHOLE | | PRES- | | SOLVED | NITRATE | NITRITE | NO2+NO3 | AMMONIA | ORGANIC | | | | SAM- | CON- | FIELD | TEMPER- | SURE | OXYGEN, | (PER- | DIS- | DIS- | DIS- | DIS- | DIS- | | | | PLING | DUCT- | (STAND- | ATURE | MM) | DIS- | CENT | SOLVED | SOLVED | SOLVED | SOLVED | SOLVED | | Date | Time | DEPTH | ANCE | ARD | WATER | OF | SOLVED | SATUR- | (MG/L | (MG/L | (MG/L | (MG/L | (MG/L | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | HG) | (MG/L) | ATION) | AS N) | | | | (00003) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | (00618) | (00613) | (00631) | (00608) | (00607) | | MAR | | | | | | | | | | | | | | | 12 | 1000 | 1.00 | 310 | 8.1 | 12.5 | 760 | 10.5 | 99 | | <.008 | 1.01 | < .04 | | | 12 | 1002 | 10.0 | 310 | 8.1 | 12.5 | 760 | 10.5 | 99 | | | | | | | 12 | 1004 | 27.0 | 320 | 8.0 | 12.5 | 760 | 10.5 | 99 | | | | | | | 12 | 1006 | 27.0 | 320 | 8.0 | 12.5 | 760 | 10.6 | 100 | | <.008 | 1.00 | <.04 | | | AUG | | | | | | | | | | | | | | | 22 | 0911 | 1.00 | 335 | 8.8 | 30.0 | 765 | 6.2 | 82 | | <.008 | <.05 | <.04 | | | 22 | 0918 | 10.0 | 335 | 8.8 | 30.0 | 765 | 5.8 | 77 | | | | | | | 22 | 0920 | 20.0 | 340 | 8.3 | 29.5 | 765 | 4.0 | 52 | | | | | | | 22 | 0928 | 25.0 | 345 | 7.7 | 29.0 | 765 | 2.2 | 29 | . 08 | .016 | .10 | .06 | . 35 | # 304659095052001 -- Livingston Res Site EC | Date | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) |
PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|--|--|---|---| | MAR | | | | | | | | 12 | .45 | .08 | .08 | .233 | E6 | E.9n | | 12 | | | | | | | | 12 | | | | | | | | 12 | .43 | .07 | .07 | .218 | E8 | 38.1 | | AUG | | | | | | | | 22 | .35 | E.06 | .04 | .129 | <10 | <2.0 | | 22 | | | | | | | | 22 | | | | | | | | 22 | .41 | .08 | .07 | .227 | <10 | 35.7 | ### 304843095104001 -- Livingston Res Site FC | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |------|------|---|--|--|---|---|--|---| | MAR | | | | | | | | | | 12 | 1530 | 1.00 | 350 | 8.2 | 13.0 | 760 | 10.3 | 98 | | 12 | 1532 | 10.0 | 350 | 8.2 | 13.0 | 760 | 10.3 | 98 | | 12 | 1534 | 20.0 | 350 | 8.2 | 13.0 | 760 | 10.3 | 98 | | 12 | 1536 | 30.0 | 350 | 8.3 | 13.0 | 760 | 10.3 | 98 | | 12 | 1538 | 40.0 | 350 | 8.2 | 13.0 | 760 | 10.3 | 98 | | 12 | 1540 | 50.0 | 350 | 8.2 | 13.0 | 760 | 10.3 | 98 | | AUG | | | | | | | | | | 22 | 1540 | 1.00 | 360 | 8.7 | 30.0 | 759 | 5.1 | 68 | | 22 | 1542 | 10.0 | 360 | 8.4 | 30.0 | 759 | 2.8 | 37 | | 22 | 1544 | 20.0 | 370 | 7.8 | 30.0 | 759 | 1.6 | 21 | | 22 | 1546 | 30.0 | 370 | 7.8 | 30.0 | 759 | 1.0 | 13 | | 22 | 1548 | 40.0 | 375 | 7.6 | 30.0 | 759 | . 4 | 5 | | 22 | 1550 | 48.0 | 375 | 7.7 | 30.0 | 759 | .5 | 7 | ### 08066190 Livingston Reservoir near Goodrich, TX--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 305411095144901 -- Livingston Res Site GC | | | | | 30541 | .109514490 | I L1V1 | ngston ke | s Site GC | | | | | | |----------------------|---|---|--|--|--|---|--|--|--|--|--|--|--| | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | MAR 13 13 13 13 AUG | 1100
1102
1104
1106
1108 | 1.00
10.0
20.0
30.0
38.0 | 400
385
410
410
425 | 8.2
8.2
8.1
8.1 | 14.0
14.0
14.0
13.5 | 760
760
760
760
760 | 9.9
9.8
9.9
10.0
10.2 | 96
95
96
96
98 | 130

140 | 33

26 | 44.7

45.2 | 5.40

5.40 | 29.3

30.5 | | 23
23
23
23 | 0925
0927
0929
0931
0933 | 1.00
10.0
20.0
30.0
32.0 | 420
415
425
410
405 | 9.0
8.7
8.6
8.6
8.5 | 30.5
30.0
30.0
30.0
30.0 | 765
765
765
765
765 | 7.9
5.2
4.7
4.5
4.4 | 105
69
62
59
58 | 130

120 | 34

26 | 44.5

40.1 | 4.64

4.47 | 36.8

33.8 | | | | | | 30541 | 109514490 | 1 Livi | ngston Re | s Site GC | | | | | | | Date | SODIUM
AD-
SORP-
TION
RATIO | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | MAR
13
13 | 1 | 31 | 5.27 | 100 | 56.0 | 36.2 | .3 | 7.9 | 252 | 1.50 | .014 | 1.51 | <.04 | | 13 | | | | | | | | | | 1.49 | .010 | 1.50 | <.04 | | 13
13 | 1 | 32 | 4.91 | 109 | 56.0 | 35.7 | .3 | 8.1 | 258 | 1.52 | .015 | 1.54 | <.04 | | AUG 23 23 23 23 | 1

 | 37

 | 5.85

 | 96

 | 49.1

 | 38.7

 | .5

 | 6.4

 | 247

 | .43
.47
.88 | .055
.049
.081 | .49
.52
.96 | <.04
<.04
E.04 | | 23 | 1 | 37 | 5.62 | 92 | 46.5 | 34.4 | .5 | 6.7 | 230 | .48 | .050 | .53 | .06 | | | | | | 30541 | .109514490 | 1 Livi | ngston Re | s Site GC | | | | | | | | | Da | te | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | | | | | | MAR | | | | | | | | | | | | | | | 1 | 3
3 | | .45 | .10 | .11 | .334 | | | | | | | | | | 3 | | .41 | .10 | .11 | .328 | E7 | E.9n | | | | | | | 1 | 3 | | .44 | .12 | .11 | .340 | | | | | | | | | 2 2 | 3
3 |
 | .43
.42
.47 | .14
.16
.17 | .12
.14
.15 | .380
.423
.475 | <10
<10
<10 | E1.9b
E.9
E1.7 | | | | | | | | 3 | .40 | .46 | .17 | .14 | .432 | <10 | 19.6 | | | | | | | | | | | | | | | | | | | # 08066190 Livingston Reservoir near Goodrich, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 305447095161401 -- Livingston Res Site HC | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | |------|------|---|--|--|---|---|--|---|--|--|--|--|--| | MAR | | | | | | | | | | | | | | | 13 | 1150 | 1.00 | 390 | 8.3 | 14.5 | 760 | 10.6 | 104 | .89 | .009 | .90 | <.04 | | | 13 | 1152 | 10.0 | 390 | 8.3 | 14.5 | 760 | 10.6 | 104 | | | | | | | 13 | 1154 | 20.0 | 395 | 8.3 | 14.5 | 760 | 10.6 | 104 | | | | | | | 13 | 1156 | 30.0 | 415 | 8.2 | 14.0 | 760
| 10.1 | 98 | | | | | | | 13 | 1158 | 38.0 | 420 | 8.2 | 14.0 | 760 | 10.0 | 97 | 1.17 | .011 | 1.18 | < .04 | | | AUG | | | | | | | | | | | | | | | 23 | 1008 | 1.00 | 405 | 8.8 | 30.0 | 765 | 6.3 | 83 | 1.10 | .122 | 1.22 | < .04 | | | 23 | 1010 | 10.0 | 405 | 8.0 | 29.5 | 765 | 2.9 | 38 | | | | | | | 23 | 1012 | 20.0 | 405 | 7.9 | 29.5 | 765 | 2.7 | 35 | | | | | | | 23 | 1014 | 30.0 | 405 | 7.8 | 29.5 | 765 | 2.2 | 29 | .24 | .110 | .35 | .22 | . 44 | # 305447095161401 -- Livingston Res Site HC | Date | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------|--|--|--|--|---|---| | MAR | | | | | | | | 13 | .39 | .07 | .05 | .153 | 20 | E1.6n | | 13 | | | | | | | | 13 | | | | | | | | 13 | | | | | | | | 13 | .35 | .09 | .07 | .230 | 11 | E3.1b | | AUG | | | | | | | | 23 | .48 | .15 | .14 | .432 | <10 | E1.6 | | 23 | | | | | | | | 23 | | | | | | | | 23 | .66 | .12 | .12 | .353 | <10 | 42.4 | # 305135095193601 -- Livingston Res Site IC | | | | | PH | | BARO- | | OXYGEN, | |------|------|---------|---------|---------|---------|---------|---------|---------| | | | | SPE- | WATER | METRIC | | | DIS- | | | | | CIFIC | WHOLE | | PRES- | | SOLVED | | | | SAM- | CON- | FIELD | TEMPER- | SURE | OXYGEN, | (PER- | | | | PLING | DUCT- | (STAND- | ATURE | (MM | DIS- | CENT | | Date | Time | DEPTH | ANCE | ARD | WATER | OF | SOLVED | SATUR- | | | | (FEET) | (US/CM) | UNITS) | (DEG C) | HG) | (MG/L) | ATION) | | | | (00003) | (00095) | (00400) | (00010) | (00025) | (00300) | (00301) | | MAR | | | | | | | | | | 13 | 0850 | 1.00 | 210 | 8.1 | 13.5 | 760 | 10.4 | 100 | | 13 | 0852 | 10.0 | 425 | 8.0 | 13.0 | 760 | 10.4 | 99 | | 13 | 0854 | 20.0 | 535 | 7.9 | 13.0 | 760 | 10.3 | 98 | | 13 | 0856 | 30.0 | 555 | 7.7 | 12.5 | 760 | 9.9 | 93 | | 13 | 0858 | 42.0 | 555 | 7.7 | 12.5 | 760 | 9.9 | 93 | | AUG | | | | | | | | | | 23 | 0842 | 1.00 | 665 | 8.2 | 30.0 | 765 | 5.9 | 78 | | 23 | 0844 | 10.0 | 665 | 8.2 | 30.0 | 765 | 5.6 | 74 | | 23 | 0846 | 20.0 | 675 | 7.8 | 30.0 | 765 | 4.0 | 53 | | 23 | 0848 | 30.0 | 680 | 7.8 | 30.0 | 765 | 3.8 | 50 | | 23 | 0850 | 35.0 | 680 | 7.8 | 30.0 | 765 | 3.8 | 50 | | | | | | | | | | | ### 08066190 Livingston Reservoir near Goodrich, TX--Continued ### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 305135095235401 -- Livingston Res Site JC | Date | Time | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
DISSOLV
FLD. AS
CACO3
(MG/L)
(00904) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |---|--|--|---|--|--|--|---|---|--|--|--|--|--| | MAR 13 13 13 13 13 23 23 23 23 23 | 0930
0932
0934
0936
0938
0940
0756
0758
0800
0802 | 1.00
10.0
20.0
30.0
40.0
47.0
1.00
10.0
20.0
30.0
35.0 | 520
535
565
570
560
565
645
645
665
670
670 | 8.3
8.3
8.2
8.0
8.0
8.0
8.7
7.8
7.8 | 13.5
13.5
13.0
12.5
12.5
12.5
30.0
30.0
30.0
30.0
30.0 | 760
760
760
760
760
760
765
765
765
765 | 12.2
12.2
12.0
11.6
11.5
11.2
8.5
5.7
4.3
3.8
3.7 | 118
118
114
109
108
106
112
75
57
50
49 | 170

170
180

180 | 67

73
62

63 | 56.2

57.8
61.8

62.6 | 6.62

6.98
6.14

6.25 | 42.1

44.2
67.5

68.1 | | | | | | 30513 | 509523540 | 1 Livi | ngston Re | s Site JC | | | | | | | Date | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SODIUM
PERCENT
(00932) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | MAR
13 | 1 | 34 | 5.76 | 101 | 73.4 | 50.2 | .5 | 7.3 | 317 | 3.04 | .012 | 3.05 | <.04 | | 13 13 13 13 13 AUG 23 23 23 23 23 | 1 2 |

35
44

43 | 5.88
8.36

-8.47 |

100
118

119 | 77.5
78.8

-79.3 |

52.9
67.0

66.5 |

.5
1.1

1.1 | 8.3
8.1

8.3 | 330
398

401 |

3.46
5.88

6.20
6.31
5.94 | E.006

.011
.131

.157
.165
.198 | 3.40

3.47
6.01

6.36
6.47
6.14 | <.04

E.02
.04

E.02
E.02
.05 | 305135095235401 -- Livingston Res Site JC | Date | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4)
(00660) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | |------|--|--|--|--|--|--|--| | | , | , , | , , | , , | , , | | , , | | MAR | | | | | | | | | 13 | | .55 | .29 | .28 | .859 | | | | 13 | | | | | | | | | 13 | | .49 | .33 | .31 | .960 | <10 | <2.0 | | 13 | | | | | | | | | 13 | | | | | | | | | 13 | | .48 | .32 | .32 | .966 | | | | AUG | | | | | | | | | 23 | .60 | .64 | .63 | .62 | 1.90 | <10 | E1.5n | | 23 | | | | | | | | | 23 | | .57 | .67 | .66 | 2.01 | <10 | E1.9 | | 23 | | .61 | .69 | .64 | 1.97 | <10 | E2.8 | | 23 | .58 | .64 | .67 | .66 | 2.01 | <10 | 28.1 | | | | | | | | | | Remark codes used in this report: < -- Less than E -- Estimated value Value qualifier codes used in this report: b -- Value was extrapolated below n -- Below the NDV THIS PAGE IS INTENTIONALLY BLANK ## 08066200 Long King Creek at Livingston, TX LOCATION.--Lat 30°42′58", long 94°57′31", Polk County, Hydrologic Unit 12030202, on right bank at upstream side of bridge on U.S. Highway 190, 2.0 mi west of Livingston, 2.0 mi upstream from Choates Creek, and 14.8 mi upstream from mouth. DRAINAGE AREA. -- 141 mi². PERIOD OF RECORD.--Jan. 1963 to current year. Water-quality records.--Chemical data: Jan. 1963 to Sept. 1972. Specific conductance: Jan. 1963 to Sept. 1972. Water temperature: Jan. 1963 to Sept. 1972. GAGE.--Water-stage recorder. Datum of gage is 100.12 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. No known regulation or diversions. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1870, about 41 ft in May 1929. | | | DISCHAF | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | CAR OCTOBER | 2001 TO | SEPTEMB | ER 2002 | | |
--|---|---|---|---|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.1
3.9
3.9
3.9
9.6 | 5.5
5.6
6.2
7.6
6.2 | 57
35
27
21
18 | 28
28
25
25
51 | 29
22
18
17
26 | 272
397
98
51
39 | 68
36
25
23
19 | 8.3
7.6
7.2
7.1 | 4.8
3.6
3.0
2.6
2.3 | 5.5
3.9
3.8
5.4
2.9 | 2.4
2.7
9.4
37
18 | 2.1
2.0
1.8
1.8
2.3 | | 6
7
8
9
10 | 203
49
19
11
8.9 | 6.0
5.7
5.6
5.8
5.9 | 16
15
55
100
47 | 126
58
38
32
31 | 381
126
57
40
31 | 34
32
30
29
27 | 18
17
1570
956
154 | 6.7
6.2
5.7
5.2
5.0 | 2.1
1.8
1.8
2.1
1.8 | 2.5
2.7
1.8
1.9
1.5 | 5.5
3.1
2.5
1.6
1.5 | 2.5
3.3
44
16
4.3 | | 11
12
13
14
15 | 66
110
942
577
76 | 6.1
6.2
7.0
6.7
7.0 | 208
5140
1320
399
185 | 29
26
22
21
19 | 24
21
20
19
18 | 24
24
23
22
23 | 79
55
43
37
32 | 4.4
3.8
3.7
3.3 | 3.6
6.2
2.0
1.5
1.2 | 1.4
2.6
8.7
14
10 | 1.1
1.0
0.97
1.2
3.2 | 2.4
1.7
1.4
1.3 | | 16
17
18
19
20 | 32
19
15
13 | 7.2
6.7
6.5
6.7
6.5 | 220
1490
316
146
92 | 18
18
19
17
17 | 17
16
16
20
56 | 23
23
22
21
63 | 29
27
26
22
20 | 3.1
5.3
10
7.3
5.6 | 9.3
8.5
3.7
2.4
2.0 | 12
11
6.4
4.2
3.0 | 3.1
2.3
1.8
1.5 | 1.7
8.6
13
8.7
9.1 | | 21
22
23
24
25 | 9.8
9.1
8.6
8.1
7.0 | 6.1
6.4
6.9
9.3
8.0 | 74
68
93
68
54 | 16
15
16
25
129 | 39
25
19
18
18 | 79
36
25
22
21 | 18
17
16
16
15 | 3.8
3.3
3.2
3.2
3.3 | 4.9
5.6
3.0
1.9
4.6 | 2.4
1.7
1.5
1.3 | 1.9
6.8
3.2
2.3
1.8 | 5.2
3.1
2.1
1.6
1.5 | | 26
27
28
29
30
31 | 5.9
5.3
5.1
4.9
5.0
5.2 | 7.5
360
241
710
189 | 46
41
40
37
33 | 46
29
23
21
20
19 | 17
15
15
 | 509
141
57
44
35
130 | 14
14
13
11
9.3 | 3.3
3.0
3.0
4.6
6.5
5.2 | 10
10
11
19
11 | 1.4
1.3
1.2
1.4
2.3
2.9 | 2.1
28
27
12
5.0
2.8 | 1.7
1.9
2.1
2.2
2.4 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 2251.3
72.62
942
3.9
4470
0.52
0.59 | 1670.9
55.70
710
5.5
3310
0.40
0.44 | 10492
338.5
5140
15
20810
2.40
2.77 | 1007
32.48
129
15
2000
0.23
0.27 | 1140
40.71
381
15
2260
0.29
0.30 | 2376
76.65
509
21
4710
0.54
0.63 | 3399.3
113.3
1570
9.3
6740
0.80
0.90 | 158.1
5.100
10
3.0
314
0.04
0.04 | 147.3
4.910
19
1.2
292
0.03
0.04 | 124.1
4.003
14
1.2
246
0.03
0.03 | 194.07
6.260
37
0.97
385
0.04
0.05 | 153.1
5.103
44
1.3
304
0.04
0.04 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA FO | OR WATER YI | EARS 1963 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 68.20
1342
1995
0.18
1966 | 97.82
920
1999
0.92
1989 | 161.8
626
1995
2.83
1971 | 193.3
1026
1998
2.79
1971 | 172.9
629
1992
5.53
1971 | 160.2
640
1990
3.75
1971 | 134.2
844
1979
4.06
1971 | 127.9
662
1969
2.58
1963 | 144.7
869
1989
0.72
1971 | 33.26
493
1989
0.000
1971 | 16.44
191
1983
0.000
1971 | 29.77
288
1996
0.15
1967 | | SUMMAR | Y STATIST | CICS | FOR : | 2001 CALENI | OAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEA | RS 1963 - | 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
ANNUAL
ANNUAL
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ANNUAL T DAILY ME DAILY ME SEVEN-DA M PEAK FI M PEAK ST | MEAN MEAN MAN MAN MAN MAN MAN MAN MAN MAN MAN M | | 63013.50
172.6
5140
0.76
1.0
125000
1.22
16.62
355
27
4.1 | | | 23113.17
63.32
5140
0.97
1.4
6880
16.19
45840
0.45
6.10
75
10 | Dec 12
Aug 13
Jul 23
Dec 12
Dec 12 | | 112.8
318
12.3
30100
0.0
50900
30.4
81730
0.8
10.8
155
13 | Oct 17
0 Aug 5
0 Jun 28
Oct 17
9 Oct 17 | 1995
1970
1994
1965
1971
1994
1994 | # 08066200 Long King Creek at Livingston, TX--Continued ## 08066250 Trinity River near Goodrich, TX LOCATION.--Lat 30°34'19", long 94°56'55", Polk-San Jacinto County line, Hydrologic Unit 12030202, on left bank at downstream bridge on U.S. Highway 59, 0.2 mi downstream from Long King Creek, 3.0 mi southeast of Goodrich, 11.9 mile downstream from Livingston Dam, and at mile 117.3. DRAINAGE AREA.--16,844 mi². PERIOD OF RECORD.--Dec. 1965 to current year. Water-quality records.--Chemical data: Mar. 1966 to Sept. 1973. Specific conductance: Oct. 1969 to Sept. 1973. Water temperature: Oct. 1969 to Sept. 1973. GAGE.--Water-stage recorder. Datum of gage is 40.00 ft above NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good. Since installation of gage in Dec. 1965, at least 10% of contributing drainage area has been regulated. Livingston Reservoir (station 08066190) and twenty-one additional upstream reservoirs now regulate flow. Streamflow is affected at times by discharge from the flood-detention pools of 252 floodwater-retarding structures. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1929, 52.0 ft in May 1942, from information by Texas Department of Transportation and by local residents. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DISCHARGE | FROM DCP, | CORIC PE | | COND, WA
Y MEAN V | | OCTOBER 20 | 001 10 SE | PIEMBER ZUU | 12 | | |--------------|----------------|----------------|-----------------|----------------|----------------|----------------------|------------------|---------------------|----------------|----------------------|------------------|---------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1960 | 1600 | 6350 | 29800 | 3870 | 2440 | 20600 | 14200 | 3710 | 3610 | 2130 | 1400 | | 2 | 1350 | 1600 | 6220 | 21300 | 3850 | 4970 | 21300 | 14400 | 3700 | 3600 | 1940 | 1400 | | 3 | 1320 | 1590 | 6150 | 15500 | 3820 | 4810 | 22800 | 14300 | 3700 | 3610 | 1560 | 1380 | | 4 | 1310 | 1590 | 5900 | 13500 | 3820 | 3850 | 21500 | 10500 | 3700 | 3610 | 1580 | 1220 | | 5 | 1330 | 1590 | 5280 | 10800 | e7000 | 2260 | 22500 | 9110 | 3690 | 3580 | 1610 | 1210 | | 6 | 2700 | 1590 | 4430 | 10700 | 18100 | 2150 | 22900 | 8140 | 3690 | 3570 | 1470 | 1350 | | 7 | 2960 | 1580 | 3620 | 10900 | 20100 | 2140 | 22800 | 5390
3910 | 3500 | 3580 | 1330 | 1390 | | 8
9 | 2320
2270 | 1580
1580 | 3130
3190 | 9210
6610 | 21100
21100 | 2130
2100 | 25900
33000 | 3870 | 2260
2120 | 3580
3580 | 1310
1330 | 1540
1570 | | 10 | 2270 | 1580 | 3150 | 3590 | 21100 | 2080 | 32200 | 4680 | 2120 | 3570 | 1320 | 1370 | | | | | | | | | | | | | | | | 11 | 2330 | 1570 | 3260 | 2310 | 21100 | 2070 | 31800 | 6490 | 2110 | 3560 | 1300 | 1340 | | 12 | 2460 | 1580 | 17300 | 2200 | 21000 | 2040 | 31600 | 8110 | 2120 | 3560 | 1290 | 1320 | | 13 | 5770 | 1620 | 26900 | 2190 | 21000 | 2040 | 31200 | 9730 | 2090 | 3660 | 1310 | 1320 | | 14 | 11300 | 1630 | 24500 | 2170 | 21000 | 2040 | 28800 | 9800 | 1930 | 3660 | 1310 | 1300 | | 15 | 12200 | 1630 | 23300 | 2160 | 21000 | 2120 | 25100 | 9800 | 2240 | 3610 | 1360 | 1290 | | 16 | 12000 | 1630 | 19000 | 2150 | 20900 | 3380 | 16500 | 9800 | 2100 | 3620 | 1330 | 1240 | | 17
18 | 11800
11900 | 1620
1620 | 20400
16700 | 2210
2350 | 17500
6180 | 3570
3030 | 19200
20700 | 10800
12300 | 2080
2070 | 3840
4210 | 1310
1280 | 1230
1590 | | 19 | 11900 | 1620 | 19100 | 4360 | 4010 | 2100 | 20700 | 12400 | 2070 | 4210 | 1390 | 1440 | | 20 | 10800 | 1610 | 25100 | 4620 | 3940 | 3250 | 20700 | 12400 | 2070 | 4210 | 1410 | 1550 | | | | | | | | | | | | | | | | 21 | 7630 | 1610 | 25600 | 3570 | 3930 | 4330 | 20700 | 12400 | 2070 | 4210 | 1400 | 1210 | | 22 | 4520 | 1620 | 26200 | 2210 | 3880 | 4880 | 20600 | 12400 | 2060 | 4200 | 1410 | 1120 | | 23 | 3410 | 1620 | 26200 | 2140 | 3850 | 5070 | 20700 | 12400 | 2050 | 4190 | 1400 | 1110 | | 24 | 3120 | 1610 | 26200 | 2540 | 3850 | 7280 | 20600 | 12400 | 2040 | 3950 | 1360 | 1070 | | 25 | 2260 | 1610 | 26200 | 3880 | 3830 | 11100 | 20600 | 12300 | 2050 | 4280 | 1360 | 1200 | | 26 | 1670 | 1640 | 29200 | 3960 | 3820 | 14300 | 20600 | 12300 | 2070 | 4370 | 1350 | 1180 | | 27 | 1620 | 3770 | 32700 | 3910 | 3450 | 16900 | 19500 | 8670 | 2120 | 3660 | 1380 | 1180 | | 28 | 1610 | 5640 | 34500 | 3880 | 2210
 17000 | 17700 | 5800 | 2560 | 2230 | 1400 | 1170 | | 29 | 1600 | 6570 | 36600 | 3880 | | 17000 | 17600 | 3850 | 3560 | 2150 | 1380 | 1200 | | 30
31 | 1600
1600 | 6310 | 36700
36000 | 3880
3880 | | 17400
18100 | 17600 | 3740
3730 | 3630 | 2140
2130 | 1330
1380 | 1120 | | | | | | | | | | | | | | | | TOTAL | 142890 | 64010 | 579080 | 196360 | 310310 | 187930 | 688000 | 290120 | 77280 | 111540 | 44020 | 39010 | | MEAN | 4609 | 2134 | 18680 | 6334 | 11080 | 6062 | 22930 | 9359 | 2576 | 3598 | 1420 | 1300 | | MAX | 12200 | 6570 | 36700 | 29800 | 21100 | 18100 | 33000 | 14400 | 3710 | 4370 | 2130 | 1590 | | MIN
AC-FT | 1310
283400 | 1570
127000 | 3130
1149000 | 2140
389500 | 2210
615500 | 2040
372800 | 16500
1365000 | 3730
575500 | 1930
153300 | 2130
221200 | 1280
87310 | 1070
77380 | | | | | | | | | | | | 222200 | 0.010 | ,,,,,, | | STATIS | TICS OF | MONTHLY M | EAN DATA F | OR WATER | YEARS 196 | 6 - 2002 | , BY WATE | R YEAR (W | <i>(</i>) | | | | | MEAN | 3508 | 6568 | 9118 | 9569 | 10050 | 12720 | 11620 | 14350 | 12020 | 4436 | 2173 | 2143 | | MAX | 25630 | 30260 | 30270 | 45550 | 38660 | 51410 | 30750 | 57850 | 32120 | 24310 | 6819 | 15230 | | (WY) | 1974 | 1975 | 1992 | 1992 | 1992 | 2001 | 1977 | 1990 | 1973 | 1989 | 1982 | 1974 | | MIN | 283 | 449 | 317 | 321 | 472 | 724 | 1262 | 1294 | 907 | 1043 | 355 | 455 | | (WY) | 1973 | 1971 | 1971 | 1971 | 1971 | 1981 | 1971 | 1971 | 1972 | 1971 | 1972 | 1971 | | SUMMAR | Y STATIS | STICS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 | WATER YEAR | 3 | WATER YEAR | RS 1966 - | 2002 | | ANNUAL | TOTAL | | | 5068440 | | | 2730550 | | | | | | | ANNUAL | | | | 13890 | | | 7481 | | | 8132 | | | | | T ANNUAL | | | | | | | | | 18310 | | 1992 | | LOWEST | ANNUAL | MEAN | | | | | | | | 746 | | 1971 | | HIGHES | T DAILY | MEAN | | 78700 | Jun 10 | | 36700 | Dec 30 | | 120000 | Oct 18 | | | LOWEST | DATLY N | IEAN | M | 685
1040 | Aug 14 | | 1070
1150 | Sep 24 | ± | 120000
191
240 | Aug 6 | 1971 | | ANNUAL | M PEAK F | AT MINIMUI | Ivi | 1040 | Aug 21 | | 36800 | Sep 22 | 4
3_21 | 125000 | Aug 16
Oct 18 | | | | | | | | | | 20000 | Dec 29
90 Dec 30 |)
) | 42 000 | 7 Oct 18 | | | ANNITAT. | RUNOFF | (AC-FT) | 1 | 0050000 | | | 5416000 | 20 Dec 30 | , | 5891000 | 000 10 | ・エノノユ | | 10 PER | CENT EXC | EEDS | - | 35900 | | | 21000 | | | 23500 | | | | 50 PER | CENT EXC | CEEDS | | 6350 | | | 3610 | | | 2750 | | | | 90 PER | CENT EXC | CEEDS | 1 | 1420 | | | 1350 | | | 776 | | | | | | | | | | | | | | | | | e Estimated # 08066250 Trinity River near Goodrich, TX--Continued ## 08066300 Menard Creek near Rye, TX $\label{location.--Lat 30°28'53", long 94°46'47", Liberty County, Hydrologic Unit 12030202, on left bank 20 ft downstream from bridge on State Highway 146, 2.3 mi northwest of Rye, and about 6.0 mi upstream from mouth.$ DRAINAGE AREA. -- 152 mi². PERIOD OF RECORD.--Dec. 1965 to current year. Water-quality records.--Chemical data: Aug. 1950 to Aug. 1994. REVISED RECORD. -- WRD-TX-99-2: 1999 (M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 62.32 ft above NGVD of 1929. Sept. 1974 to Aug. 1976, wire-weight gage read twice daily. Satellite telemeter at station. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since installation of gage in water year 1966, at least 10% of contributing drainage area has been regulated. No known diversions. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1929 reached a stage of about 39.4 ft, from information by the Texas Department of Transportation. Flood in Sept. 1961 reached a stage of about 34.0 ft, from information by local resident. Flood of May 1929 may have been equalled or exceeded by other floods during the period 1929-65. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | D. | LSCHARGE | FROM DCP, | CUBIC FE | | MEAN VA | | OCIOBER 200 | I IO SE | PIEMBER ZUC | 12 | | |---|---------------------------------------|--|--|--|--------------------------------------|---|---|--|--------------------------------------|---|---------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 27
26
25
24
25 | 30
29
29
28
27 | 375
389
153
98
82 | 101
90
84
80
96 | 76
91
90
78
73 | 57
67
100
159
98 | 49
48
45
42
40 | 27
e26
e26
e25
e24 | 19
19
18
18
16 | 42
35
31
29
27 | e16
e15
e15
e15
e15 | e14
e13
e13
e14
e14 | | 6
7
8
9
10 | 41
39
45
45
36 | 26
25
25
24
24 | 71
65
73
93
102 | 147
167
162
118
101 | 122
161
214
152
106 | 75
69
66
64
60 | 38
38
216
312
311 | e23
e22
e21
e21
e20 | 16
16
15
14
13 | 30
28
24
29
29 | e16
16
18
18
17 | e15
16
48
27
20 | | 11
12
13
14
15 | 58
116
401
538
318 | 24
24
24
24
24 | 111
1280
2380
2500
1360 | 94
89
83
77
72 | 87
78
71
67
65 | 58
56
54
55
53 | 361
158
94
74
65 | e20
e19
e19
18
18 | 16
15
13
12
12 | 24
22
27
32
34 | e16
e15
17
22
21 | 30
25
20
17
16 | | 16
17
18
19
20 | 405
181
93
73
62 | 24
24
24
24
23 | 825
851
684
930
767 | 69
67
66
68
71 | 63
61
59
61
70 | 52
52
52
51
52 | 58
52
50
46
43 | 18
18
20
19
20 | 16
16
15
16
23 | 43
44
44
42
33 | 21
18
17
17 | e15
17
18
26
49 | | 21
22
23
24
25 | 56
51
48
44
30 | 22
22
23
23
22 | 373
226
264
266
336 | 74
71
68
69
77 | 82
115
85
70
63 | 54
57
65
54
49 | 41
38
35
34
32 | 21
20
18
18
17 | 18
14
12
14
25 | 27
23
21
20
18 | 16
16
19
17
19 | 39
37
31
24
21 | | 26
27
28
29
30
31 | 24
23
21
25
31
30 | 24
32
101
288
323 | 238
166
150
137
124
113 | 108
161
101
82
75
74 | 59
56
55

 | 48
63
75
64
55 | 31
30
29
29
28 | 17
17
16
22
22
22 | 19
41
43
86
66 | 17
18
17
16
17
16 | 16
e15
e15
e14
e14
e14 | 18
17
e15
e13
e12 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2961
95.52
538
21
5870 | 1386
46.20
323
22
2750 | 15582
502.6
2500
65
30910 | 2862
92.32
167
66
5680 | 2430
86.79
214
55
4820 | 1985
64.03
159
48
3940 | 2467
82.23
361
28
4890 | 632
20.39
27
16
1250 | 656
21.87
86
12
1300 | 859
27.71
44
16
1700 | 517
16.68
22
14
1030 | 654
21.80
49
12
1300 | | MEAN
MAX
(WY)
MIN
(WY) | 77.23
1092
1995
3.42
1968 | 94.25
595
1999
3.55
1968 | 164.3
503
2002
8.05
1968 | 209.2
777
1974
14.6
1971 | 214.8
727
1992
14.0
1971 | - 2002,
183.4
528
1997
13.5
1971 | 176.4
977
1979
9.77
1971 | TYEAR (WY)
175.7
757
1983
20.4
2002 | 144.3
788
1986
8.72
1971 | 61.39
464
1989
4.52
1971 | 43.35
354
1983
5.47
1967 | 48.56
192
1983
4.43
1967 | | SUMMARY | STATIST: | ICS | FOR | 2001 CALEI | NDAR YEAR | F | FOR 2002 | WATER YEAR | | WATER YEAR | RS 1966 - | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC | | EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS | | 49938
136.8
2500
13
13
99050
357
45
20 | Dec 14
Aug 22
Aug 19 | | 32991
90.
2500
12
14
4120
23.
65440
155
33
16 | Dec 14
Jun 14
Jun 9
Dec 13
54 Dec 13 | | 133.6
279
14.7
12000
2.6
2.9
14200
31.41
96760
282
48 | Oct 18
Nov 1
Nov 1
Apr 5 | 1967
1967
1999 | e Estimated 08066300 Menard Creek near Rye, TX--Continued ## 08066500 Trinity River at Romayor, TX LOCATION.--Lat 30°25′30", long 94°51′02", Liberty County, Hydrologic Unit 12030202, near right bank at downstream side of bridge on State Highway 787, 1.9 mi south of Romayor, 1.9 mi downstream from Gulf, Colorado, and Santa Fe Railway Co. bridge, 3.7 mi downstream from Big Creek, and at mile 94.3. DRAINAGE AREA. -- 17,186 mi². PERIOD OF RECORD.--May 1924 to current year. Monthly discharge only for some periods, published in WSP 1312. Water-quality records.--Chemical data: Oct. 1941 to Nov. 1949, Feb. 1950 to Sept. 1951, Oct. 1953 to Sept. 1995. Biochemical data: Feb. 1968 to Sept. 1995. Pesticide data: Feb. 1968 to July 1981, Aug. 1983 to Sept. 1995. Sediment data: Mar. 1959 to Sept. 1995. Suspended sediment data: Oct. 1954 to Sept. 1955, Oct. 1968 to Sept. 1971. Specific conductance: Oct. 1941 to Sept. 1942, Jan. 1944 to Sept. 1951, Oct. 1953 to Sept. 1994. Water temperature: Oct. 1941 to Sept. 1950, Oct. 1953 to Sept. 1994. REVISED RECORDS.--WSP 1392: 1932, 1935. WSP 1922: Drainage area. WDR TX-81-1: 1980 (M, m). GAGE.--Water-stage recorder. Datum of gage is 25.92 ft above NGVD of 1929. Prior to Oct.
1, 1943, nonrecording gage at datum 63.57 ft higher at railroad bridge 1.9 mi upstream. Oct. 1, 1943, to Dec. 31, 1988, water-stage recorder and nonrecording gage (Sept. 15, 1975, to June 16, 1977) at present site and at datum 10.00 ft higher than current datum. Satellite telemeter at station. DISCHARGE FROM DCP, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Records good. Since installation of gage in water year 1924, at least 10% of contributing drainage area has been regulated. There are no known large diversions between Livingston Reservoir and this station. | | | DISCHARGE | FROM DCP, | CORIC FI | | COND, WA
Y MEAN V | | OCTOBER 20 | UI TO SE | PTEMBER 200. | 2 | | |------------------|----------------|----------------|-----------------|------------------|----------------|----------------------|--------------------------------|-------------------------------------|----------------|----------------|---------------|---------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3190 | 1590 | 7200 | 34200 | 4050 | 2060 | 21500 | 17100 | 4090 | 3870 | 2050 | 1340 | | 2 | 2580 | 1590 | 7100 | 26600 | 4020 | 4120 | 23000 | 14400 | 4040 | 3880 | 2010 | 1360 | | 3 | 2430 | 1580 | 6810 | 18400 | 4010 | 4890 | 24900 | 15600 | 4010 | 3930 | 1560 | 1380 | | 4 | 2430 | 1580 | 6560 | 15500 | 3970 | 4420 | 24600 | 12200 | 3990 | 3950 | 1510 | 1290 | | 5 | 2440 | 1570 | 6080 | 11800 | 5600 | 2510 | 24000 | 9690 | 3970 | 3940 | 1550 | 1250 | | 6
7 | 3010
3660 | 1560
1560 | 5180
4230 | 11200
11300 | 16700
21600 | 2080
2030 | 25500
25600 | 9150
6760 | 3950
3920 | 3930
3940 | 1480
1290 | 1360
1460 | | 8 | 2960 | 1570 | 3470 | 10800 | 23200 | 2010 | 27900 | 4680 | 2850 | 3920 | 1240 | 1830 | | 9 | 2830 | 1570 | 3460 | 8010 | 23400 | 2020 | 38500 | 4360 | 2310 | 3920 | 1260 | 2120 | | 10 | 2810 | 1560 | 3460 | 4490 | 23300 | 1980 | 39700 | 4580 | 2290 | 3920 | 1240 | 1730 | | 11 | 2880 | 1560 | 3450 | 2680 | 23200 | 1970 | 39000 | 6440 | 2280 | 3900 | 1210 | 1450 | | 12 | 3050 | 1560 | 15700 | 2320 | 23100 | 1990 | 38500 | 7720 | 2270 | 3890 | 1200 | 1380 | | 13 | 5080 | 1590 | 31400 | 2260 | 23000 | 1960 | 38000 | 9720 | 2240 | 4030 | 1190 | 1320 | | 14
15 | 11400
13400 | 1610
1610 | 31000
28400 | 2250
2210 | 23000
23000 | 1950
1960 | 35200
31000 | 10000
10000 | 2170
2230 | 4110
4040 | 1220
1230 | 1290
1260 | | | | 1010 | | | | | | | | | | | | 16
17 | 13100
12800 | 1610
1610 | 23800
23800 | 2190
2210 | 22900
20900 | 2770
3360 | 22600
18900 | 10000
10500 | 2310
2280 | 4030
4090 | 1260
1210 | 1260
1210 | | 18 | 12400 | 1610 | 21900 | 2260 | 9470 | 3230 | 23100 | 12500 | 2240 | 4590 | 1180 | 1610 | | 19 | 12500 | 1620 | 19100 | 3830 | 4230 | 2170 | 23200 | 12700 | 2240 | 4630 | 1160 | 1580 | | 20 | 11900 | 1610 | 28100 | 4850 | 3900 | 2630 | 23200 | 12700 | 2200 | 4540 | 1220 | 2080 | | 21 | 9040 | 1600 | 28800 | 4460 | 3860 | 3810 | 23200 | 12700 | 2110 | 4470 | 1210 | 1810 | | 22 | 5680 | 1610 | 29200 | 2530 | 3840 | 4760 | 23200 | 12700 | 2070 | 4450 | 1230 | 1600 | | 23
24 | 3540
3380 | 1620
1630 | 29300
29200 | 2210
2260 | 3770
3710 | 4890
6340 | 23200
e23000 | 12700
12700 | 2060
2050 | 4400
4230 | 1260
1230 | 1490
1420 | | 25 | 2610 | 1600 | 29100 | 3700 | 3680 | 9600 | 23000 | 12700 | 2040 | 4300 | 1230 | 1320 | | 26 | 1810 | 1640 | 30800 | 4200 | 3640 | 13900 | 23300 | 12700 | 2060 | 4540 | 1230 | 1360 | | 27 | 1630 | 2710 | 34300 | 4200 | 3560 | 17300 | 22500 | 10500 | 2100 | 4320 | 1230 | 1360 | | 28 | 1600 | 5790 | 35700 | 4110 | 2360 | 18200 | 20200 | 7080 | 2230 | 2560 | 1280 | 1360 | | 29 | 1600 | 7160 | 38000 | 4060 | | 18200 | 19500 | 4610 | 3520 | 2160 | 1290 | 1370 | | 30 | 1590 | 7240 | 38300 | 4030 | | 18300 | 19200 | 4190 | 3850 | 2120 | 1290 | 1360 | | 31 | 1590 | | 38100 | 4060 | | 19200 | | 4110 | | 2090 | 1280 | | | TOTAL | 160920 | 64320 | 641000 | 219180 | 334970 | 186610 | 788200 | 307490 | 81970 | 120690 | 41030 | 44010 | | MEAN | 5191 | 2144 | 20680 | 7070 | 11960 | 6020 | 26270 | 9919 | 2732 | 3893 | 1324 | 1467 | | MAX | 13400 | 7240 | 38300 | 34200 | 23400 | 19200 | 39700 | 17100 | 4090 | 4630 | 2050 | 2120 | | MIN | 1590
319200 | 1560
127600 | 3450
1271000 | 2190
434700 | 2360
664400 | 1950 | 18900
1563000 | 4110
609900 | 2040
162600 | 2090
239400 | 1160
81380 | 1210
87290 | | | | | | | | | | | | 237400 | 01300 | 07230 | | STATIS | TICS OF I | MONTHLY M | EAN DATA F | OR WATER | YEARS 192 | 4 - 2002 | 2, BY WATE | ER YEAR (WY |) | | | | | MEAN | 3343 | 5540 | 8058 | 9536 | 10000 | 11840 | 11050 | 15150 | 11490 | 4456 | 1878 | 2092 | | MAX | 25380 | 31160 | 43240 | 51740 | 44510 | 53570 | 65710 | 62000 | 45120 | 28480 | 10140 | 14850 | | (WY) | 1974 | 1999 | 1941 | 1992 | 1992 | 2001 | 1945 | 1957 | 1957 | 1941 | 1957 | 1974 | | MIN
(WY) | 181
1957 | 274
1956 | 351
1971 | 347
1971 | 450
1971 | 528
1925 | 415
1925 | 1285
1937 | 455
1925 | 201
1956 | 128
1956 | 165
1956 | | | Y STATIS | TTCC | | 2001 CAL | ENDAR YEAR | | EOD 2002 | WATER YEAR | | WATER YEARS | g 1924 _ | 2002 | | | | 1105 | | | BINDAK TEAK | | | WAIER IEAR | | WAIER IEAR | 3 1724 | 2002 | | ANNUAL
ANNUAL | TOTAL | | | 5530770
15150 | | | 2990390
8193 | | | 7867 | | | | | T ANNUAL | MEDN | | 13130 | | | 0193 | | | 20630 | | 1992 | | LOWEST | ו .דבדדתתב י | ME DN | | | | | | | | | | 1971 | | HIGHES | T DAILY | MEAN | м | 74600 | Jun 11 | | 39700 | Apr 10 | | 117000 | Oct 19 | | | LOWEST | DAILY M | EAN | | 1210 | Aug 14 | | 1160 | Aug 19 | | 104 | Aug 23 | 1956 | | | | | M | 1450 | Aug 10 | | 39700
1160
1210
40500 | Apr 10
Aug 19
Aug 13
Apr 9 | | 106 | Aug 20 | 1956 | | | M PEAK F | | | | | | 40500 | Apr 9 | | 122000 | Oct 19 | | | MAXIMU | M PEAK S' | TAGE | - | 0070000 | | | 30.
5931000 | .u/ Dec 30 | | 45.80 | May 9 | 1942 | | ANNUAL | CENT EVO | (AC-FI) | 1 | 20100 | | | 23200 | | | 225UU | | | | 50 PER | CENT EXC | EEDS | 1 | 7160 | | | 3900 | | | 2720 | | | | 90 PER | CENT EXC | EEDS | | 1600 | | | 1360 | | | 571 | | | | | | | | _000 | | | | | | 2.1 | | | e Estimated # 08066500 Trinity River at Romayor, TX--Continued # 08067000 Trinity River at Liberty, TX (Partial-record Station) LOCATION.--Lat $30^{\circ}03'27$ ", long $94^{\circ}49'05$ ", Liberty County, Hydrologic Unit 12030203, at downstream side of downstream bridge on U.S. Highway 90 in Liberty, 450 ft downstream from Texas and New Orleans Railroad Co. bridge, and at mile 40.3. DRAINAGE AREA. -- 17,468 mi² PERIOD OF RECORD.--Oct. 1938 to Sept. 1940 (gage heights, discharge measurements, and some records of daily discharge), Oct. 1940 to current year (daily mean discharges above 10,000 ft³/s). Gage-height records collected in this vicinity since 1903 are contained in reports of the National Weather Service. Water-quality records.--Chemical data: Oct. 1970 to Sept. 1972. Biochemical data: Oct. 1970 to Sept. 1972. Pesticide data: May 1971 to Sept. 1972. REVISED RECORDS. -- WSP 1922: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 2.22 ft below NGVD of 1929; unadjusted for land-surface subsidence. Prior to Mar. 13, 1973, nonrecording gage at site at same datum. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. Discharges for current year were computed using stage-discharge relation. During years with predominantly low releases from Livingston Reservoir, discharges are estimated using records for Trinity River near Romayor (station 08066500), intervening area computation, and discharge measurements. Since installation of gage in water year 1941, at least 10% of contributing drainage area has been regulated. Many diversions above station for municipal supplies, industrial uses, and irrigation. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 135,000 ft³/s, Oct. 12, 1994, gage height, 31.00 ft; minimum not determined (affected by tides); minimum gage height observed, 2.32 ft, Nov. 24, 1970. Maximum gage height since at least 1903, 31.00 ft, Oct. 21, 1994 (at 0500 hours). EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 8-11, 1922, reached a stage of 28.6 ft, present datum, from observations by the National Weather Service at nonrecording gage on railroad bridge upstream. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 36,100 ft³/s, Dec. 31, gage height, 26.48 ft; minimum discharge not determined (affected by tides); minimum gage height, 5.10 ft, Sept. 1. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV DEC JUN SEP OCT JAN FEB MAR APR MAY JUL AUG 35400 17400 17500 2 ---32900 ------19200 15000 ------3 ___ ___ ___ 28200 ___ ___ 20400 13900 ___ ___ ___ ___ 21700 22200 13800 ---5 18400 21500 11400 ---21700 6 15200 10100 ---------13400 13800 ---22500 ---------------___ ___ ---8 ___ ___ 12600 18100 ___ 24600 ___ ___ ___ 28700 10 ---------20300 ---31500 ---------11 ___ ___ 20500 ___ 32100 ___ ___ 12 ---------20600 ---32200 ---------------18900 ---___ ------------13 20700 ---32300 ---10200 ___ ___ 20700 ___ 32100 ___ ___ ------15 12400 ---28800 ---20800 ---31200 ---------------16 13900 27500 20800 29200 ___ ___ 17 13400 ---25400 ---20700 ---23100 ------------10100 12800 18000 ___ 25200 21900 18 10700 19 ___ ---___ ___ 12300 22000 12000 22600 ---------20 12000 ---22400 ---22300 11000 ---------21 11100 26000 21900 11100 2.2 ------27100 ---------21600 11100 ------------23 28500 21300 11100 24 ___ ___ 21100 11100 ___ 28800 ------------25 ---28700 ------21000 11100 ------26 28700 10200 21000 11100 ___ ------------2.7 ---30000 ---11800 20900 11100 ------28 31700 14400 20000 10400 20 ___ ___ 33100 ___ ___ 15400 18400 ___ ___ ___ ___ ------------------15700 ---------30 34500 17800 35400 16600 THIS PAGE IS INTENTIONALLY BLANK ## 08067070 CWA Canal near Dayton, TX PERIOD
OF RECORD.--Apr. 1981 to current year. Prior to Oct. 1990, published as "CIWA Canal near Dayton". GAGE.--Water-stage recorder. Datum of gage not determined. Satellite telemeter at station. REMARKS.--No estimated daily discharges. Records good. There are no known diversions between pumping plant and the gage. Water is pumped from the Trinity River for industrial and municipal use in the area. | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|---|---------------------------------------|--|---|--|--|---|---|---------------------------------------|---|--|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 771
769
766
765
752 | 642
563
569
631
641 | 555
553
584
598
626 | 726
698
723
754
735 | 689
688
688
679
675 | 680
669
670
691
716 | 756
796
812 | 807
802
804
825
850 | 764
762
762
760
794 | 774
778
811
821
835 | 842
842
842
842
842 | 801
836
850
851
850 | | 6
7
8
9
10 | 721
654
718
719
717 | 643
643
642
658
683 | 645
639
632
622
611 | 711
723
718
711
707 | 685
665
642
607 | 714
709
711
707
717 | 782
665
669 | 884
891
885
905
895 | 873
887
824
810
805 | 842
875
894
896
880 | 842
851
858
858
858 | 850
766
704
722
812 | | 11
12
13
14
15 | 693
667
672
684
698 | 683
682
682
683
650 | 533
581
586
630
642 | 695
678
671
670
669 | 617
669
706
724
719 | 757
748
734
754
758 | 756
820
841 | 894
881
860
836
826 | 823
863
885
882
873 | 846
843
825
734
704 | 858
778
737
811
734 | 813
809
807
806
855 | | 16
17
18
19
20 | 703
703
701
698
698 | 639
602
602
625
580 | 634
606
635
649
618 | 672
664
664
664
670 | 688
664
692
730
726 | 755
759
762
764
759 | 753
755
783 | 826
785
770
758
759 | 879
873
831
812
840 | 707
777
809
773
779 | 707
727
791
811
862 | 868
712
696
719
710 | | 21
22
23
24
25 | 695
687
740
731
724 | 641
664
662
657
655 | 634
644
608
637
632 | 640
603
598
651
674 | 715
708
706
704
701 | 750
759
769
771
709 | 807
808
806 | 791
811
818
819
820 | 823
874
896
860
903 | 779
796
810
817
831 | 862
865
880
878
872 | 719
706
690
680
677 | | 26
27
28
29
30
31 | 726
696
705
714
695
645 | 624
536
570
585
554 | 611
611
612
696
674
684 | 682
690
696
697
697 | 704
708
710
 | 756
707
698
713
716
718 | 810
821
813
808 | 821
821
813
798
777
766 | 871
874
839
839
790 | 835
837
842
842
842
842 | 835
833
792
788
796
800 | 708
705
717
716
736 | | MEAN 7
MAX
MIN
AC-FT 4 | 10.5
771
645
3690 | 629.7 6
683
536
37470 3 | 9222
20.1
696
533
8130 | 21248
685.4
754
598
42150 | 19216
686.3
730
607
38110 | 22600
729.0
771
669
44830 | 778.8
841
665
46340 | 25598
825.7
905
758
50770 | 25171
839.0
903
760
49930 | 25276
815.4
896
704
50130 | 25494
822.4
880
707
50570 | 22891
763.0
868
677
45400 | | MEAN 4
MAX
(WY)
MIN | | 473.4 4
734
2000
236 | DATA FOI
718
2000
219
1983 | 459.1
710
1999
233
1983 | EARS 1981
466.3
716
1999
226
1983 | 483.4
729
2002
235
1985 | 779
2002
275 | YEAR (WY) 538.8 831 1998 273 1986 | 570.2
973
1998
303
1983 | 586.8
888
1998
293
1983 | 565.1
875
1999
237
1983 | 535.2
814
2000
251
1983 | | SUMMARY S | TATISTIC | !S | FOR 20 | 001 CALEN | DAR YEAR | | FOR 2002 WA | TER YEAR | | WATER YEAR | s 1981 - | 2002 | | ANNUAL TO
ANNUAL ME
HIGHEST A
LOWEST DA
ANNUAL SE
MAXIMUM P
MAXIMUM P
ANNUAL RU
10 PERCEN
50 PERCEN
90 PERCEN | AN NNUAL ME NUAL MEA AILY MEA ILY MEAN VEN-DAY EAK FLOW EAK STAG NOFF (AC T EXCEED T EXCEED | N
N
MINIMUM
EE
:-FT)
S | | 252306
691.2
902
340
562
500400
818
680
606 | Aug 21
May 15
Nov 27 | | 270998
742.5
905
533
562
1050
3.00
537500
858
734
633 | May 9
Dec 11
Nov 27
May 8
May 8 | | 517.4
764
259
1080
52
167
1220
3.07
374800
770
522
256 | | 1983 | 08067070 CWA Canal near Dayton, TX--Continued ## 08067118 Lake Charlotte near Anahuac, TX LOCATION.--Lat 29°52′02", long 94°42′53", Chambers County, Hydrologic Unit 12030203, on east side of Lake Charlotte, which is connected to the Trinity River by a small channel, 1.0 mi west of State Highway 563, 1.9 mi north of Interstate Highway 10, and 2.7 mi northeast of Wallisville. DRAINAGE AREA.--55 mi². WATER-STAGE RECORDS PERIOD OF RECORD. -- Dec. 1991 to current year. GAGE.--Water-stage recorder. Datum of gage is 5.81 ft below NGVD of 1929. Satellite telemeter at station. REMARKS.--Records good. Lake Charlotte is a shallow natural lake within the Trinity River delta. Dec. 1991 to Nov. 9, 1992, the lowest stilling well intake was at gage height of 7.3 ft. Thereafter it was at gage height of 6.7 ft. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 15.9 ft, Oct. 22, 1994, at 1345 hours. EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 11.94 acre-ft, Jan. 2, 3. | | | GAGE | HEIGHT F | ROM DCP, | | WATER YEA | | 2001 TO | SEPTEMBER | 2002 | | | |----------------------------------|--|---|--|--|---|---|---|--|--|---|--------------------------------------|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.94
6.93
6.89
6.92
7.05 | 7.20
7.17
7.15
7.08
6.94 | 8.06
8.27
8.30
8.25
8.16 | 11.85
11.9
11.92
11.80
11.66 | <6.88
<6.88
<6.88
<6.88 | 7.10
7.72
7.32
<6.88
6.92 | 10.19
10.36
10.57
10.66
10.79 | 11.10
11.04
10.81
10.60
10.36 | 7.89
7.70
7.64
7.65
7.60 | 7.41
7.33
7.31
7.27
7.06 | <6.88
<6.88
<6.88
<6.88 | <6.88
7.02
7.16
7.34
7.59 | | 6
7
8
9
10 | 6.99
6.86
7.06
7.38
7.62 | 7.02
7.03
6.94
6.91
<6.88 | 8.08
7.90
7.60
7.08
<6.88 | 11.41
11.01
10.61
10.24
9.73 | <6.88
7.31
8.03
8.90
9.68 | | 10.92
11.08
11.50
11.64
11.66 | 9.98
9.60
9.37
9.12
8.61 | 7.52
7.40
7.36
7.45
7.46 | <6.88
<6.88
<6.88
7.10
7.24 | <6.88
<6.88
<6.88
<6.88 | 7.75
8.12
8.86
9.51
9.14 | | 11
12
13
14
15 | 7.97
8.24
8.48
8.64
8.78 | <6.88
<6.88
<6.88
7.04
7.32 | <6.88
7.36
8.14
9.42
10.48 | 9.12
8.48
7.88
7.38
6.89 | 10.10
10.38
10.59
10.71
10.83 | | 11.73
11.79
11.81
11.85
11.89 | 8.26
8.34
8.38
8.08
8.32 | 7.57
7.62
7.47
7.27
<6.88 | 7.13
7.09
7.19
7.14
7.07 | 7.40
7.54
7.82
8.02
8.45 | 8.66
8.17
7.75
7.58
7.53 | | 16
17
18
19
20 | 9.29
9.51
9.74
9.80
9.76 | 7.55
7.67
7.85
7.98
7.84 | 11.21
11.60
11.61
11.58
11.47 | <6.88
<6.88
<6.88
<6.88 | 10.88
10.90
10.94
10.84
10.14 | 7.17 | 11.91
11.86
11.68
11.53
11.45 | 8.67
8.92
8.82
8.70
8.86 | 7.08
<6.88
<6.88
6.97
7.21 | 7.29
7.42
7.27
7.11
7.03 | 9.08
8.74
8.23
7.84
7.57 | 7.31
7.24
7.37
7.56
8.08 | | 21
22
23
24
25 | 9.69
9.50
9.07
8.63
8.14 | 7.55
7.40
7.51
7.69
7.55 | 11.40
11.45
11.52
11.53
11.57 | <6.88
<6.88
6.93
6.89
<6.88 | 9.32
8.69
8.14
7.79
7.61 | <6.88
<6.88
7.17 | 11.41
11.38
11.33
11.29
11.24 | 9.09
9.28
9.46
9.55
9.56 | 7.07
7.01
7.10
7.05
7.03 | 7.02
6.97
6.94
6.92
6.94 | 7.38
7.27
7.15
7.10
7.04 | 8.49
8.69
8.39
8.07
8.01 | | 26
27
28
29
30
31 | 7.71
7.45
7.10
6.98
6.90
7.04 | 7.54
7.90
7.69
7.63
7.77 | 11.62
11.63
11.65
11.69
11.73
11.79 |
<6.88
<6.88
7.11
7.11
7.10
7.24 | 7.26
<6.88
<6.88
 | 7.58
7.83
8.44
9.13
9.63
10.06 | 11.20
11.22
11.28
11.21
11.13 | 9.52
9.51
9.50
9.24
8.73
8.24 | 7.14
7.36
7.39
7.21
7.43 | 6.99
7.11
7.28
7.22
7.00
<6.88 | <6.88 <6.88 <6.88 <6.88 <6.88 | 7.69
7.44
7.48
7.52
7.38 | | MAX | 9.80 | 7.98 | 11.79 | 11.92 | 10.94 | 10.06 | 11.91 | 11.10 | 7.89 | 7.42 | 9.08 | 9.51 | < Actual value is known to be less than the value shown ## 08067118 Lake Charlotte near Anahuac, TX--Continued WATER-OUALITY RECORDS PERIOD OF RECORD .-- CHEMICAL DATA: Dec. 1991 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Oct. 1994 to current year. WATER TEMPERATURE: Dec. 1991 to current year. INSTRUMENTATION. -- Water-quality monitor since June 1995. REMARKS.--Records good. Interruption in the record was due to malfunction of the instrument. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum recorded, 4,560 microsiemens/cm, Nov. 17, 1997; minimum recorded, 46 microsiemens/cm, Oct. 20, 1994. WATER TEMPERATURES: Maximum, 40.5°C, July 13, 2001; minimum, 4.0°C, Mar. 4, 2002. EXTREMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum recorded, 532 microsiemens/cm, June 29; minimum recorded, 116 microsiemens/cm, Aug. 17. WATER TEMPERATURE: Maximum, 40.0°C, July 23; minimum, 4.0°C, Mar. 4. SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|-------------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 357 | 331 | 344 | 367 | 349 | 356 | 340 | 329 | 334 | 343 | 325 | 333 | | 2 | 358 | 330 | 347 | 383 | 356 | 366 | 339 | 322 | 335 | 336 | 326 | 332 | | 3 | 351 | 338 | 347 | 363 | 356 | 359 | 323 | 294 | 306 | 337 | 329 | 333 | | 4 | 353 | 341 | 349 | 358 | 347 | 353 | 307 | 287 | 293 | 338 | 331 | 333 | | 5 | 351 | 321 | 345 | 354 | 345 | 351 | 293 | 279 | 288 | 333 | 305 | 323 | | 6 | 345 | 309 | 330 | 359 | 349 | 355 | 284 | 272 | 279 | 314 | 301 | 304 | | 7 | 346 | 294 | 314 | 360 | 353 | 356 | 323 | 277 | 293 | 309 | 301 | 305 | | 8 | 334 | 307 | 324 | 373 | 360 | 364 | 338 | 269 | 294 | 309 | 304 | 306 | | 9 | 356 | 329 | 337 | 388 | 373 | 378 | 284 | 270 | 278 | 325 | 304 | 314 | | 10 | 349 | 335 | 340 | 390 | 378 | 382 | 300 | 279 | 285 | 308 | 297 | 303 | | 11 | 358 | 329 | 341 | 397 | 379 | 387 | 325 | 293 | 308 | 325 | 299 | 311 | | 12 | 364 | 318 | 332 | 399 | 384 | 390 | 370 | 282 | 314 | 327 | 306 | 315 | | 13 | 371 | 317 | 334 | 392 | 378 | 383 | 293 | 258 | 275 | 392 | 320 | 335 | | 14 | 326 | 313 | 321 | 399 | 380 | 387 | 291 | 258 | 284 | 364 | 316 | 338 | | 15 | 322 | 317 | 320 | 394 | 376 | 383 | 266 | 236 | 251 | 349 | 323 | 329 | | 16 | 322 | 299 | 314 | 405 | 382 | 395 | 275 | 258 | 264 | 372 | 324 | 341 | | 17 | 315 | 292 | 305 | 407 | 386 | 394 | 279 | 266 | 274 | 418 | 329 | 358 | | 18 | 309 | 302 | 304 | 397 | 382 | 388 | 279 | 265 | 274 | 388 | 316 | 345 | | 19 | 311 | 304 | 307 | 394 | 372 | 385 | 275 | 214 | 250 | 339 | 316 | 327 | | 20 | 312 | 303 | 308 | 394 | 377 | 385 | 238 | 214 | 224 | 371 | 329 | 351 | | 21 | 318 | 307 | 312 | 403 | 390 | 396 | 246 | 234 | 239 | 354 | 336 | 343 | | 22 | 327 | 316 | 319 | 410 | 389 | 399 | 282 | 241 | 264 | 454 | 335 | 352 | | 23 | 334 | 327 | 330 | 438 | 385 | 410 | 310 | 272 | 291 | 365 | 335 | 342 | | 24 | 335 | 330 | 333 | 388 | 376 | 382 | 307 | 289 | 299 | 370 | 322 | 340 | | 25 | 343 | 333 | 338 | 399 | 385 | 390 | 299 | 289 | 292 | 404 | 327 | 348 | | 26
27
28
29
30
31 | 333
329
335
340
341
354 | 320
315
318
324
325
322 | 326
320
327
333
334
334 | 435
386
354
346
347
 | 380
308
308
292
334 | 400
347
334
328
339 | 311
310
322
332
331
337 | 288
291
293
319
329
326 | 298
300
311
327
330
331 | 371
360
352
352
354
363 | 333
337
344
337
327
325 | 353
348
348
348
345
342 | | MONTH | 371 | 292 | 328 | 438 | 292 | 374 | 370 | 214 | 290 | 454 | 297 | 334 | 08067118 Lake Charlotte near Anahuac, TX--Continued SPECIFIC CONDUCTANCE FROM DCP, in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPECIFIC | C CONDUC | CTANCE | FROM DCP, | in US/CM | @ 25C, | WATER | YEAR | OCTOBER | 2001 TO | SEPTEMBER | 2002 | | |---|--|---|--|---|--|--|-------|---|---|---|--|---|--| | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | | MAX | MIN | MEAN | MAX | MIN | MEAN | | | FI | EBRUARY | | | MARCH | | | | APRIL | | | MAY | | | 1 | 349 | 320 | 334 | 376 | 328 | 342 | | 335 | 321 | 329 | 346 | 335 | 340 | | 2 | 341 | 313 | 325 | 342 | 323 | 330 | | 333 | 318 | 329 | 344 | 335 | 339 | | 3 | 333 | 321 | 327 | 356 | | 346 | | 332 | 309 | 318 | 346 | 336 | 341 | | 4
5 | 336
353 | 321
329 | 329
340 | 377
378 | 350
355 | 363
366 | | 328
336 | 313
313 | 323
323 | 351
347 | 336
341 | 341
344 | | 6 | 349 | 339 | 344 | 402 | 336 | 369 | | 336 | 320 | 328 | 346 | 337 | 342 | | 7 | 373 | 313 | 348 | 404 | 344 | 362 | | 349 | 334 | 344 | 351 | 337 | 344 | | 8 | 329 | 303 | 312 | 378 | | 362 | | 406 | 318 | 333 | 350 | 341 | 344 | | 9
10 | 383
311 | 303
297 | 332
303 | 386
391 | | 356
380 | | 342
336 | 327
322 | 332
326 | 349
357 | 343
347 | 346
353 | | 11 | 315 | 303 | 309 | 414 | 382 | 394 | | 335 | 323 | 330 | 393 | 349 | 355 | | 12 | 327 | 310 | 320 | 423 | 351 | 379 | | 335 | 319 | 331 | 365 | 350 | 356 | | 13 | 315
316 | 308 | 310 | 423
409 | 362 | 393
383 | | 330
316 | 302
302 | 314 | 364
366 | 342
354 | 352
362 | | 14
15 | 317 | 306
308 | 310
314 | 379 | 361
354 | 363
367 | | 326 | 312 | 311
321 | 365 | 354 | 362 | | 16 | 312 | 308 | 309 | 413 | 376 | 395 | | 330 | 321 | 327 | 366 | 359 | 361 | | 17 | 316 | 308 | 311 | 399 | 364 | 380 | | 341 | 330 | 334 | 366 | 343 | 353 | | 18
19 | 326
312 | 305
305 | 312
308 | 393
391 | 366
367 | 382
379 | | 342
339 | 333
331 | 338
336 | 361
363 | 346
354 | 354
359 | | 20 | 311 | 304 | 307 | 381 | | 376 | | 346 | 335 | 339 | 361 | 348 | 355 | | 21 | 312 | 302 | 308 | 389 | 344 | 374 | | 342 | 337 | 340 | 372 | 354 | 358 | | 22 | 322 | 303 | 313 | 411
445 | 337 | 364 | | 348
355 | 341 | 344 | 371
365 | 353 | 360 | | 23
24 | 346
362 | 316
315 | 330
334 | 445
422 | 378
346 | 413
381 | | 355
341 | 331
330 | 344
334 | 365
365 | 351
357 | 360
361 | | 25 | 368 | 313 | 319 | 396 | 333 | 358 | | 341 | 327 | 334 | 365 | 353 | 360 | | 26 | 352 |
303 | 322 | 363 | 329 | 345 | | 346 | 327 | 335 | 363 | 354 | 358 | | 27 | 346 | 313 | 331 | 372 | 329 | 341 | | 348
345 | 338
337 | 342 | 361 | 341 | 353 | | 28
29 | 388 | 329 | 371 | 372
361
354 | 346
326 | 353
336 | | 345
349 | 337
323 | 341
340 | 349
354 | 342
344 | 345
349 | | 30 | | | | 346 | 320 | 333 | | 341 | 323 | 336 | 354 | 349 | 353 | | 31 | | | | 328 | 322 | 325 | | | | | 361 | 355 | 358 | | MONTH | 388 | 297 | 323 | 445 | 322 | 365 | | 406 | 302 | 332 | 393 | 335 | 352 | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | | MAX | MIN | MEAN | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | DAY | MAX
359 | | 353 | 415 | JULY
362 | 391 | | 406 | AUGUST | 390 | 330 | SEPTEMBE | ER
325 | | 1
2 | 359
396 | JUNE
348
353 | 353
367 | 415
423 | JULY
362
370 | 391
395 | | 406
395 | AUGUST
367
375 | 390
386 | 330
333 | 320
324 | 325
329 | | 1
2
3 | 359
396
387 | JUNE 348 353 369 | 353
367
380 | 415
423
425 | JULY
362
370
381 | 391
395
399 | | 406
395
397 | 367
375
374 | 390
386
387 | 330
333
340 | 320
324
329 | 325
329
333 | | 1
2 | 359
396 | JUNE
348
353 | 353
367 | 415
423 | JULY
362
370
381
383 | 391
395 | | 406
395 | AUGUST
367
375 | 390
386 | 330
333 | 320
324 | 325
329 | | 1
2
3
4 | 359
396
387
380
384
366 | JUNE 348 353 369 367 360 | 353
367
380
375
374 | 415
423
425
422
431 | JULY 362 370 381 383 402 409 | 391
395
399
407
411 | | 406
395
397
399
390 | 367
375
374
377
376 | 390
386
387
389
384 | 330
333
340
353
358 | 320
324
329
337
341
346 | 325
329
333
342
351 | | 1
2
3
4
5 | 359
396
387
380
384
366
356 | JUNE 348 353 369 367 360 352 329 | 353
367
380
375
374
359
345 | 415
423
425
422
431
433
440 | JULY 362 370 381 383 402 409 380 | 391
395
399
407
411
422
419 | | 406
395
397
399
390
391
394 | 367
375
374
377
376
369
384 | 390
386
387
389
384
383
389 | 330
333
340
353
358
353 | 320
324
329
337
341
346
343 | 325
329
333
342
351
351
348 | | 1
2
3
4
5 | 359
396
387
380
384
366
356
337 | JUNE 348 353 369 367 360 352 329 307 | 353
367
380
375
374
359
345
320 | 415
423
425
422
431
433
440
429 | JULY 362 370 381 383 402 409 380 357 | 391
395
399
407
411
422
419
378 | | 406
395
397
399
390
391
394
403 | 367
375
374
377
376
369
384
387 | 390
386
387
389
384
383
389
395 | 330
333
340
353
358
353
356
350 | 320
324
329
337
341
346
343
329 | 325
329
333
342
351
351
348
338 | | 1
2
3
4
5 | 359
396
387
380
384
366
356 | JUNE 348 353 369 367 360 352 329 | 353
367
380
375
374
359
345 | 415
423
425
422
431
433
440 | JULY 362 370 381 383 402 409 380 357 369 | 391
395
399
407
411
422
419 | | 406
395
397
399
390
391
394 | 367
375
374
377
376
369
384 | 390
386
387
389
384
383
389 | 330
333
340
353
358
353 | 320
324
329
337
341
346
343 | 325
329
333
342
351
351
348 | | 1
2
3
4
5
6
7
8
9 | 359
396
387
380
384
366
356
337
425
375 | JUNE 348 353 369 367 360 352 329 307 333 | 353
367
380
375
374
359
345
320
372 | 415
423
425
422
431
433
440
429
392
401 | JULY 362 370 381 383 402 409 380 357 369 375 | 391
395
399
407
411
422
419
378
383
388 | | 406
395
397
399
390
391
394
403
397
393 | 367
375
374
377
376
369
384
387
388
383 | 390
386
387
389
384
383
389
395
392
387 | 330
333
340
353
358
356
350
344
341 | 320
324
329
337
341
346
343
329
329
296 | 325
329
333
342
351
351
348
338
334
314 | | 1
2
3
4
5
6
7
8
9
10 | 359
396
387
380
384
366
356
337
425
375 | 348
353
369
367
360
352
329
307
333
351
356
355 | 353
367
380
375
374
359
345
320
372
361
367
366 | 415
423
425
422
431
433
440
429
392
401 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 | 391
395
399
407
411
422
419
378
383
383
388 | | 406
395
397
399
390
391
394
403
397
393
389
394 | 367
375
374
377
376
369
384
387
388
383 | 390
386
387
389
384
383
389
395
392
387 | 330
333
340
353
358
356
350
344
341 | 320
324
329
337
341
346
343
329
329
296 | 325
329
333
342
351
351
348
338
334
314 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 359
396
387
380
384
366
356
337
425
375
383
376
384 | JUNE 348 353 369 367 360 352 329 307 333 351 356 355 365 | 353
367
380
375
374
359
345
320
372
361
367
366
373 | 415
423
425
422
431
433
440
429
392
401
407
410
395 | JULY 362 370 381 383 402 409 380 357 369 375 376 376 383 347 | 391
395
399
407
411
422
419
378
383
388
392
398
378 | | 406
395
397
399
390
391
394
403
397
393
389
394
388 | 367
375
374
377
376
369
384
387
388
383
381
380
365 | 390
386
387
389
384
383
395
392
387
386
387
374 | 330
333
340
353
358
356
350
344
341
330
321
335 | 320
324
329
337
341
346
343
329
296
300
312
320 | 325
329
333
342
351
351
348
338
334
314 | | 1
2
3
4
5
6
7
8
9
10 | 359
396
387
380
384
366
356
337
425
375 | 348
353
369
367
360
352
329
307
333
351
356
355 | 353
367
380
375
374
359
345
320
372
361
367
366 | 415
423
425
422
431
433
440
429
392
401 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 | 391
395
399
407
411
422
419
378
383
383
388 | | 406
395
397
399
390
391
394
403
397
393
389
394 | 367
375
374
377
376
369
384
387
388
383 | 390
386
387
389
384
383
389
395
392
387 | 330
333
340
353
358
356
350
344
341 | 320
324
329
337
341
346
343
329
329
296 | 325
329
333
342
351
351
348
338
334
314 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 359
396
387
380
384
366
356
337
425
375
383
376
384 | 348
353
369
367
360
352
307
333
351
356
355
365
353 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 | 391
395
399
407
411
422
419
378
383
388
392
398
378
378 | | 406
395
397
399
390
391
394
403
397
393
389
389
388
460 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364 | 390
386
387
389
384
383
389
395
392
387
386
387
374
389 | 330
333
340
353
358
353
356
350
344
341
330
321
335
340 | 320
324
329
337
341
346
343
329
329
296
300
312
320
333 | 325
329
333
342
351
351
348
338
334
314
315
317
329
336 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 359
396
387
380
384
366
356
337
425
375
383
376
384
384
397 | 348
353
369
367
360
352
329
307
333
351
356
355
363
377
353
357 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 | 391
395
399
407
411
422
419
378
388
398
378
372
352 | | 406
395
397
399
390
391
394
403
397
393
389
388
460
385
328
294 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310 | 390
386
387
389
384
383
392
387
386
387
37
374
389
352
269
201 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342 | 320
324
329
337
341
346
343
329
296
300
312
320
320
333
330
328
329 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 359
396
387
380
384
366
356
337
425
375
383
376
384
384
397 | JUNE 348 353 369 367 360 352 329 307 333 351 356 355 365 353 377 353 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
367
367 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 | 391
395
399
407
411
422
419
378
388
398
378
372
352
318
291
339 | | 406
395
397
399
390
391
394
403
397
393
393
394
460
385
328
294
317 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286 | 390
386
387
389
384
383
389
395
392
387
374
389
352
269
201
297 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342
359
449
478 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
329
323 | 325
329
333
342
351
351
348
338
331
314
315
317
329
336
335
339
340
400 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 359
396
387
380
384
366
356
337
425
375
383
376
384
384
397 | 348
353
369
367
360
352
329
307
333
351
356
355
363
377
353
357 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 | 391
395
399
407
411
422
419
378
388
398
378
372
352 | | 406
395
397
399
390
391
394
403
397
393
389
388
460
385
328
294 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310 | 390
386
387
389
384
383
392
387
386
387
37
374
389
352
269
201 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342 | 320
324
329
337
341
346
343
329
296
300
312
320
320
333
330
328
329 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 359
396
387
380
384
366
356
337
425
375
383
376
384
397
390
381
389
403
410 | 348 353 367 360 352 329 307 333 351 356 355 365 357 356 367 369 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
367
366
374
384
389 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
408
447 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 336 371 | 391
395
399
407
411
422
419
378
388
398
378
372
352
318
291
339
379
410 | | 406
395
397
399
390
391
394
403
397
393
388
460
385
328
294
317
345 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314 | 390
386
387
389
384
383
389
395
392
387
374
389
352
269
201
297
326
332 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342
359
449
478
366
282 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
225
8 | 325
329
333
342
351
351
348
338
334
314
315
317
329
336
335
339
364
400
333
269 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 359
396
387
380
384
366
356
337
425
375
383
376
384
397
390
381
389
403 | JUNE 348 353 369 367 360 352 329 307 333 351 356 355 353 377 353 367 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
408 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 336 | 391
395
399
407
411
422
419
378
383
388
392
398
378
372
352
318
291
339
379 | | 406
395
397
399
390
391
403
397
393
388
460
385
328
294
317
345 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310 | 390
386
387
389
384
383
395
392
387
386
387
374
389
352
269
201
297
326 | 330
333
340
353
358
353
356
350
344
341
330
321
335
340
342
359
449
478
366 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
329
270 | 325
329
333
342
351
351
348
338
334
314
315
317
327
336
335
339
364
400
333 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 359
396
387
380
384
366
356
337
425
375
383
376
384
397
390
381
389
403
410 | 348 353 369 367 360 352 329 307 333 351 356 355 365 357 356 367 369 368 380 383 | 353
367
380
375
374
359
345
320
372
361
367
366
373
385
367
384
384
389
382
396
401 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
4375
393
408
447 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 278 252 305 336 371 356 369 368 | 391
395
399
407
411
422
419
378
383
388
392
378
372
352
318
291
339
379
410
375
378 | | 406
395
397
399
390
391
394
403
397
393
389
389
385
328
460
385
328
329
344
332
329
329
329 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272 | 390
386
387
389
384
383
389
395
392
387
374
386
387
374
389
352
269
201
297
326
332
288
281
293 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342
359
478
366
282
314
313
296 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
258
274
274
279
264 | 325
329
333
342
351
351
348
338
334
314
315
317
329
336
335
339
364
400
333
269 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 359
396
387
380
384
366
356
337
425
375
383
376
384
397
390
381
389
403
410
401
417 | 348
353
369
367
360
352
329
307
333
351
356
355
365
365
365
367
367
369
368
380 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
366
374
389 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
4375
393
408
447 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 336 371 356 369 | 391
395
399
407
411
422
419
378
383
388
392
398
372
352
318
291
339
379
410 | | 406
395
397
399
390
391
394
403
397
393
389
389
385
328
294
317
344
332
295 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314 | 390
386
387
389
384
383
389
395
392
387
386
387
37
374
389
352
269
201
297
326
332
288
288 | 330
333
340
353
358
353
356
350
344
341
330
321
335
340
342
359
449
478
366
282 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
258
274
279 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339
364
400
333
269 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 359
396
387
380
384
366
356
357
425
375
383
376
384
397
390
381
389
403
410
401
417
417
 | 348
353
369
367
360
352
329
307
333
351
356
355
365
365
365
365
367
369
367
369
367 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
367
366
373
384
384
384
389 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
408
447 | JULY 362 370 381 383 402 409 380 357 375
376 383 347 359 313 278 252 305 336 371 356 369 376 376 376 | 391
395
399
407
411
422
419
378
383
388
392
398
378
372
352
318
291
379
410
375
378
378
378 | | 406
395
397
399
390
391
394
403
397
393
389
388
460
385
328
294
345
344
332
295
329
329 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272
311 | 390
386
387
389
384
383
395
392
387
386
387
374
389
352
269
201
297
326
332
288
281
293
321 | 330
333
340
353
358
353
356
350
344
341
330
321
335
340
342
359
449
478
366
282
314
313
296
309 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
270
258
274
279
264
258 | 325
329
333
342
351
351
348
338
334
314
315
317
329
336
335
339
364
400
303
3269
304
286
283
281 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 359
386
387
380
384
366
356
337
425
375
383
376
384
397
390
381
389
410
401
417
417
 | 348
353
369
367
360
352
329
307
333
351
356
355
365
353
377
356
367
369
368
380
383
 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
366
374
389
382
396
401 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
4047
391
386
389
382
392 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 336 371 356 369 368 370 376 378 378 | 391
395
399
407
411
422
419
378
383
388
392
398
372
352
318
291
339
379
410
375
378
378
378
378
378
378
378
378
378
378 | | 406
395
397
399
390
391
394
403
397
393
389
394
3460
385
328
294
317
344
3295
3295
3296
332
3193
326 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272
311
309 | 390
386
387
389
384
383
389
395
392
387
386
387
374
389
352
269
201
297
326
332
288
281
293
321
322
315
322 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342
359
449
478
366
282
314
313
296
309
287 | 320
324
329
337
341
346
343
329
329
296
300
312
320
333
330
328
329
258
270
258
274
279
264
279
264
279
268
258
258 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339
364
400
333
269
304
286
283
281
269 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 359
396
387
380
384
366
356
337
425
375
383
376
384
387
390
381
389
403
410
401
417
417
 | 348
353
369
367
360
352
329
307
333
351
356
355
367
357
356
367
369
368
380
383

395 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
366
374
384
384
382
396
401

407 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
408
447
391
386
389
382
392 | JULY 362 370 381 383 402 409 380 357 375 376 383 347 359 313 278 252 305 336 371 356 369 368 370 376 378 375 370 | 391
395
399
407
411
422
419
378
383
388
378
372
352
318
291
339
379
410
375
378
378
376
384
385
384 | | 406
395
397
399
390
391
394
403
397
393
394
403
385
328
294
317
344
322
329
326
332
328 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272
311
309 | 390
386
387
389
384
383
389
392
387
386
387
37
374
389
352
269
201
297
326
281
293
321
322
315
322
322 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342
359
478
366
282
314
313
296
309
287 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
258
270
258
274
279
264
258
271
290
300 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339
364
400
333
269
304
286
283
281
269 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 359
396
387
380
384
366
356
357
425
375
383
376
384
397
390
381
389
403
410
401
417
417

447
532 | JUNE 348 353 369 367 360 352 329 307 333 351 356 355 365 365 365 367 369 368 380 380 383 380 383 380 383 380 383 380 383 380 383 380 383 380 383 380 383 380 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
367
384
384
389
382
396
401

407
465 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
408
447
391
386
389
382
392
403 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 336 371 356 369 376 378 376 378 376 378 376 378 375 376 | 391
395
399
407
411
422
419
378
383
388
372
352
318
291
379
410
375
378
378
378
378
378
378
378
378
378
378 | | 406
395
397
399
390
391
394
403
397
393
389
388
460
385
328
294
345
344
332
329
329
326
332
319
326
332
332 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272
311
309 | 390
386
387
389
384
383
395
392
387
386
387
374
389
352
269
201
297
326
332
288
281
293
321
322
322
323 | 330
333
340
353
358
353
356
350
344
341
330
321
335
340
342
359
449
478
366
282
314
313
296
309
287
291
307
307
307 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
270
258
274
279
264
258
258
271
290
300
298 | 325
329
333
342
351
351
348
338
334
314
315
317
329
336
335
339
364
400
333
269
304
286
283
281
269
282
294
301 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 359
396
387
380
384
366
356
337
425
375
383
376
384
387
390
381
389
403
410
401
417
417
 | 348
353
369
367
360
352
329
307
333
351
356
355
367
357
356
367
369
368
380
383

395 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
366
374
384
384
382
396
401

407 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
408
447
391
386
389
382
392 | JULY 362 370 381 383 402 409 380 357 375 376 383 347 359 313 278 252 305 336 371 356 369 368 370 376 378 375 370 | 391
395
399
407
411
422
419
378
383
388
378
372
352
318
291
339
379
410
375
378
378
376
384
385
384 | | 406
395
397
399
390
391
394
403
397
393
394
403
385
328
294
317
344
322
329
326
332
328 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272
311
309 | 390
386
387
389
384
383
389
392
387
386
387
37
374
389
352
269
201
297
326
281
293
321
322
315
322
322 | 330
333
340
353
358
356
350
344
341
330
321
335
340
342
359
478
366
282
314
313
296
309
287 | 320
324
329
337
341
346
343
329
296
300
312
320
333
330
328
329
258
270
258
274
279
264
258
271
290
300 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339
364
400
333
269
304
286
283
281
269 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 |
359
387
380
384
366
356
337
425
375
383
376
384
397
390
381
389
403
410
401
417
417
 | 348
353
369
367
360
352
329
307
333
351
356
355
365
365
367
369
368
380
380
383
367
367
369 | 353
367
380
375
374
359
345
320
372
361
367
366
373
370
385
367
366
374
384
389
401

407
465
447 | 415
423
425
422
431
433
440
429
392
401
407
410
395
382
387
354
375
393
404
395
392
401
395
392
401
395
392
401
395
392
401
395
395
395
395
395
395
395
395
395
395 | JULY 362 370 381 383 402 409 380 357 369 375 376 383 347 359 313 278 252 305 371 356 369 376 378 3770 376 378 375 370 376 378 375 370 360 360 | 391
395
399
407
411
422
419
378
383
388
372
352
318
291
339
410
375
378
378
378
378
378
378
378
378
378
378 | | 406
395
397
399
390
391
394
403
397
393
389
394
460
385
328
294
317
329
329
329
329
329
329
321
321
322
322
322
322
322
322
322
322 | 367
375
374
377
376
369
384
387
388
383
381
380
365
364
310
147
116
286
317
314
234
245
272
311
309 | 390
386
387
389
384
383
389
395
392
387
386
387
374
389
352
269
201
297
326
332
288
281
293
321
322
322
322
322
318
318
319
322
331
332
332
333
334
335
337
337
338
339
339
340
350
350
350
350
350
350
350
35 | 330
333
340
353
358
353
356
350
344
341
330
321
335
340
342
359
449
478
366
282
314
313
296
309
287
291
307
307
307
313 | 320
324
329
337
341
346
343
329
329
296
300
312
320
333
330
328
329
258
274
279
264
279
264
279
264
279
264
279
264
279
279
264
279
270
270
270
271
272
273
274
279
270
270
270
270
270
270
270
270
270
270 | 325
329
333
342
351
351
348
334
314
315
317
329
336
335
339
364
400
333
269
281
286
283
281
269 | 347 MEAN DAY MAX MIN MAX MIN MEAN MAX MIN MEAN MAX MIN OCTOBER NOVEMBER DECEMBER JANUARY MEAN | 1 | 26.2 | 20.1 | 23.1 | 24.4 | 20.1 | 22.3 | 12.8 | 11.0 | 11.6 | 10.8 | 9.4 | 10.1 | |----------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|---|--| | 2 | 28.1 | 20.2 | 24.1 | 25.4 | 22.2 | 23.7 | 13.5 | 12.8 | 13.1 | 9.5 | 8.6 | 9.2 | | 3 | 28.0 | 22.3 | 25.0 | 25.1 | 21.8 | 23.4 | 14.0 | 13.3 | 13.6 | 9.0 | 8.2 | 8.6 | | 4 | 25.1 | 22.8 | 24.0 | 24.6 | 21.3 | 22.7 | 16.1 | 14.0 | 14.9 | 8.5 | 7.5 | 7.9 | | 5 | 24.1 | 22.5 | 23.3 | 22.6 | 18.8 | 20.7 | 20.2 | 15.9 | 17.7 | 9.6 | 8.2 | 8.8 | | 6 | 23.1 | 19.7 | 21.2 | 21.0 | 17.2 | 19.0 | 21.4 | 18.5 | 20.0 | 10.2 | 9.1 | 9.7 | | 7 | 23.6 | 17.0 | 20.1 | 22.3 | 17.4 | 19.7 | 22.0 | 20.5 | 21.2 | 10.0 | 9.0 | 9.6 | | 8 | 21.2 | 18.8 | 20.0 | 26.4 | 19.0 | 22.1 | 21.1 | 15.7 | 19.0 | 10.3 | 8.8 | 9.6 | | 9 | 24.1 | 20.3 | 22.3 | 25.2 | 21.3 | 23.0 | 15.7 | 12.7 | 13.8 | 12.0 | 9.8 | 10.7 | | 10 | 27.2 | 23.8 | 25.2 | 26.6 | 19.5 | 22.7 | 15.9 | 10.9 | 13.2 | 14.0 | 11.9 | 12.9 | | 11
12
13
14
15 | 26.4
25.1
25.0
22.7
23.9 | 24.4
23.2
21.2
19.8
21.1 | 25.3
24.1
23.0
21.3
22.3 | 26.0
23.5
23.0
23.2
22.2 | 20.1
20.4
19.6
19.6
20.1 | 23.1
22.1
21.4
21.0
21.1 | 14.6
18.2
18.6
15.6 | 11.9
14.6
15.6
14.3
14.3 | 12.8
17.3
17.8
14.6
14.9 | 13.9
14.6
13.6
15.1
15.0 | 12.8
12.6
11.2
12.3
10.6 | 13.6
13.4
12.5
13.5
12.7 | | 16 | 23.5 | 19.2 | 21.0 | 21.5 | 20.2 | 20.9 | 17.9 | 15.5 | 16.9 | 16.1 | 10.2 | 13.3 | | 17 | 19.3 | 17.9 | 18.7 | 20.4 | 18.7 | 19.5 | 17.8 | 16.6 | 17.3 | 17.9 | 14.6 | 16.1 | | 18 | 19.6 | 18.2 | 18.7 | 20.7 | 17.8 | 19.3 | 16.6 | 15.9 | 16.2 | 17.6 | 15.9 | 16.5 | | 19 | 21.7 | 18.6 | 19.6 | 22.5 | 19.0 | 20.5 | 16.3 | 14.9 | 15.8 | 17.0 | 11.0 | 15.3 | | 20 | 20.2 | 19.5 | 19.8 | 19.7 | 15.6 | 17.9 | 14.9 | 14.2 | 14.4 | 13.5 | 9.2 | 12.0 | | 21 | 21.0 | 20.1 | 20.6 | 17.4 | 13.6 | 15.5 | 14.5 | 13.7 | 14.0 | 16.7 | 11.3 | 13.7 | | 22 | 23.4 | 20.8 | 21.8 | 18.0 | 14.8 | 16.4 | 15.6 | 14.2 | 14.9 | 18.8 | 14.5 | 16.2 | | 23 | 25.5 | 21.9 | 23.6 | 22.3 | 17.3 | 20.0 | 15.6 | 14.2 | 14.9 | 21.1 | 18.2 | 19.7 | | 24 | 27.0 | 24.3 | 25.5 | 21.9 | 19.6 | 21.0 | 14.2 | 13.0 | 13.3 | 21.3 | 15.4 | 19.4 | | 25 | 26.0 | 20.9 | 22.9 | 19.6 | 16.4 | 17.8 | 13.1 | 12.2 | 12.6 | 16.5 | 11.3 | 13.8 | | 26
27
28
29
30
31 | 20.9
20.6
18.4
20.2
20.1
22.8 | 18.7
16.6
15.3
14.9
15.9 | 19.8
18.5
17.0
17.1
17.9 | 22.9
22.5
17.1
12.6
11.9 | 17.4
17.1
12.6
8.2
8.0 | 20.2
20.1
15.1
9.9
9.9 | 12.3
11.9
13.3
13.6
13.1
12.0 | 11.3
11.1
11.8
12.8
12.0
10.8 | 11.8
11.5
12.4
13.1
12.4
11.3 | 16.2
19.4
19.4
21.5
23.1
22.0 | 8.4
11.6
16.1
18.9
20.6
16.2 | 12.4
15.1
17.7
20.1
21.6
20.2 | | MONTH | 28.1 | 14.9 | 21.5 | 26.6 | 8.0 | 19.7 | 22.0 | 10.8 | 14.8 | 23.1 | 7.5 | 13.7 | 08067118 Lake Charlotte near Anahuac, TX--Continued WATER TEMPERATURE FROM DCP, in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | | | | MIN | | MAX | MIN | | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|--|--|---|--| | | | FEBRUARY | | | | | | APRIL | | | MAY | | | 1
2
3
4
5 | 16.2
14.5
15.1
13.6
11.3 | 8.7
6.5
11.6
11.3
7.9 | 11.7
10.5
13.4
12.3
9.5 | 13.0
13.3
9.0
12.3
14.5 | 10.7
8.2
5.8
4.0
8.0 | 11.8
12.3
7.5
8.1
11.4 | 21.0
21.9
21.6
20.4
19.2 | 18.8
19.0
20.4
18.7
18.4 | 19.6
20.1
21.0
19.3
18.7 | 27.1
27.7
28.6
29.1
29.6 | 25.0
25.9
26.6
27.8
28.1 | 26.1
26.8
27.5
28.4
28.7 | | 0 | 7.9
10.6
12.7
14.1
13.8 | 6.6
5.2
8.9
10.3
10.9 | 7.4
7.9
10.5
12.3
12.1 | 19.2
24.5
21.5
21.0
19.1 | 12.4
16.0
19.0
14.8
10.7 | 15.5
19.6
20.3
19.4
14.7 | 18.9
18.9
19.1
19.2
19.2 | 17.8
17.6
17.9
18.1
18.8 | 18.3
18.2
18.5
18.6
18.9 | 29.5
29.6
29.6
29.6
30.4 | 27.6
27.5
27.6
27.6
27.7 | 28.5
28.5
28.5
28.5
28.7 | | 11
12
13
14
15 | 12.5
12.6
12.3
12.5
14.8 | 10.1
11.0
11.8
11.7
12.1 | 11.1
11.7
12.1
12.1
12.7 | 17.4
20.9
22.9
23.0
24.9 | 14.1
16.1
14.6
17.6
20.8 | 15.9
18.2
18.9
20.4
22.7 | 21.5
19.8
23.4
23.3
23.3 | 18.7
19.2
19.4
21.2
21.3 | 19.4
19.4
20.8
22.3
22.5 | 30.4
30.0
28.8
25.5
26.5 | 27.4
27.0
24.0
21.9
23.0 | 28.8
28.4
26.4
23.8
24.8 | | 16
17
18
19
20 | | 12.6
12.2
12.8
13.2
14.5 | 13.3
12.7
12.9
14.0
15.5 | 24.8
26.4
27.4
26.1
23.9 | 21.9
22.8
23.3
23.6
19.9 | 23.4
24.4
25.0
24.5
22.6 | 23.1
23.8
25.0
24.9
24.6 |
22.1
21.9
21.9
22.4
22.8 | 22.5
22.6
23.0
23.6
23.8 | 28.3
27.5
24.2
22.4
22.4 | 25.0
24.2
21.6
19.8
20.6 | 22.8 | | | 18.4
16.9
17.7
19.4
19.8 | 15.2
14.5
13.5
14.7
16.8 | | 24.1
24.1
21.8
22.6
20.9 | | | 24.8
24.5
25.7
25.8
25.9 | 23.3
22.9
22.8
23.8
24.9 | 24.1
24.1
23.9
25.0
25.4 | 23.4
24.3
24.6
25.6
28.2 | 21.4
22.8
23.4
23.5
24.8 | 22.1
23.4
23.9
24.4
26.3 | | 26
27
28
29
30
31 | 17.9
13.5
13.2
 | 8.1
5.3
6.7
 | | 20.5
19.4
20.8
21.8
22.6
21.9 | 16.1
15.7
18.4
19.9
20.4
21.0 | | 25.4
25.6
26.6
28.0
27.6 | | | 29.5
29.7
28.8
28.1
29.1
26.4 | 26.9
27.6
27.6
26.4
26.3
23.9 | 28.6
28.2
27.3
27.3 | | MONTH | 19.8 | 5.2 | | | 4.0 | | 28.0 | 17.6 | | 30.4 | 19.8 | 26.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | | MIN
JULY | | | AUGUST | | | SEPTEMBE | | | | MAX
28.3
30.2
32.4
32.8
31.0 | JUNE
24.0 | | | JULY | | | AUGUST | | | SEPTEMBE | 30.6
30.8
28.9
27.0 | | 1
2
3
4
5
6
7
8 | 28.3
30.2
32.4
32.8 | JUNE 24.0 25.8 27.8 28.8 28.4 | 26.1
27.8
29.8
30.7
30.0 | | JULY 27.7 27.7 29.0 29.2 29.3 | 28.8
30.2
31.2
31.6
32.3 | | AUGUST 28.8 29.3 29.8 27.1 26.8 | 32.1
34.0
32.6
30.3
30.7 | | 28.3
28.3
27.8
26.4
25.5 | 30.6
30.8
28.9
27.0
26.6
25.6
25.0
25.7
25.9 | | 1
2
3
4
5
6
7
8
9 | 28.3
30.2
32.4
32.8
31.0
33.6
31.3
33.7
33.4
33.9 | JUNE 24.0 25.8 27.8 28.8 28.4 27.3 28.1 27.1 29.9 29.3 | 26.1
27.8
29.8
30.7
30.0
30.4
29.6
30.2
31.5
31.5 | 30.2
33.3
33.3
34.2
35.7 | JULY 27.7 27.7 29.0 29.2 29.3 29.3 29.3 29.4 27.9 | 28.8
30.2
31.2
31.6
32.3
32.8
32.9
32.7
30.3
30.8 | 35.6
39.6
36.3
34.7
35.1
36.0
35.4
33.9
35.3 | 28.8
29.3
29.8
27.1
26.8
28.2
29.6
28.0
29.4
29.7 | 32.1
34.0
32.6
30.3
30.7
32.1
32.3
31.3
32.4
32.0 | 32.7
33.0
31.2
27.8
27.6
26.9
25.8
26.0
26.2
27.3 | 28.3
28.3
27.8
26.4
25.5
24.6
24.3
25.2
25.6
25.0 | 30.6
30.8
28.9
27.0
26.6
25.6
25.7
25.9
26.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 28.3
30.2
32.4
32.8
31.0
33.6
31.3
33.7
33.4
33.9
32.0
32.6
33.6
34.2 | JUNE 24.0 25.8 27.8 28.8 28.4 27.3 28.1 27.1 29.9 29.3 29.7 28.0 28.8 29.2 | 26.1
27.8
29.8
30.7
30.0
30.4
29.6
30.2
31.5
31.5
30.6
30.3
31.4
431.6 | 30.2
33.3
33.3
34.2
35.7
36.9
37.0
35.7
32.1
34.2
35.6
37.0
32.3
31.0 | JULY 27.7 27.7 29.0 29.2 29.3 29.3 28.2 29.5 29.4 27.9 28.6 30.6 26.8 25.6 | 28.8
30.2
31.2
31.6
32.3
32.8
32.9
32.7
30.3
30.8
32.0
33.3
29.6
27.9 | 35.6
39.6
36.3
34.7
35.1
36.0
35.4
33.9
35.3
34.1
32.3
31.7
30.4
29.0 | AUGUST 28.8 29.3 29.8 27.1 26.8 28.2 29.6 28.0 29.4 29.7 28.9 29.6 28.0 27.4 | 32.1
34.0
32.6
30.3
30.7
32.1
32.3
31.3
32.4
32.0
30.6
28.6
28.6 | 32.7
33.0
31.2
27.8
27.6
26.9
25.8
26.0
26.2
27.3
28.6
30.4
33.8
34.1 | SEPTEMBE 28.3 28.3 27.8 26.4 25.5 24.6 24.3 25.6 25.0 25.8 26.9 27.0 29.3 | 30.6
30.8
28.9
27.0
26.6
25.6
25.7
25.9
26.0
27.3
28.6
29.7
31.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 28.3
30.2
32.4
32.8
31.0
33.6
31.3
33.4
33.9
32.0
32.6
33.6
34.2
35.0
34.9
32.8
34.9
35.0 | JUNE 24.0 25.8 28.8 28.4 27.3 28.1 27.1 29.9 29.3 29.7 28.0 28.8 29.2 27.1 27.4 27.3 26.9 28.6 | 26.1
27.8
29.8
30.7
30.0
30.4
29.6
30.2
31.5
31.5
31.5
31.6
31.1
31.1
29.8
30.7 | 30.2
33.3
33.3
34.2
35.7
36.9
37.0
35.7
32.1
34.2
35.6
37.0
32.3
31.0
28.8
26.9
32.1
34.1 | JULY 27.7 27.7 29.0 29.2 29.3 29.3 28.2 29.5 29.4 27.9 28.6 30.6 26.8 25.6 26.2 24.8 24.4 28.4 29.6 | 28.8
30.2
31.2
31.6
32.3
32.8
32.9
32.7
30.3
30.8
32.0
33.3
29.6
27.9
27.4
25.8
27.9
31.3
32.4 | 35.6
39.6
36.3
34.7
35.1
36.0
35.4
33.9
35.3
34.1
32.3
31.7
30.4
29.0
28.4
26.7
30.3
32.3 | AUGUST 28.8 29.3 29.8 27.1 26.8 28.2 29.6 28.0 29.4 29.7 28.9 29.6 28.0 27.4 24.9 | 32.1
34.0
32.6
30.3
30.7
32.1
32.3
31.3
32.4
32.0
30.6
30.6
28.1
26.7
25.4
27.6
30.6
31.5 | 32.7
33.0
31.2
27.8
27.6
26.9
25.8
26.0
26.2
27.3
28.6
30.4
33.8
34.1
31.5
26.9
28.9
28.9 | 28.3 28.3 27.8 26.4 25.5 24.6 24.3 25.6 25.0 25.8 26.9 27.0 29.3 26.9 25.0 24.8 27.0 27.8 | 30.6
30.8
28.9
27.0
26.6
25.6
25.7
25.9
26.0
27.3
28.6
29.3
29.3
25.7
26.6
29.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 28.3
30.2
32.4
32.8
31.0
33.6
31.3
33.4
33.9
32.0
32.6
33.6
34.2
35.0
34.9
32.8
34.9
32.8
34.9
32.8
34.9
32.8
34.9 | JUNE 24.0 25.8 28.8 28.4 27.3 28.1 27.1 29.9 29.3 29.7 28.0 28.8 29.2 27.1 27.4 27.3 26.9 28.6 29.4 27.3 28.5 | 26.1
27.8
29.8
30.7
30.0
30.4
29.6
31.5
31.5
31.5
31.6
31.1
31.1
29.8
30.7
30.2
30.3 | 30.2
33.3
33.3
34.2
35.7
36.9
37.0
32.1
34.2
35.6
37.0
32.3
31.0
28.8
26.9
32.1
35.4
36.3 | JULY 27.7 27.7 29.0 29.2 29.3 29.3 28.2 29.4 27.9 28.6 30.6 26.2 24.8 24.4 28.4 29.6 29.9 30.5 30.5 30.5 30.5 | 28.8
30.2
31.2
31.6
32.3
32.8
32.9
30.3
30.8
32.7
30.3
29.6
27.9
27.4
25.8
27.9
31.3
32.4
33.0
33.7
33.7
34.6 | 35.6
39.6
36.3
34.7
35.1
36.0
35.4
35.3
34.1
32.3
31.7
30.4
29.0
28.4
26.7
30.3
33.4
33.2
33.4
33.2 | AUGUST 28.8 29.3 29.8 27.1 26.8 28.2 29.6 28.0 29.4 29.7 28.9 29.6 28.0 27.4 24.9 24.6 25.6 29.1 30.0 29.9 | 32.1
34.0
32.6
30.3
30.7
32.1
32.3
31.3
32.4
32.0
30.6
30.6
28.1
26.7
25.4
27.6
30.6
31.5
31.4 | 32.7
33.0
31.2
27.8
27.6
26.9
25.8
26.0
26.2
27.3
28.6
30.4
33.8
34.1
31.5
26.9
28.9
31.2
30.6
29.0 | 28.3 28.3 27.8 26.4 25.5 24.6 24.3 25.6 25.0 25.8 26.9 27.0 29.3 26.9 27.0 24.8 27.0 27.8 26.5 25.0 | 30.6
30.8
28.9
27.0
26.6
25.6
25.7
25.9
26.0
27.3
28.6
29.7
31.2
29.3
25.7
26.6
29.7
27.9
27.9 | # 08067118 Lake Charlotte near Anahuac, TX--Continued ## 08067252 Trinity River at Wallisville, TX LOCATION.--Lat 29°48′44", long 94°43′52", Chambers County, Hydrologic Unit 12030203, in the center of the Trinity River Dam at the U.S. Army Corps of Engineers river lock which is located 3.0 miles west along Interstate Highway 10 from the Interstate overpass over Farm Road 563, 2.0 miles below Wallisville and 3.9 river miles from mouth. DRAINAGE AREA.--17,796 mi². #### WATER-STAGE RECORDS PERIOD OF RECORD. -- Oct. 1994 to current year. GAGE.--Water-stage recorders. Datum of gage is NGVD of 1929. Prior to Mar. 1999 at site 2.3 mi upstream. Satellite telemeter at station. REMARKS.--Records good. Pressure transducers are installed to record river elevation on the upstream and downstream side of the dam. Mostly tidal. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 7.70 ft, Oct. 22, 1994; minimum elevation, -1.64 ft, Nov. 2 and 3, 1999. EXTREMES FOR CURRENT YEAR.--Maximum elevation (upstream), 4.12 ft, Sept. 8; minimum elevation (upstream), -0.91 ft, Mar. 10. Maximum elevation (downstream), 3.85 ft, Sept. 7; minimum elevation (downstream), -1.52 ft, Jan. 25. ELEVATION (UPSTREAM), in FT (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|--|--|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--| | | OC" | FOBER | NOVE | MBER | DECI | EMBER | JAI | NUARY | FEBI | RUARY | M | ARCH | | 1
2
3
4
5 | 1.47
1.49
1.63
1.70 | 0.73
0.84
0.79
0.78
0.63 | 1.98
1.92
1.92
1.82
1.64 | 0.90
0.56
0.58
0.28
0.35 | 2.05
2.15
1.96
1.93
2.01 | 1.04
1.03
0.93
0.88
0.98 | 3.32
3.41
3.25
3.16
3.38 | 3.10
3.09
3.04
2.95
2.79 |

1.38 |

-0.07 | 2.63
2.66
0.16
1.19
1.12 | 1.45
0.16
-0.70
-0.44
0.09 | | 6
7
8
9
10 | 1.67
1.41
1.82
2.50
2.66 | -0.13
0.53
0.84
1.23
1.43 | 1.96
1.81
1.71
1.66
1.52 | 0.62
0.30
0.40
0.34
0.26 | 1.88
1.75
1.56
0.42
1.07 | 0.84
0.65
-0.16
-0.19
0.24 | 2.81
2.25
2.03
2.02
1.83 | 2.25
1.88
1.78
1.61
1.24 | 1.04
1.31
2.06
2.31
2.25 | 0.08
0.58
1.27
1.61
1.48 |
1.27
1.36
1.93
1.87
1.42 | 0.15
-0.04
0.41
-0.33
-0.91 | | 11
12
13
14
15 | 3.04
2.53
3.04
2.00
2.87 | 1.71
1.59
1.65
1.37
1.46 | 1.34
1.42
1.81
2.05
2.53 | 0.41
0.59
0.64
0.84
1.24 | 2.17
2.41
2.20
2.51
3.33 | 0.24
1.46
1.46
1.94
2.43 | 1.51
0.79
1.19
1.33
1.07 | 0.55
0.02
-0.12
-0.01
-0.06 | 1.94
2.18
2.26
2.34
2.42 | 1.54
1.85
1.94
2.03
2.18 | 1.78
1.65
1.00
1.45
1.55 | 0.67
-0.06
0.21
0.86
0.99 | | 16
17
18
19
20 | 2.55
2.81
2.73
2.60
2.39 | 1.48
1.82
1.80
1.71
1.65 | 2.62
2.21
2.33
2.39
2.06 | 1.44
2.07
2.21
2.06
1.59 | 3.52
3.59
3.09
3.24
2.72 | 2.90
2.77
2.74
2.60
2.50 | 1.34
1.17
1.06
1.04
1.15 | 0.36
0.20
-0.03
-0.58
-0.18 | 2.30
2.35
2.81
2.88
2.56 | 2.01
2.12
2.19
2.41
1.44 | 1.37
1.42
1.69
2.31
2.11 | 0.68
0.69
0.56
0.63
0.05 | | 21
22
23
24
25 | 2.57
2.47
2.44
2.41
1.39 | 1.73
1.46
1.37
1.10
0.67 | 1.70
1.77
2.05
2.14
1.82 | 1.58
1.60
1.77
1.80
1.28 | 2.90
3.18
3.11
3.00
3.02 | 2.66
2.83
2.73
2.72
2.79 | 1.26
1.42
1.54
1.54
0.80 | 0.49
0.49
0.32
0.08
-0.39 | 1.81
1.23
1.74
1.73 | 1.00
0.29
0.35
0.45
0.62 | 0.33
1.31
1.95
2.04
1.86 | -0.78
-0.68
0.17
0.94
0.83 | | 26
27
28
29
30
31 | 1.76
1.78
1.57
1.43
1.62
1.94 | 0.66
0.83
0.78
0.83
0.64
1.13 | 2.18
2.54
1.08
1.16
1.96 | 1.74
0.75
0.33
0.52
0.84 | 3.15
3.04
3.32
3.32
3.22
3.28 | 2.74
2.72
2.85
2.88
2.92
3.02 | 1.40
1.63
1.85
1.54
1.72 | 0.40
0.86
0.37
0.37
0.78
0.02 | 1.11
0.38
1.45
 | -0.67
-0.72
0.38
 | 1.40
2.03
2.25
2.40
2.86
2.56 | 0.26
0.99
1.66
1.88
1.66
1.63 | | MONTH | 3.04 | -0.13 | 2.62 | 0.26 | 3.59 | -0.19 | 3.41 | -0.58 | | | 2.86 | -0.91 | 351 # 08067252 Trinity River at Wallisville, TX--Continued ELEVATION (UPSTREAM), in FT (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------| | | AP | RIL | М | AY | JT | JNE | JT | ULY | AU | GUST | SEP | TEMBER | | 1
2
3
4
5 | 2.36
2.71
2.47
2.41
2.74 | 1.47
1.80
1.77
1.74
1.88 | 3.37
3.06
2.75
2.50
2.56 | 2.68
2.49
2.17
1.93
1.92 | 2.10
2.12
2.17
2.00
1.97 | 0.81
0.96
1.35
1.44
1.23 | 1.94
1.84
1.72
1.56
1.36 | 0.86
0.92
1.03
0.63
0.24 | 1.20
1.11
1.04
1.46
1.63 | 0.46
0.13
0.04
0.03
0.14 | 1.76
1.88
2.09
2.17
2.13 | 0.59
0.66
0.69
1.05
2.01 | | 6
7
8
9
10 | 2.96
3.48
3.65
3.47
3.36 | 1.97
2.76
3.01
2.96
2.88 | 2.53
2.56
3.01
2.85
2.03 | 2.14
2.25
2.31
1.39
1.26 | 1.79
1.94
1.94
2.14
2.32 | 1.01
0.82
0.70
0.97
0.82 | 1.00

1.56
2.15
1.77 | -0.08
-0.11

0.60
0.51 | 1.30
1.24
1.87
1.72
2.36 | 0.09
-0.23
-0.05
0.28
0.61 | 2.32
3.20
4.12
4.09
3.01 | 2.05
2.32
3.20
2.54
1.97 | | 11
12
13
14
15 | 3.40
3.38
3.28
3.38
3.63 | 3.13
3.10
2.96
3.06
3.14 | 2.65
2.92
2.03
2.31
2.60 | 1.42
1.89
0.65
0.36
1.41 | 2.54
2.21
2.10
1.49
1.78 | 1.01
0.86
0.65
0.49
-0.20 | 1.83
1.92
1.56
1.50 | 0.31
0.36
0.58
0.37
0.51 | 2.30
2.22
2.33
2.31
2.93 | 1.30
1.53
2.13
2.10
2.18 | 2.73
2.18
1.99
2.28
2.10 | 1.17
0.65
0.70
1.11
0.49 | | 16
17
18
19
20 | 3.56
3.33
3.17
3.17
3.20 | 3.05
3.03
2.67
2.63
2.61 | 2.66

2.00
2.33 | 1.62

0.80
1.32 | 1.64
1.13
1.51
 | 0.72
-0.15
0.41
 | 1.96
1.69
1.42
1.42 | 0.89
0.70
0.59
0.45
0.40 | 3.32
2.03
1.90
1.83
1.74 | 0.94
0.64
0.64
0.62
0.51 | 1.74
2.18
2.07
2.44
2.05 | 0.50
0.54
0.88
1.25
1.57 | | 21
22
23
24
25 | 3.24
3.09
2.89
2.98
2.86 | 2.71
2.42
2.20
2.55
2.40 | 2.49
2.58
2.74
2.49
2.40 | 1.61
2.03
2.03
1.89
1.75 | 1.82
1.80
1.84
2.02 | 0.38
0.59
0.37
0.33 | 1.34
1.40
1.26
1.42
1.52 | 0.34
0.33
0.26
0.23
0.36 | 1.61
1.58
1.38
1.31
1.17 | 0.31
0.41
0.36
0.46
0.51 | 2.30
2.07
2.15
2.45
2.47 | 1.52
1.23
1.33
1.43
1.16 | | 26
27
28
29
30
31 | 2.83
3.64
3.27
2.95
3.50 | 2.41
2.51
2.71
2.40
2.41 | 2.39
2.65
2.80
2.38
2.11
2.06 | 1.58
1.58
1.61
1.52
1.02
0.68 | 2.07
2.50
1.71
2.60
2.17 | 0.53
0.84
0.67
0.56
1.17 | 1.48
1.79
1.66
1.62
1.41 | 0.58
0.59
0.93
0.91
0.75
0.68 | 1.51
1.42
1.01
0.97
1.34
1.54 | 0.43
0.20
0.08
0.23
0.43
0.51 | 1.89
1.99
2.29
2.38
1.94 | 0.29
0.78
1.07
0.73
0.62 | | MONTH | 3.65 | 1.47 | | | | | | | 3.32 | -0.23 | 4.12 | 0.29 | ELEVATION (DOWNSTREAM), in FT (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | |----------------------------------|--------------------------------------|--|--------------------------------------|--|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|--|---| | | OC" | FOBER | NOVE | EMBER | DECE | EMBER | JAI | NUARY | FEBI | RUARY | M | ARCH | | 1
2
3
4
5 | 1.33
1.36
1.50
1.57
1.61 | 0.60
0.70
0.67
0.64
0.50 | 1.85
1.79
1.80
1.69 | 0.76
0.42
0.45
0.15
0.22 | 1.91
2.01
1.83
1.79
1.88 | 0.87
0.88
0.76
0.72
0.82 | 2.98
2.99
2.90
2.87
3.07 | 2.75
2.77
2.67
2.64
2.51 | 1.01

1.30 |

-0.13 | 2.53
2.58
0.09
1.11
1.05 | 1.38
0.09
-0.76
-0.49
0.02 | | 6
7
8
9
10 | 1.53
1.29
1.70
2.37
2.53 | -0.26
0.39
0.70
1.08
1.30 | 1.84
1.69
1.59
1.55
1.40 | 0.50
0.18
0.28
0.23
0.15 | 1.74
1.61
1.43
0.31
0.97 | 0.69
0.50
-0.28
-0.30
0.14 | 2.52
2.00
1.76
1.75
1.58 | 1.97
1.53
1.40
1.19
1.04 | 0.97
1.13
1.88
2.12
2.02 | 0.00
0.44
1.04
1.25
1.17 | 1.18
1.30
1.85
1.79
1.36 | 0.07
-0.11
0.33
-0.37
-0.94 | | 11
12
13
14
15 | 2.91
2.38
2.90
1.81
2.68 | 1.55
1.44
1.50
1.16
1.30 | 1.22
1.31
1.70
1.94
2.40 | 0.30
0.48
0.52
0.71
1.11 | 2.06
2.29
1.95
2.24
3.05 | 0.13
1.33
1.28
1.39
2.11 | 1.32
0.66
1.08
1.21
0.96 | 0.40
-0.10
-0.25
-0.13
-0.17 | 1.69
1.90
2.00
2.03
2.16 | 1.21
1.50
1.57
1.73
1.87 | 1.72
1.58
0.93
1.39
1.47 | 0.59
-0.13
0.13
0.79
0.91 | | 16
17
18
19
20 | 2.35
2.62
2.55
2.41
2.21 | 1.27
1.65
1.63
1.53
1.46 | 2.50
1.81
1.36
1.44
0.08 | 0.73
-0.09
-0.45
-0.55
-1.17 | 3.26
3.31
2.80
2.93
2.47 | 2.62
2.56
2.50
2.31
2.23 | 1.24
1.06
0.96
0.94
1.04 | 0.25
0.09
-0.13
-0.66
-0.27 | 2.08
2.08
2.57
2.64
2.32 | 1.75
1.80
1.94
2.07
1.27 | 1.29
1.34
1.60
2.24
2.02 | 0.61
0.62
0.47
0.55
-0.01 | | 21
22
23
24
25 | 2.40
2.33
2.29
2.26
1.26 | 1.56
1.30
1.22
0.96
0.54 | 0.98
1.61
2.08
2.13
1.67 | -0.07
0.61
1.30
0.27
0.40 | 2.65
2.93
2.84
2.71
2.77 | 2.35
2.57
2.46
2.45
2.54 | 1.16
1.30
1.43
1.41
0.30 | 0.37
0.37
0.20
-0.39
-1.52 | 1.68
1.11
1.66
1.65
1.68 | 0.84
0.17
0.25
0.35
0.51 | 0.27
1.25
1.88
1.95
1.77 | -0.83
-0.72
0.10
0.85
0.73 | | 26
27
28
29
30
31 | 1.64
1.65
1.45
1.31
1.50 | 0.54
0.71
0.66
0.71
0.52
1.00 | 2.14
1.91
0.96
1.01
1.83 | 1.36
0.63
0.23
0.36
0.67 | 2.86
2.70
2.94
2.96
2.86
2.94 | 2.44
2.41
2.54
2.58
2.65
2.69 | 1.19
1.39
1.66
1.42
1.61 | -0.39
-0.11
0.25
0.24
0.65
-0.09 | 1.00
0.32
1.39
 | -0.72
-0.79
0.31
 | 1.31
1.91
2.06
2.22
2.69
2.37 | 0.13
0.85
1.41
1.67
1.54 | | MONTH | 2.91 | -0.26 | 2.50 | -1.17 | 3.31 | -0.30 | 3.07 | -1.52 | | | 2.69 | -0.94 | # 08067252 Trinity River at Wallisville, TX--Continued ELEVATION (DOWNSTREAM), in FT (NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN |
----------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | | AP | RIL | М | AY | JT | JNE | JT | ULY | AUG | GUST | SEP. | FEMBER | | 1
2
3
4
5 | 2.15
2.50
2.17
2.17
2.51 | 1.15
1.45
1.48
1.46
1.53 | 3.20
2.88
2.61
2.34
2.40 | 2.44
2.19
1.95
1.74
1.73 | 2.06
2.07
2.13
1.96
1.94 | 0.78
0.92
1.33
1.40
1.19 | 1.91
1.80
1.67
1.54
1.34 | 0.82
0.88
1.00
0.60
0.22 | 1.19
1.12
1.03
1.46
1.61 | 0.45
0.13
0.04
0.03
0.15 | 1.74
1.87
2.08
2.71
2.47 | 0.58
0.64
0.68
0.89
0.87 | | 6
7
8
9
10 | 2.74
3.24
3.40
3.24
3.09 | 1.60
2.52
2.72
2.71
2.47 | 2.40
2.44
2.91
2.76
1.95 | 1.95
2.13
2.19
1.30
1.19 | 1.75
1.91
1.92
2.10
2.28 | 0.98
0.78
0.67
0.92
0.80 | 0.98

1.53
2.13
1.74 | -0.09
-0.13

0.58
0.49 | 1.30
1.24
1.85
1.71
2.34 | 0.09
-0.22
-0.05
0.29
0.60 | 3.24
3.85
3.29
3.00
2.96 | 1.17
2.05
2.33
1.51
1.90 | | 11
12
13
14
15 | 3.11
3.10
3.08
3.18
3.38 | 2.73
2.81
2.76
2.79
2.92 | 2.58
2.82
1.95
2.23
2.50 | 1.34
1.80
0.56
0.25
1.31 | 2.51
2.17
2.06
1.46
1.76 | 0.99
0.83
0.62
0.47
-0.20 | 1.82
1.92
1.55
1.47
1.13 | 0.30
0.35
0.57
0.35
0.48 | 2.28
2.46
2.44
2.37
2.90 | 1.29
1.52
1.29
1.22
1.44 | 2.70
2.16
1.97
2.26
2.07 | 1.13
0.62
0.67
1.09
0.48 | | 16
17
18
19
20 | 3.43
3.20
3.05
3.04
3.09 | 2.83
2.82
2.56
2.50
2.48 | 2.56

1.87
2.26 | 1.51

0.70
1.17 | 1.61
1.11
1.48
 | 0.70
-0.16
0.39
 | 1.93
1.65
1.38
1.39 | 0.86
0.66
0.56
0.40
0.37 | 2.73
2.28
2.14
2.07
2.00 | 1.14
0.88
0.88
0.87
0.76 | 1.72
2.17
2.04
2.41
1.98 | 0.48
0.53
0.85
1.22
1.51 | | 21
22
23
24
25 | 3.13
2.98
2.73
2.79
2.66 | 2.60
2.28
2.08
2.39
2.18 | 2.41
2.51
2.67
2.40
2.34 | 1.54
1.98
1.94
1.83
1.65 | 1.79
1.78
1.81
1.99 | 0.36
0.58
0.36
0.32 | 1.32
1.37
1.24
1.39
1.50 | 0.32
0.30
0.24
0.19
0.33 | 1.86
1.83
1.62
1.56
1.44 | 0.58
0.67
0.63
0.72
0.77 | 2.21
1.99
2.11
2.42
2.43 | 1.41
1.15
1.27
1.38
1.12 | | 26
27
28
29
30
31 | 2.64
3.47
3.10
2.78
3.31 | 2.19
2.34
2.56
2.20
2.26 | 2.33
2.57
2.76
2.34
2.08
2.04 | 1.50
1.53
1.53
1.48
0.97
0.64 | 2.04
2.47
1.68
2.57
2.13 | 0.51
0.82
0.64
0.53
1.13 | 1.45
1.77
1.63
1.61
1.40 | 0.57
0.56
0.91
0.90
0.74
0.65 | 1.79
1.69
1.28
1.25
1.33 | 0.70
0.47
0.34
0.21
0.41
0.49 | 1.87
1.96
2.27
2.35
1.93 | 0.25
0.75
1.04
0.72
0.60 | | MONTH | 3.47 | 1.15 | | | | | | | 2.90 | -0.22 | 3.85 | 0.25 | ## 08067252 Trinity River at Wallisville, TX--Continued #### WATER-OUALITY RECORDS PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Oct. 1995 to current year. WATER TEMPERATURE: Oct. 1995 to current year. INSTRUMENTATION: -- Water-quality monitor since July 1995. A second water-quality monitor was installed on downstream side of dam REMARKS.--Records good. Missing record due to malfunctions of instrumentation. Gage was relocated to permanent location after dam and lock were completed on Mar. 18, 1999, from temporary location 2.3 miles upstream. Water-quality monitors are installed to record data on the upstream and downstream sides of the dam. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- REMISS FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE (UPSTREAM): Maximum, 21,300 microsiemens/cm, Oct. 9, 1999; minimum, 109 microsiemens/cm, Apr. 5-6, 1999. WATER TEMPERATURE (UPSTREAM): Maximum, 34.9°C, July 22, 2001; minimum, 6.4°C, Jan. 3, 2001. SPECIFIC CONDUCTANCE (DOWNSTREAM): Maximum 34,500 microsiemens/cm, Dec. 3, 1999; minimum, 125 microsiemens/cm, Apr. 6, 1999. WATER TEMPERATURE (DOWNSTREAM): Maximum, 34.4°C, Aug. 10, 1999; minimum, 9.1°C, Jan. 5, 2002. #### EXTREMES FOR CURRENT YEAR. -- REMES FOR CURRENT TEAR.- SPECIFIC CONDUCTANCE: Maximum, 2,390 microsiemens/cm, Aug. 11, 12; minimum, 122 microsiemens/cm, Sept. 22. WATER TEMPERATURE: Maximum, 33.5°C, Aug. 5, 26; minimum, 9.0°C, Jan. 5. SPECIFIC CONDUCTANCE: Maximum, 9,620 microsiemens/cm, Sept. 7; minimum, 164 microsiemens/cm, Sept. 21, 22. WATER TEMPERATURE: Maximum, 32.6°C, Aug. 2; minimum, 9.1°C, Jan. 5. SPECIFIC CONDUCTANCE (UPSTREAM), in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 366 | 350 | 359 | 342 | 317 | 334 | 244 | 230 | 238 | 375 | 371 | 373 | | 2 | 383 | 361 | 372 | 333 | 318 | 324 | 231 | 225 | 226 | 370 | 357 | 363 | | 3 | 393 | 378 | 386 | 335 | 325 | 330 | 252 | 226 | 243 | 358 | 348 | 353 | | 4 | 398 | 389 | 392 | 340 | 327 | 332 | 263 | 251 | 259 | 349 | 342 | 345 | | 5 | 402 | 394 | 396 | 344 | 333 | 338 | 273 | 260 | 267 | 343 | 332 | 339 | | 6 | 398 | 390 | 393 | 353 | 336 | 342 | 279 | 271 | 276 | 332 | 323 | 327 | | 7 | 401 | 392 | 396 | 350 | 336 | 340 | 283 | 279 | 281 | 325 | 316 | 321 | | 8 | 403 | 356 | 391 | 345 | 336 | 341 | 286 | 280 | 283 | 318 | 315 | 316 | | 9 | 359 | 331 | 343 | 347 | 341 | 343 | 289 | 286 | 288 | 319 | 315 | 317 | | 10 | 354 | 341 | 347 | 346 | 341 | 343 | 292 | 289 | 290 | 319 | 316 | 317 | | 11 | 356 | 348 | 352 | 346 | 342 | 343 | 297 | 289 | 292 | 321 | 317 | 319 | | 12 | 355 | 343 | 352 | 345 | 341 | 343 | 295 | 289 | 292 | 323 | 319 | 321 | | 13 | 355 | 324 | 337 | 385 | 342 | 346 | 290 | 269 | 281 | 324 | 321 | 322 | | 14 | 333 | 312 | 320 | 583 | 342 | 369 | 305 | 271 | 294 | 324 | 320 | 322 | | 15 | 312 | 280 | 293 | 1370 | 344 | 588 | 325 | 305 | 315 | 326 | 322 | 324 | | 16 | 317 | 277 | 298 | 1770 | 348 | 824 | 330 | 318 | 325 | 326 | 321 | 324 | | 17 | 337 | 315 | 327 | 349 | 346 | 347 | 331 | 325 | 328 | 325 | 321 | 322 | | 18 | 350 | 336 | 343 | 348 | 344 | 345 | 348 | 327 | 337 | 326 | 323 | 324 | | 19 | 362 | 346 | 354 | 347 | 342 | 344 | 355 | 342 | 350 | 327 | 324 | 325 | | 20 | 373 | 357 | 367 | 343 | 340 | 341 | 343 | 334 | 338 | 329 | 326 | 327 | | 21 | 381 | 373 | 378 | 341 | 338 | 340 | 367 | 339 | 358 | 329 | 320 | 325 | | 22 | 382 | 370 | 378 | 342 | 337 | 339 | 370 | 364 | 367 | 322 | 313 | 317 | | 23 | 370 | 354 | 359 | 909 | 338 | 588 | 378 | 369 | 375 | 314 | 309 | 311 | | 24 | 362 | 351 | 359 | 664 | 358 | 412 | 380 | 377 | 379 | 314 | 304 | 308 | | 25 | 353 | 329 | 340 | 414 | 335 | 352 | 380 | 377 | 379 | 314 | 306 | 309 | | 26
27
28
29
30
31 | 344
349
343
342
342
343 | 334
328
332
332
331
330 | 338
338
337
336
337
335 | 652
364
325
285
260 | 335
325
284
259
215 | 430
339
310
273
233 | 381
385
385
383
380
379 | 377
380
380
377
377
374 | 379
382
383
379
378
376 | 313
311
307
303
312
301 | 308
301
299
298
292
291 | 310
305
302
299
299
293 | | MONTH | 403 | 277 | 353 | 1770 | 215 | 372 | 385 | 225 | 321 | 375 | 291 | 322 | # 08067252 Trinity River at Wallisville, TX--Continued SPECIFIC CONDUCTANCE (UPSTREAM), in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | 10110111,, | 211 00,01 | . 6 250, | WAIER YEAR | COCTODER | 2001 10 | ODI I DI IDDI | 2002 | | |--|---|--|--|--|--|--
---|---|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 340 | 329 | 333 | 327 | 324 | 326 | 401 | 398 | 399 | | 2 | 312 | 309 | 310 | 334 | 329 | 332 | 328 | 324 | 326 | 401 | 392 | 399 | | 3 | | | | 360 | 321 | 344 | 327 | 325 | 326 | 393 | 380 | 385 | | 4
5 | 307 | 302 | 304 | 355
339 | 339
312 | 347
325 | 327
334 | 325
327 | 326
330 | 385
382 | 379
379 | 382
381 | | 6 | 313 | | 304 | | | 310 | | | | | | | | 7 | 302 | 302
294 | 297 | 318
321 | 304
311 | 315 | 339
340 | 334
338 | 336
339 | 381
375 | 373
360 | 378
368 | | 8 | 297 | 292 | 294 | 325 | 314 | 319 | 339 | 328 | 332 | 361 | 354 | 358 | | 9
10 | 292
294 | 290
292 | 291
293 | 335
354 | 320
335 | 325
344 | 329
314 | 310
308 | 317
311 | 372
390 | 357
372 | 364
382 | | | | | | | | | | | | | | | | 11
12 | 295
297 | 294
294 | 294
295 | 374
377 | 344
340 | 352
349 | 328
336 | 314
328 | 322
332 | 393
385 | 383
379 | 389
382 | | 13 | 296 | 295 | 296 | 359 | 347 | 352 | 340 | 336 | 338 | 382 | 377 | 380 | | 14 | 299 | 296 | 297 | 368 | 350 | 356 | 340 | 337 | 339 | 380 | 372 | 376 | | 15 | 299 | 297 | 298 | 370 | 348 | 353 | 345 | 339 | 342 | | | | | 16 | 300 | 297 | 298 | 360 | 344 | 349 | 359 | 345 | 352 | | | | | 17 | 299 | 298 | 299 | 352 | 346 | 349 | 366 | 359 | 363 | | | | | 18
19 | 302
305 | 298
300 | 299
302 | 347
344 | 342
336 | 345
339 | 370
380 | 361
369 | 364
374 | | | | | 20 | 308 | 303 | 305 | 341 | 322 | 329 | 385 | 379 | 382 | | | | | 21 | 308 | 300 | 307 | 342 | 328 | 334 | 387 | 384 | 385 | 369 | 365 | 367 | | 22 | 308 | 300 | 305 | 345 | 338 | 340 | 387 | 385 | 386 | 371 | 368 | 370 | | 23 | 313 | 306 | 309 | 344 | 334 | 340 | 387 | 385 | 386 | 372 | 369 | 371 | | 24 | 312 | 306 | 308 | 336 | 324 | 328 | 387 | 383 | 385 | 372
372 | 369 | 371
370 | | 25 | 318 | 310 | 313 | 331 | 316 | 324 | 389 | 386 | 387 | | 367 | | | 26 | 332 | 313 | 318 | 340 | 322 | 330 | 395 | 388 | 391 | 370 | 366 | 368 | | 27
28 | 335
338 | 324
333 | 330
335 | 336
333 | 331
328 | 334
331 | 398
403 | 395
398 | 396
399 | 368
373 | 366
366 | 367 | | 29 | | | | 332 | 324 | 328 | 403 | 400 | 402 | 375 | 371 | 367
370
373 | | 30 | | | | 333 | 328 | 331 | 400 | 398 | 399 | 377 | 371 | 374 | | 31 | | | | 330 | 326 | 328 | | | | 378 | 373 | 375 | | MONTH | | | | 377 | 304 | 336 | 403 | 308 | 356 | | | | | DAY | MAX | MIN | MEAN | | | | | | | | | | AUGUST | | | CEDMEN | TD. | | | | JUNE | | | JULY | | | AUGUSI | | | SEPTEMBI | LK | | 1 | 381 | 375 | 377 | 357 | 344 | 350 | 365 | 356 | 359 | 595 | 322 | 390 | | 2 | 381 | 375
372 | 377 | 359 | 344
349 | 354 | 365
368 | 356
360 | 364 | 595
1080 | 322
327 | 390
572 | | 2 | 381
380 | 375
372
374 | 377
377 | 359
352 | 344
349
349 | 354
351 | 365
368
379 | 356
360
367 | 364
374 | 595
1080
1150 | 322
327
338 | 390
572
560 | | 2 | 381 | 375
372 | 377 | 359 | 344
349 | 354 | 365
368 | 356
360 | 364 | 595
1080 | 322
327 | 390
572 | | 2
3
4
5 | 381
380
382
381 | 375
372
374
376
366 | 377
377
379
370 | 359
352
354
357 | 344
349
349
351
352 | 354
351
352
355 | 365
368
379
383
389 | 356
360
367
373
375 | 364
374
377
379 | 595
1080
1150
1100
991 | 322
327
338
363
919 | 390
572
560
793
950 | | 2
3
4 | 381
380
382 | 375
372
374
376 | 377
377
379 | 359
352
354
357
359
361 | 344
349
349
351 | 354
351
352 | 365
368
379
383
389
381
385 | 356
360
367
373 | 364
374
377
379
376
380 | 595
1080
1150
1100
991 | 322
327
338
363 | 390
572
560
793
950 | | 2
3
4
5
6
7
8 | 381
380
382
381
378
380
380 | 375
372
374
376
366
366
368
371 | 377
377
379
370
371
373
374 | 359
352
354
357
359
361
362 | 344
349
349
351
352
355
357
354 | 354
351
352
355
357
359
358 | 365
368
379
383
389
381
385
876 | 356
360
367
373
375
376
376 | 364
374
377
379
376
380
520 | 595
1080
1150
1100
991
998
1160
1080 | 322
327
338
363
919
922
998
720 | 390
572
560
793
950
947
1070
974 | | 2
3
4
5
6
7
8
9 | 381
380
382
381
378
380
380
385 | 375
372
374
376
366
366
368
371
375 | 377
377
379
370
371
373
374
380 | 359
352
354
357
359
361
362
359 | 344
349
349
351
352
355
357
354
355 | 354
351
352
355
357
359
358
357 | 365
368
379
383
389
381
385
876
996 | 356
360
367
373
375
373
376
376
393 | 364
374
377
379
376
380
520
581 | 595
1080
1150
1100
991
998
1160
1080
720 | 322
327
338
363
919
922
998
720
241 | 390
572
560
793
950
947
1070
974
374 | | 2
3
4
5
6
7
8
9 | 381
380
382
381
378
380
380
385
388 | 375
372
374
376
366
366
368
371
375
381 | 377
377
379
370
371
373
374
380
383 | 359
352
354
357
359
361
362
359
356 | 344
349
349
351
352
355
357
354
355
351 | 354
351
352
355
357
359
358
357
354 | 365
368
379
383
389
381
385
876
996
2090 | 356
360
367
373
375
373
376
376
393
392 | 364
374
377
379
376
380
520
581
976 | 595
1080
1150
1100
991
998
1160
1080
720
244 | 322
327
338
363
919
922
998
720
241
238 | 390
572
560
793
950
947
1070
974
374
240 | | 2
3
4
5
6
7
8
9
10 | 381
380
382
381
378
380
380
385
388 | 375
372
374
376
366
366
368
371
375
381 | 377
377
379
370
371
373
374
380
383 | 359
352
354
357
359
361
362
359
356 | 344
349
349
351
352
355
357
354
355
351 | 354
351
352
355
357
359
358
357
354 | 365
368
379
383
389
381
385
876
996
2090 | 356
360
367
373
375
376
376
393
392
532 | 364
374
377
379
376
380
520
581
976 | 595
1080
1150
1100
991
998
1160
1080
720
244 | 322
327
338
363
919
922
998
720
241
238 | 390
572
560
793
950
947
1070
974
374
240 | | 2
3
4
5
6
7
8
9
10
11
12 | 381
380
382
381
378
380
380
385
388
390
394 | 375
372
374
376
366
366
368
371
375
381 | 377
377
379
370
371
373
374
380
383
384
385 | 359
352
354
357
359
361
362
359
356
356 | 344
349
349
351
352
355
357
354
355
351 | 354
351
352
355
357
359
358
357
354
354 | 365
368
379
383
389
381
385
876
996
2090 | 356
360
367
373
375
373
376
376
393
392
532
769 | 364
374
377
379
376
380
520
581
976 | 595
1080
1150
1100
991
998
1160
1080
720
244 | 322
327
338
363
919
922
998
720
241
238
198 | 390
572
560
793
950
947
1070
974
374
240
217
204 | | 2
3
4
5
6
7
8
9
10
11
12
13 | 381
380
382
381
378
380
380
385
388
390
394 | 375
372
374
376
366
366
368
371
375
381 | 377
377
379
370
371
373
374
380
383
384
385 | 359
352
354
357
359
361
362
359
356
356
356 | 344
349
349
351
352
355
357
354
355
351
352
353
347 | 354
351
352
355
357
359
358
357
354
354
355
351 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160 |
356
360
367
373
375
373
376
376
393
392
532
769
1540 | 364
374
377
379
376
380
520
581
976
1280
1260
1850 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226 | 322
327
338
363
919
922
998
720
241
238
198
198
208 | 390
572
560
793
950
947
1070
974
374
240
217
204
212 | | 2
3
4
5
6
7
8
9
10
11
12 | 381
380
382
381
378
380
380
385
388
390
394
388 | 375
372
374
376
366
368
371
375
381
381
382
381 | 377
377
379
370
371
373
374
380
383
384
385
384 | 359
352
354
357
359
361
362
359
356
356 | 344
349
349
351
352
355
357
354
355
351 | 354
351
352
355
357
359
358
357
354
354 | 365
368
379
383
389
381
385
876
996
2090 | 356
360
367
373
375
373
376
376
393
392
532
769 | 364
374
377
379
376
380
520
581
976 | 595
1080
1150
1100
991
998
1160
1080
720
244 | 322
327
338
363
919
922
998
720
241
238
198 | 390
572
560
793
950
947
1070
974
374
240
217
204 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 381
380
382
381
378
380
385
388
390
394
388
 | 375
372
374
376
366
366
368
371
375
381
381
382
381 | 377
377
379
370
371
373
374
380
383
384 | 359
352
354
357
359
361
362
359
356
356
357 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346 | 354
351
352
355
357
359
358
357
354
354
355
351
348 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540 | 356
360
367
373
375
373
376
376
393
392
532
769
1540
888 | 364
374
377
379
376
380
520
581
976
1280
1260
1250
1230 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223 | 322
327
338
363
919
922
998
720
241
238
198
198
208
211 | 390
572
560
793
950
947
1070
974
240
217
204
212
216 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 381
380
382
381
378
380
380
385
388
394
388
 | 375
372
374
376
366
366
368
371
375
381
381
382
381
 | 377
377
379
370
371
373
374
380
383
384
385
384
 | 359
352
354
357
359
361
362
359
356
356
357
356
350
341
333 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341 | 354
351
352
355
357
359
358
357
354
354
355
351
348
347 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250 | 356
360
367
373
375
373
376
376
393
392
532
769
1540
888
793 | 364
374
377
379
376
380
520
520
1260
1260
1230
1110
491
250 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229 | 322
327
338
363
919
922
998
720
241
238
198
198
201
211
210 | 390
572
560
793
950
947
1070
974
240
217
204
212
216
221 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 381
380
382
381
378
380
380
385
388
390
394
388
 | 375
372
374
376
366
368
371
375
381
381
382
381
 | 377
377
379
370
371
373
374
380
383
384
 | 359
352
354
357
359
361
362
359
356
356
357
356
350
341
333
324 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
317
313 | 354
351
352
355
357
358
357
354
354
355
351
348
347
333
323
319 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250
798
269
274 | 356
360
367
373
375
376
393
392
532
769
1540
888
793
262
224
239 | 364
374
377
379
376
380
520
581
976
1280
1230
1110
491
250
259 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261 | 322
327
338
363
919
922
998
720
241
238
198
198
201
210 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
216
221 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 381
380
382
381
378
380
380
385
388
394
388
 | 375
372
374
376
366
366
368
371
375
381
381
382
381
 | 377
377
379
370
371
373
374
380
383
384
385
384
 | 359
352
354
357
359
361
362
359
356
356
357
350
350
341
333
324
335 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
317
317
313
323 | 354
351
352
355
357
359
358
357
354
354
355
351
348
347
333
323
319
329 | 365
368
379
383
389
381
385
876
996
2090
2390
2160
1540
1250
798
269
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
239
246 | 364
374
377
379
376
380
520
581
976
1280
1260
1230
1110
491
250
259
258 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269 | 322
327
338
363
919
922
998
720
241
238
198
198
208
211
210
223
232
243
257 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
216
221
227
235
252
262 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 381
380
382
381
378
380
380
385
388
390
394
388
 | 375
372
374
376
366
368
371
375
381
381
382
381
 | 377
377
379
370
371
373
374
380
383
384
 | 359
352
354
357
359
361
362
359
356
356
357
356
350
341
333
324
335
340 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334 | 354
351
352
355
357
358
357
354
354
355
351
348
347
333
323
319
329
336 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250
798
269
274
265
252 | 356
360
367
373
375
376
393
392
532
769
1540
888
793
262
224
239
246
244 | 364
374
377
379
376
380
520
581
976
1280
1230
1210
491
250
259
258
249 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287 | 322
327
338
363
919
922
998
720
241
238
198
198
211
210
223
243
257
173 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
216
221
227
235
252
262
253 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 381
380
382
381
378
380
380
385
388
390
394
388
 | 375
372
374
376
366
368
371
375
381
381
 | 377
377
379
370
371
373
374
380
383
384

380 | 359
352
354
357
359
361
362
359
356
356
350
350
341
333
324
335
340 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
317
313
323
334
339 | 354
351
352
355
357
358
357
354
354
355
351
348
347
333
323
319
329
336 | 365
368
379
383
389
381
385
876
996
2090
2390
2160
1540
1250
798
269
274
265
252 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
239
246
244 | 364
374
377
379
376
380
520
581
976
1280
1230
1110
491
250
258
249 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287 | 322
327
338
363
919
922
998
720
241
238
198
198
208
211
210
223
243
257
173 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
216
221
227
235
252
262
253 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 381
380
382
381
378
380
380
385
388
390
394
388
 |
375
372
374
376
366
368
371
375
381
381
382
381
 | 377
377
379
370
371
373
374
380
383
384
 | 359
352
354
357
359
361
362
359
356
356
357
356
350
341
333
324
335
340 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334 | 354
351
352
355
357
358
357
354
354
355
351
348
347
33
323
323
329
336 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250
798
269
274
265
252 | 356
360
367
373
375
376
393
392
532
769
1540
888
793
262
224
239
246
244 | 364
374
377
379
376
380
520
581
976
1280
1230
1210
491
250
259
258
249 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287 | 322
327
338
363
919
922
998
720
241
238
198
198
211
210
223
243
257
173 | 390
572
560
793
950
947
1070
974
240
217
204
212
216
221
227
235
252
262
253 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 381
380
382
381
378
380
380
380
394
394
398

383
376
377
382 | 375
372
374
376
366
368
371
375
381
381
382
381

376
371
375
371
372
376 | 377
377
379
370
371
373
374
380
383
384

380
374
375
379 | 359
352
354
357
359
361
362
359
356
356
350
350
350
341
333
344
335
340 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334
339
341
342
343 | 354
351
352
355
357
358
357
354
354
355
351
348
347
333
329
336
340
343
343
344
345 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
244
243
244
243
244
241
246 | 364
374
377
379
376
380
520
581
976
1280
1230
1110
491
259
258
249
250
252
247
251 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154 | 322
327
338
363
919
922
998
720
241
238
198
208
211
210
223
243
257
173
125
122
144
153 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
216
221
227
235
252
262
253
148
129
157 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 381
380
382
381
378
380
380
385
388
394
388

383
376
377 | 375
372
374
376
366
368
371
375
381
381
382
381

376
371
372 | 377
377
379
370
371
373
374
380
383
384

380
374
375 | 359
352
354
357
359
361
362
359
356
356
350
350
341
333
324
335
340
343
344
345 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334
339
341
342 | 354
351
352
355
357
358
357
354
354
355
351
348
347
329
336
340
343
343 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250
798
269
274
265
252 | 356
360
367
373
375
376
393
392
532
769
1540
888
793
262
224
239
246
241 | 364
377
379
376
380
520
581
976
1280
1260
1850
1210
491
250
259
258
249
250
252
247 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287 | 322
327
338
363
919
922
998
720
241
238
198
198
201
210
223
243
257
173
125
122
144 | 390
572
560
793
950
947
1070
974
374
240
212
216
221
227
235
252
262
253
148
129
150 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 381
380
382
381
378
380
380
385
388
394
388

383
376
377
382
398
394 | 375
372
374
376
366
368
371
375
381
381
382
381

376
371
372
376
381
381 | 377
377
379
370
371
373
374
380
383
384

380
374
375
379
386 | 359
352
354
357
359
361
362
359
356
356
350
350
341
333
324
335
340
343
344
345
347
348 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334
339
341
342
343
345
346 | 354
351
352
355
357
358
357
354
355
351
348
347
333
329
336
340
343
344
345
346 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
244
243
244
243
244
241
246
251 | 364
374
377
379
376
380
520
581
976
1280
1230
1110
491
250
259
258
249
250
252
247
251
267 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154
162
163 | 322
327
338
363
919
922
998
720
241
238
198
208
211
210
223
243
257
173
125
122
144
153
150 | 390
572
560
793
950
947
1070
974
374
240
217
2216
221
227
235
252
262
253
148
129
157
157 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 381
380
382
381
378
380
380
385
388
394
388

377
377
383
376
377
382
398 | 375
372
374
376
366
366
368
371
375
381
382
381

376
371
372
376
381
372
376
381 | 377
377
379
370
371
373
374
380
383
384
385
384

380
374
375
379
386
385 | 359
352
354
357
359
361
362
359
356
350
350
341
333
324
335
340
343
344
345
347
348 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
317
313
323
334
341
342
343
345
346
347 | 354
351
352
355
357
359
358
357
354
354
355
351
348
347
333
323
319
329
336
340
343
344
345
346 | 365
368
379
383
389
381
385
876
996
2090
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
224
241
242
241
242
241
242
241
246
251 | 364
377
379
376
380
520
581
976
1280
1260
1850
1230
1110
491
250
259
258
249
250
252
247
251
267 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154
162
163 | 322
327
338
363
919
922
998
720
241
238
198
198
208
211
210
223
232
243
257
173
125
122
144
153
150 | 390
572
560
793
950
947
1070
974
374
240
217
204
221
226
221
227
235
252
262
253
148
129
150
157 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 381
380
382
381
378
380
380
385
388
394
388

383
376
377
382
398
394 | 375
372
374
376
366
368
371
375
381
381
382
381

376
371
372
376
381
381 | 377
377
379
370
371
373
374
380
383
384

380
374
375
379
386 | 359
352
354
357
359
361
362
359
356
356
350
350
341
333
324
335
340
343
344
345
347
348 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334
339
341
342
343
345
346 | 354
351
352
355
357
358
357
354
355
351
348
347
333
329
336
340
343
344
345
346 |
365
368
379
383
389
381
385
876
996
2090
2390
2390
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
244
243
244
243
244
241
246
251 | 364
374
377
379
376
380
520
581
976
1280
1230
1110
491
250
259
258
249
250
252
247
251
267 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154
162
163 | 322
327
338
363
919
922
998
720
241
238
198
208
211
210
223
243
257
173
125
122
144
153
150 | 390
572
560
793
950
947
1070
974
374
240
217
2216
221
227
235
252
262
253
148
129
157
157 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 381
380
381
378
380
380
385
388
394
388

383
376
377
382
398
394
406
378
378
378 | 375
372
374
376
366
366
368
371
375
381
382
381

376
371
372
376
381
372
376
381
381
372
376
381 | 377
377
379
370
371
373
374
380
383
384
385
384

385
387
387
387
379
379
386
385
386
385
380
374
375
375
375
375
375
375
375
375
375
375 | 359
352
354
357
359
361
362
359
356
356
350
341
333
324
345
347
348
349
351
352
361 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
317
313
323
334
339
341
342
343
345 | 354
351
352
355
357
359
358
357
354
354
355
351
348
347
329
336
340
343
344
345
346
348
349
350
351
354 | 365
368
379
383
389
381
385
876
996
2090
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
239
246
244
243
242
241
246
251
270
291
299
306 | 364
377
379
376
380
520
581
976
1280
1260
1230
1110
491
250
259
258
249
252
247
251
267
288
297
300
303
310 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154
162
163 | 322
327
338
363
919
922
998
720
241
238
198
198
201
210
223
232
243
257
173
125
122
144
153
150 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
226
221
227
235
252
262
253
148
129
150
157
157
173
191
196
204
204
204
204
204
205
206
206
207
207
207
208
208
208
208
208
208
208
208 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 381
380
382
381
378
380
380
385
388
394
388

383
376
377
382
398
394
406
378
378
378 | 375
372
374
376
366
368
371
375
381
381
381

376
371
372
376
381
372
376
381
371
375
371
375
381 | 377
377
379
370
371
373
374
380
383
384

380
374
375
379
386
385
382
372
372 | 359
352
354
357
359
361
362
359
356
350
350
341
333
324
335
340
343
344
345
347
348
349
351
352 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
313
323
334
349
349 | 354
351
352
355
357
358
357
354
354
355
351
348
347
329
336
340
343
344
345
346
348
349
355 | 365
368
379
383
389
381
385
876
996
2090
2390
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
239
246
244
243
242
241
246
251
270
291
299 | 364
374
377
379
376
380
520
581
976
1280
1230
1210
491
250
259
258
249
250
252
247
251
267
288
297
300
303 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154
162
163 | 322
327
338
363
919
922
998
720
241
238
198
208
211
210
223
243
257
173
125
125
125
125
150
158
186
186
189
201 | 390
572
560
793
950
947
1070
974
374
240
212
216
221
227
235
252
262
253
148
129
157
157 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 381
380
381
378
380
380
385
388
394
388

383
376
377
382
398
394
406
378
378
378 | 375
372
374
376
366
366
368
371
375
381
382
381

376
371
372
376
381
372
376
381
381
372
376
381 | 377
377
379
370
371
373
374
380
383
384
385
384

385
387
387
387
379
379
386
385
386
385
380
374
375
375
375
375
375
375
375
375
375
375 | 359
352
354
357
359
361
362
359
356
356
350
341
333
324
345
347
348
349
351
352
361 | 344
349
349
351
352
355
357
354
355
351
352
353
347
346
341
327
317
313
323
334
339
341
342
343
345 | 354
351
352
355
357
359
358
357
354
354
355
351
348
347
329
336
340
343
344
345
346
348
349
350
351
354 | 365
368
379
383
389
381
385
876
996
2090
2390
2160
1540
1250
798
269
274
265
252
253
259
255
260
274 | 356
360
367
373
375
373
376
393
392
532
769
1540
888
793
262
224
239
246
244
243
242
241
246
251
270
291
299
306 | 364
377
379
376
380
520
581
976
1280
1260
1230
1110
491
250
259
258
249
252
247
251
267
288
297
300
303
310 | 595
1080
1150
1100
991
998
1160
1080
720
244
242
211
226
223
229
232
243
261
269
287
173
144
154
162
163 | 322
327
338
363
919
922
998
720
241
238
198
198
201
210
223
232
243
257
173
125
122
144
153
150 | 390
572
560
793
950
947
1070
974
374
240
217
204
212
226
221
227
235
252
262
253
148
129
150
157
157
173
191
196
204
204
204
204
204
205
206
206
207
207
207
208
208
208
208
208
208
208
208 | 355 TRINITY RIVER BASIN 08067252 Trinity River at Wallisville, TX--Continued WATER TEMPERATURE (UPSTREAM), in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | • | | | | | | | | |----------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--------------------------------------|--------------------------------------| | DAY | MAX | MIN | MEAN | | | | OCTOBER | : | N | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 24.6
25.3
25.0
24.4
24.4 | 23.3
23.5
23.7
24.2
24.0 | 23.8
24.1
24.2
24.3
24.1 | 21.1
21.1
21.3
21.7
21.7 | 20.2
20.7
20.7
20.8
20.8 | 20.6
20.9
21.1
21.3
21.3 | 13.2
13.2
14.4
15.7
17.1 | 12.8
12.9
13.0
14.4
15.7 | 13.1
13.0
13.8
15.0
16.3 | 11.9
10.8
10.2
9.5
9.2 | 11.1
10.2
9.5
9.1
9.0 | 11.5
10.5
9.8
9.2
9.1 | | 6
7
8
9
10 | 24.0
23.3
23.2
22.6
23.7 | 23.2
22.6
22.1
22.0
22.4 | 23.7
23.0
22.8
22.2
22.8 | 21.5
21.6
23.1
22.1
22.4 | 20.9
20.8
21.0
21.4
21.5 | 21.2
21.2
21.5
21.8
21.9 | 18.3
18.9
18.9
17.9
16.7 | 17.1
18.3
17.9
16.7
15.9 | 17.7
18.6
18.5
17.3
16.4 | 9.6
9.6
9.6
10.3
11.6 | 9.1
9.2
9.2
9.4
10.3 | 9.3
9.4
9.4
9.8
10.9 | | 11
12
13
14
15 | 23.6
24.4
24.4
23.0
21.6 |
23.2
23.5
23.0
21.4
20.8 | 23.4
23.9
23.6
22.2
21.2 | 22.6
22.2
22.1
21.9
21.8 | 21.7
21.8
21.7
21.6
21.6 | 22.1
22.0
21.9
21.7
21.7 | 15.9
15.5
16.6
16.1
15.6 | 15.2
15.4
15.3
15.5
15.4 | 15.4
15.4
15.9
15.7 | 12.2
12.8
12.8
12.9
12.8 | 11.6
12.2
12.4
12.6
12.3 | 11.9
12.5
12.6
12.7
12.7 | | 16
17
18
19
20 | 21.5
21.3
20.8
20.8
21.3 | 20.9
20.8
20.3
20.3
20.6 | 21.2
21.0
20.6
20.6
20.9 | 21.8
21.4
21.0
21.8
21.2 | 21.3
20.9
20.6
20.6
20.0 | 21.5
21.1
20.8
20.9
20.5 | 16.2
16.6
16.3
15.9 | 15.5
16.2
15.9
15.2
14.5 | 15.8
16.4
16.1
15.6
14.8 | 13.0
13.3
13.6
13.9
13.8 | 12.3
12.8
13.1
13.4
13.4 | 12.6
13.0
13.3
13.7
13.6 | | 21
22
23
24
25 | 21.6
22.0
23.0
23.6
23.7 | 21.1
21.5
22.0
22.9
23.2 | 21.3
21.8
22.5
23.2
23.4 | 20.1
19.7
19.8
19.9 | 19.2
18.9
18.7
19.2
18.9 | 19.6
19.2
19.2
19.6
19.2 | 14.7
14.9
14.9
14.4
13.7 | 14.3
14.4
14.4
13.7
13.2 | 14.5
14.6
14.7
14.0
13.5 | 13.7
13.2
13.8
14.6
15.5 | 13.2
12.7
12.9
13.8
14.0 | 13.5
12.9
13.3
14.3
14.7 | | 26
27
28
29
30
31 | 23.2
22.7
21.8
21.1
20.6
20.6 | 22.5
21.8
21.0
20.5
20.2
20.0 | 22.9
22.3
21.4
20.8
20.4
20.4 | 20.0
20.2
18.7
16.8
13.5 | 19.2
18.7
16.8
13.5
12.6 | 19.5
19.6
18.0
15.5
12.8 | 13.2
12.6
13.0
13.3
13.1
12.5 | 12.6
12.3
12.4
12.9
12.5
11.9 | 12.9
12.4
12.7
13.1
12.8
12.2 | 14.9
15.4
15.0
14.7
15.7
16.5 | 14.2
14.2
14.2
14.1
14.7 | 14.5
14.8
14.5
14.3
15.3 | | MONTH | 25.3 | 20.0 | 22.4 | 23.1 | 12.6 | 20.3 | 18.9 | 11.9 | 15.0 | 16.5 | 9.0 | 12.4 | 08067252 Trinity River at Wallisville, TX--Continued WATER TEMPERATURE (UPSTREAM), in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | MAX | MIN | | MAX | MIN | MEAN | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|--|---|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 |

12.3 | 14.2

12.3
11.6 |

11.9 | 11.9 | 11.8
11.2
10.4
9.9
9.4 | 11.9
11.7
10.7
10.1
9.8 | 17.8
18.0
18.4
17.7
17.8 | 17.1
16.8
17.7
17.1
17.1 | 17.4
17.4
18.1
17.5
17.4 | 25.5
25.6
26.1
26.0
26.3 | 24.6
24.9
25.4
25.6
25.4 | 25.0
25.3
25.7
25.8
25.8 | | 6
7
8
9
10 | 11.6
11.0
11.3
11.5
11.7 | 11.0
10.3
10.8
10.8 | 11.3
10.6
11.0
11.1
11.5 | 11.3
12.9
14.3
15.0
16.5 | 10.0
11.1
12.7
13.7
15.0 | 10.6
11.9
13.4
14.4
15.7 | 18.0
17.8
17.7
18.2
18.7 | 17.4
17.4
17.4
17.5
18.0 | 17.4
17.6
17.6
17.8
18.3 | 26.6
27.2
27.3
27.5
27.9 | 25.9
26.4
26.7
26.8
27.2 | 26.2
26.7
27.0
27.1
27.5 | | 11
12
13
14
15 | 11.3
11.4
11.6
11.8
11.9 | 10.9
10.9
11.0
11.3
11.4 | 11.1
11.3
11.5
11.7 | 15.9
16.8
17.9
17.9 | 15.4
15.3
16.5
17.4
17.7 | 15.6
16.1
17.2
17.6
18.1 | 19.5
20.1
20.4
20.6
20.7 | 18.6
19.3
19.8
19.9
20.4 | 19.0
19.6
20.1
20.2
20.5 | 28.0
27.8
27.6
26.4 | 27.5
27.4
26.4
25.4 | 27.7
27.6
26.9
25.8 | | 16
17
18
19
20 | 12.0
12.1
12.2
13.2
14.2 | 11.6
11.5
11.8
12.2
13.2 | 11.8
11.8
12.0
12.7
13.6 | 19.2
20.2
20.8
21.8
21.4 | 18.1
18.7
19.4
20.6
20.4 | 18.5
19.3
20.0
21.1
21.0 | 20.8
21.4
21.9
21.8
22.1 | 20.6
20.6
21.2
21.2
21.4 | 20.7
20.9
21.5
21.5
21.8 |

24.9 |

24.1 |

24.6 | | 21
22
23
24
25 | 15.0
15.2
15.1
15.1
15.5 | 14.0
14.7
14.4
14.3
14.7 | 14.4
14.9
14.7
14.8
15.1 | 21.4
21.0
20.4
19.2
18.7
17.5 | 19.8
19.1
18.7
17.5
17.2 | 20.4
19.7
18.9
18.1
17.4 | 22.6
22.7
22.9
23.5
23.5 | 21.9
22.1
22.1
22.6
23.0 | 22.2
22.4
22.5
23.0
23.2 | 24.8
24.8
24.6
24.6
25.4 | 24.1
24.3
24.1
24.1
24.4 | 24.5
24.5
24.4
24.4
24.8 | | 26
27
28
29
30
31 | 15.4
13.6
12.6
 | 13.6
12.6
12.0
 | 14.6
12.9
12.2
 | 17.3
16.6
16.7
17.4
18.1
18.0 | 16.6
16.0
16.0
16.4
17.4 | 16.9
16.3
16.3
16.9
17.7
17.9 | 23.3
23.6
24.3
24.7
25.0 | 22.8
22.6
23.2
24.0
24.4 | 23.0
23.1
23.8
24.3
24.6 | 26.0
26.4
26.3
26.0
25.8
25.8 | 25.0
25.7
25.9
25.6
25.2
25.3 | 25.5
26.0
26.1
25.8
25.5
25.5 | | MONTH | | | | 21.8 | 9.4 | 16.2 | 25.0 | 16.8 | 20.5 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | | MIN
JULY | MEAN | | MIN
AUGUST | | | SEPTEMB | ER | | DAY 1 2 3 4 5 | MAX
26.3
26.9
27.9
28.6
29.2 | | MEAN 25.8 26.4 27.1 28.1 28.8 | 28.1
28.7
29.5
30.0
30.2 | JULY 27.5 27.7 28.1 28.6 29.3 | MEAN 27.8 28.0 28.5 29.1 29.8 | | AUGUST
30.5
30.9
31.3 | 31.1 | | 30.3
30.4
29.9
29.1 | | | 1
2
3
4 | 26.3
26.9
27.9
28.6 | JUNE 25.4 25.9 26.6 27.4 | 25.8
26.4
27.1
28.1 | 28.1
28.7
29.5
30.0 | JULY 27.5 27.7 28.1 28.6 29.3 | 27.8
28.0
28.5
29.1
29.8 | 32.2
32.6
32.7
32.9 | 30.5
30.9
31.3
31.2
30.6
30.9
31.1
30.7
31.2 | 31.1
31.6
31.9
31.6
31.4 | 31.5
32.1
31.1
30.0 | 30.3
30.4
29.9
29.1
28.6
27.7
27.3
27.4
26.1 | 30.7
30.8
30.4
29.5 | | 1
2
3
4
5
6
7
8
9
10 | 26.3
26.9
27.9
28.6
29.2
29.3
29.5
30.2
30.5 | JUNE 25.4 25.9 26.6 27.4 28.4 28.7 29.0 29.0 29.3 29.6 29.6 29.7 | 25.8
26.4
27.1
28.1
28.8
29.0
29.1
29.4
29.8
29.9 | 28.1
28.7
29.5
30.0
30.2
30.8
32.0
32.2
31.4 | JULY 27.5 27.7 28.1 28.6 29.3 30.0 30.3 30.4 30.5 30.2 | 27.8
28.0
28.5
29.1
29.8
30.3
30.9
31.0
30.7
30.5 | 32.2
32.6
32.7
32.9
33.5
32.6
32.5
31.9
31.8
31.8 | 30.5
30.9
31.3
31.2
30.6
30.9
31.1
30.7
31.2
30.2 | 31.1
31.6
31.9
31.4
31.5
31.5
31.4
31.5 | 31.5
32.1
31.1
30.0
29.2
29.0
27.7
28.3
28.2
26.9 | 30.3
30.4
29.9
29.1
28.6
27.7
27.3
27.4
26.1
26.1 | 30.7
30.8
30.4
29.5
28.9
28.3
27.5
27.8
27.2
26.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 26.3
26.9
27.9
28.6
29.2
29.3
29.5
30.2
30.5
30.6
30.1 | JUNE 25.4 25.9 26.6 27.4 28.4 28.7 29.0 29.3 29.6 29.6 29.7 | 25.8
26.4
27.1
28.1
28.8
29.0
29.1
29.4
29.8
29.9
29.9 | 28.1
28.7
29.5
30.0
30.2
30.8
32.0
32.2
31.4
31.3
32.3
32.1
30.8
30.8 | JULY 27.5 27.7 28.1 28.6 29.3 30.0 30.3 30.4 30.5 30.2 30.4 30.5 30.2 | 27.8
28.0
28.5
29.1
29.8
30.3
30.9
31.0
30.7
30.5
30.9
31.0
30.4
29.8 | 32.2
32.6
32.7
32.9
33.5
32.6
32.5
31.9
31.8
31.8
31.4
31.2 | 30.5
30.9
31.3
31.2
30.6
30.9
31.1
30.7
31.2
30.2 | 31.1
31.6
31.9
31.6
31.4
31.5
31.5
31.5
31.2
30.9
30.9
30.9 | 31.5
32.1
31.1
30.0
29.2
29.0
27.7
28.3
28.2
26.9
27.3
27.9
29.3
30.7 | 30.3
30.4
29.9
29.1
28.6
27.7
27.3
27.4
26.1
26.1
26.5
27.3
27.9 |
30.7
30.8
30.8
30.4
29.5
28.9
27.5
27.8
27.2
26.4
26.9
27.5
28.4
29.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 26.3
26.9
27.9
28.6
29.2
29.3
29.5
30.5
30.6
30.1
30.6
30.1 | JUNE 25.4 25.9 26.6 27.4 28.4 28.7 29.0 29.3 29.6 29.6 29.7 | 25.8
26.4
27.1
28.1
28.8
29.0
29.1
29.8
29.9
29.9
30.0 | 28.1
28.7
29.5
30.0
30.2
30.8
32.0
31.4
31.3
32.1
30.8
30.8
30.3
29.9
28.0
28.6
29.1 | JULY 27.5 27.7 28.1 28.6 29.3 30.0 30.3 30.4 30.5 30.2 30.4 30.5 27.4 27.0 27.7 28.5 | 27.8
28.0
28.5
29.1
29.8
30.3
30.9
31.0
30.7
30.5
30.9
31.0
29.1
27.7
27.6
28.3
29.2 | 32.2
32.6
32.7
32.9
33.5
32.6
32.5
31.8
31.8
31.8
31.4
31.2
30.8
29.9
29.5
29.4
28.3
30.0
30.7 | AUGUST 30.5 30.9 31.3 31.2 30.6 30.9 31.1 30.7 31.2 30.2 30.3 29.9 29.5 28.6 27.8 27.5 28.0 | 31.1
31.6
31.9
31.6
31.4
31.5
31.5
31.5
31.2
30.9
30.9
30.9
29.6
29.1
28.8
27.8
28.9
29.3 | 31.5
32.1
31.1
30.0
29.2
29.0
27.7
28.3
28.2
26.9
27.3
27.9
29.3
30.7
29.0
28.6
28.5
29.2
28.6 | SEPTEMB 30.3 30.4 29.9 29.1 28.6 27.7 27.3 27.4 26.1 26.5 27.3 27.9 28.3 28.6 27.9 | 30.7
30.8
30.8
29.5
28.9
28.3
27.5
27.8
27.2
26.4
26.9
27.5
28.8
29.0
28.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 26.3
26.9
27.9
28.6
29.2
29.3
30.5
30.6
30.1
30.6
30.6
30.1
30.6
30.6
30.8
30.8
30.8 | JUNE 25.4 25.9 26.6 27.4 28.4 28.7 29.0 29.3 29.6 29.6 29.7 29.9 29.4 29.5 29.5 | 25.8
26.4
27.1
28.1
28.8
29.0
29.1
29.8
29.9
29.9
30.0

30.5
29.7
30.0
29.7 | 28.1
28.7
29.5
30.0
30.2
30.8
32.0
31.4
31.3
32.1
30.8
30.3
29.9
28.6
29.1
29.9
30.8
31.6
32.7
32.1 | JULY 27.5 27.7 28.1 28.6 29.3 30.0 30.3 30.4 30.5 30.2 30.4 30.5 29.5 28.0 27.4 27.0 27.7 28.5 29.8 30.5 31.2 31.4 31.6 | 27.8
28.0
28.5
29.1
29.8
30.3
30.9
31.0
30.7
30.5
30.9
31.0
29.1
27.7
27.6
28.3
29.1
27.7
27.6
28.3
29.2
30.4 | 32.2
32.6
32.7
32.9
33.5
32.6
32.5
31.8
31.8
31.8
31.4
31.2
30.8
29.9
29.5
29.4
28.3
30.0
30.7
30.6
30.5
30.5
30.5 | AUGUST 30.5 30.9 31.3 31.2 30.6 30.9 31.1 30.7 31.2 30.2 30.3 30.3 29.9 29.5 28.6 27.8 27.5 28.2 29.0 29.0 | 31.1
31.6
31.9
31.6
31.4
31.5
31.5
31.5
31.2
30.9
30.9
30.9
29.6
29.1
28.8
27.8
28.9
32.9
4
29.7
29.9
29.9 | 31.5
32.1
31.1
30.0
29.2
29.0
27.7
28.3
28.2
26.9
27.3
30.7
29.0
28.6
28.5
29.2
28.6
28.1 | SEPTEMB 30.3 30.4 29.9 29.1 28.6 27.7 27.3 27.4 26.1 26.5 27.3 27.9 28.3 28.6 27.9 27.6 27.8 27.9 25.6 24.9 25.6 | 30.7
30.8
30.8
29.5
28.9
28.3
27.5
27.8
27.2
26.4
26.9
27.3
28.8
28.3
27.9
28.2
27.3 | 08067252 Trinity River at Wallisville, TX--Continued SPECIFIC CONDUCTANCE (DOWNSTEAM), in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|-----------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | JANUARY | • | | 1 | 317 | 306 | 312 | 327 | 322 | 325 | 234 | 221 | 229 | 397 | 392 | 394 | | 2 | 327 | 317 | 322 | 329 | 321 | 325 | 221 | 215 | 217 | 390 | 377 | 384 | | 3 | 336 | 327 | 331 | 330 | 325 | 328 | 241 | 216 | 232 | 378 | 373 | 376 | | 4 | 340 | 331 | 335 | 335 | 328 | 331 | 250 | 239 | 247 | 373 | 369 | 371 | | 5 | 342 | 336 | 340 | 340 | 333 | 336 | 261 | 248 | 255 | 369 | 359 | 364 | | 6 | 342 | 338 | 340 | 354 | 337 | 342 | 269 | 260 | 265 | 359 | 350 | 355 | | 7 | 343 | 339 | 341 | 354 | 338 | 343 | 272 | 267 | 270 | 350 | 342 | 346 | | 8 | 348 | 315 | 340 | 344 | 337 | 340 | 273 | 268 | 270 | 342 | 339 | 340 | | 9 | 315 | 299 | 305 | 343 | 339 | 341 | 277 | 272 | 275 | 344 | 339 | 341 | | 10 | 314 | 305 | 309 | 342 | 338 | 340 | 280 | 276 | 278 | 346 | 342 | 344 | | 11 | 316 | 309 | 313 | 340 | 337 | 338 | 280 | 275 | 277 | 346 | 342 | 344 | | 12 | 312 | 306 | 308 | 339 | 336 | 337 | 279 | 271 | 274 | 344 | 342 | 343 | | 13 | 311 | 258 | 280 | 400 | 335 | 343 | 272 | 181 | 248 | 345 | 343 | 344 | | 14 | 279 | 266 | 274 | 592 | 335 | 369 | 227 | 176 | 204 | 346 | 345 | 345 | | 15 | 292 | 265 | 277 | 1360 | 335 | 631 | 241 | 215 | 227 | 347 | 336 | 340 | | 16 | 320 | 278 | 298 | 3760 | 343 | 1650 | 266 | 236 | 253 | 339 | 335 | 337 | | 17 | 342 | 319 | 330 | 4010 | 1880 | 3240 | 271 | 266 | 269 | 337 | 334 | 335 | | 18 | 361 | 342 | 350 | 3010 | 2360 | 2690 | 273 | 265 | 271 | 337 | 333 | 335 | | 19 | 403 | 361 | 380 | 2750 | 337 | 1610 | 265 | 255 | 259 | 338 | 328 | 334 | | 20 | 388 | 382 | 384 | 339 | 332 | 335 | 260 | 254 | 257 | 331 | 327 | 330 | | 21 | 393 | 388 | 390 | 334 | 331 | 332 | 299 | 260 | 285 | 334 | 322 | 326 | | 22 | 395 | 381 | 392 | 547 | 331 | 386 | 321 | 299 | 309 | 325 | 312 | 317 | | 23 | 381 | 376 | 378 | 1780 | 522 | 878 | 340 | 321 | 330 | 317 | 309 | 312 | | 24 | 377 | 364 | 374 | 2600 | 408 | 972 | 354 | 340 | 347 | 314 | 307 | 310 | | 25 | 364 | 345 | 358 | 408 | 327 | 344 | 377 | 354 | 365 | 314 | 308 | 310 | | 26
27
28
29
30
31 | 348
346
342
340
337
331 | 341
339
337
329
329
326 | 343
343
340
335
331
328 | 1280
1680
318
279
250 | 328
318
277
250
208 | 742
747
303
265
224 | 392
401
400
399
399
400 | 373
392
395
395
397
397 | 384
397
398
397
398
397 | 317
322
324
299
301
299 | 312
314
297
295
291
291 | 313
315
304
297
296
293 | | MONTH | 403 | 258 | 335 | 4010 | 208 | 670 | 401 | 176 | 293 | 397 | 291 | 335 | # 08067252 Trinity River at Wallisville, TX--Continued SPECIFIC CONDUCTANCE (DOWNSTREAM), in US/CM @ 25C, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | SPE | CIFIC CO | NDUCTANCE | (DOWNSTR | EAM), in | US/CM @ | 25C, WATER | YEAR | OCTOBER | 2001 TO SE | PTEMBER | 2002 | |---|--|---|--|---|---|---|---|---|--|--|--|--| | DAY | MAX | MIN | MEAN | | | 1 | FEBRUARY | | | MARCH | | i | APRIL | | | MAY | | | 1 | | | | 339 | 329 | 334 | 329 | 325 | 326 | 370 | 368 | 369 | | 2 | | | | 336 | 329 | 333 | 330 | 327 | 328 | 370 | 365 | 367 | | 3 | | | | 354 | 333 | 342 | 329 | 327 | 327 | 366 | 363 | 364 | | 4
5 | | |
| 350
332 | 331
307 | 341
321 | 329
336 | 327
328 | 328
332 | 368
366 | 365
362 | 366
364 | | | | | | | | | | | | | | | | 6 | 304 | 299 | 301 | 310 | 302 | 305 | 342 | 336 | 339 | 367 | 360 | 362 | | 7
8 | 299
296 | 292
292 | 294
294 | 316
321 | 308
313 | 312
317 | 342
340 | 339
329 | 341
333 | 369
362 | 360
358 | 362
360 | | 9 | 292 | 290 | 291 | 331 | 319 | 324 | 329 | 308 | 316 | 378 | 360 | 362 | | 10 | 293 | 291 | 292 | 366 | 331 | 342 | 312 | 307 | 309 | 370 | 363 | 366 | | 11 | 295 | 293 | 294 | 827 | 340 | 389 | 322 | 312 | 318 | 372 | 366 | 369 | | 12 | 296 | 294 | 295 | 827 | 340 | 402 | 328 | 322 | 325 | 373 | 367 | 370 | | 13 | 296 | 295 | 295 | 352 | 347 | 349 | 331 | 328 | 330 | 373 | 371 | 372 | | 14
15 | 297
299 | 295
297 | 296
298 | 352
352 | 348
346 | 350
349 | 335
339 | 331
335 | 333
337 | 376
369 | 369
360 | 372
364 | | 1.0 | 200 | 200 | 298 | 251 | 244 | 2.47 | 244 | 220 | 240 | 260 | 254 | 256 | | 16
17 | 299
298 | 298
297 | 298 | 351
351 | 344
346 | 347
348 | 344
345 | 339
340 | 342
343 | 360
 | 354 | 356
 | | 18 | 301 | 297 | 299 | 348 | 342 | 344 | 342 | 336 | 338 | | | | | 19 | 304 | 300 | 301 | 4470 | 335 | 382 | 348 | 342 | 345 | 361 | 355 | 358 | | 20 | 308 | 304 | 306 | 5360 | 324 | 501 | 352 | 346 | 348 | 368 | 356 | 363 | | 21 | 309 | 299 | 307 | 339 | 328 | 334 | 351 | 346 | 348 | 375 | 368 | 372 | | 22 | 305 | 298 | 302 | 341 | 338 | 339 | 367 | 349 | 353 | 375 | 370 | 372 | | 23
24 | 308
306 | 302
303 | 305
305 | 343
330 | 330
319 | 338
325 | 371
359 | 351
350 | 355
353 | 375
377 | 372
373 | 374
375 | | 25 | 314 | 305 | 310 | 323 | 319 | 320 | 357 | 354 | 356 | 377 | 373 | 375 | | | 210 | 211 | | | 210 | 202 | 260 | 255 | 257 | 275 | 270 | | | 26
27 | 319
336 | 311
319 | 314
327 | 328
330 | 319
328 | 323
329 | 360
366 | 355
360 | 357
362 | 375
376 | 372
372 | 373
375 | | 28 | 340 | 333 | 337 | 332 | 327 | 330 | 367 | 365 | 366 | 402 | 375 | 379 | | 29 | | | | 331 | 323 | 328 | 369 | 367 | 368 | 386 | 379 | 382 | | 30 | | | | 332 | 327 | 331 | 369 | 367 | 368 | 386 | 381 | 384 | | 31 | | | | 330 | 327 | 328 | | | | 390 | 384 | 386 | | MONTH | | | | 5360 | 302 | 344 | 371 | 307 | 341 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
JGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY | | JUNE | | | JULY | | A | JGUST | | | SEPTEMB | ER | | DAY
1
2 | 392
398 | JUNE
385
385 | 387
390 | 351
354 | JULY
333
339 | 341
346 | AI
393
399 | JGUST
385
391 | 387
394 | 1010
1640 | SEPTEMB
325
331 | ER
522
730 | | DAY 1 2 3 | 392
398
409 | JUNE
385
385
387 | 387
390
391 | 351
354
345 | JULY
333
339
340 | 341
346
343 | 393
399
401 | 385
391
398 | 387
394
400 | 1010
1640
3730 | 325
331
335 | ER
522
730
1700 | | DAY 1 2 3 4 | 392
398
409
396 | JUNE 385 385 387 389 | 387
390
391
392 | 351
354
345
346 | JULY 333 339 340 342 | 341
346
343
344 | 393
399
401
407 | 385
391
398
396 | 387
394
400
402 | 1010
1640
3730
7630 | 325
331
335
868 | 522
730
1700
3100 | | DAY 1 2 3 4 5 | 392
398
409
396
394 | JUNE 385 385 387 389 373 | 387
390
391
392
384 | 351
354
345
346
349 | JULY 333 339 340 342 343 | 341
346
343
344
347 | 393
399
401
407
452 | 385
391
398
396
403 | 387
394
400
402
418 | 1010
1640
3730
7630
7790 | 325
331
335
868
5830 | 522
730
1700
3100
6650 | | DAY 1 2 3 4 5 | 392
398
409
396
394 | JUNE 385 385 387 389 373 | 387
390
391
392
384 | 351
354
345
346
349
351 | JULY 333 339 340 342 343 | 341
346
343
344
347
349 | 393
399
401
407
452 | 385
391
398
396
403 | 387
394
400
402
418 | 1010
1640
3730
7630
7790 | 325
331
335
868
5830
6580 | 522
730
1700
3100
6650
7340 | | DAY 1 2 3 4 5 6 7 | 392
398
409
396
394
389
389 | JUNE 385 385 387 389 373 376 384 | 387
390
391
392
384
384
386 | 351
354
345
346
349
351
354 | JULY 333 339 340 342 343 347 351 | 341
346
343
344
347
349
353 | 393
399
401
407
452
420
430 | 385
391
398
396
403
410
367 | 387
394
400
402
418
415
413 | 1010
1640
3730
7630
7790
8540
9620 | 325
331
335
868
5830
6580
8540 | 522
730
1700
3100
6650
7340
9280 | | DAY 1 2 3 4 5 | 392
398
409
396
394
389
389
394
402 | JUNE 385 385 387 389 373 | 387
390
391
392
384 | 351
354
345
346
349
351 | JULY 333 339 340 342 343 | 341
346
343
344
347
349 | 393
399
401
407
452 | 385
391
398
396
403 | 387
394
400
402
418 | 1010
1640
3730
7630
7790 | 325
331
335
868
5830
6580 | 522
730
1700
3100
6650
7340 | | DAY 1 2 3 4 5 6 7 8 | 392
398
409
396
394
389
389
389 | JUNE 385 385 387 389 373 376 384 387 | 387
390
391
392
384
384
386
391 | 351
354
345
346
349
351
354
355 | JULY 333 339 340 342 343 347 351 352 | 341
346
343
344
347
349
353
354 | 393
399
401
407
452
420
430
750 | 385
391
398
396
403
410
367
419 | 387
394
400
402
418
415
413
530 | 1010
1640
3730
7630
7790
8540
9620
9590 | 325
331
335
868
5830
6580
8540
666 | 522
730
1700
3100
6650
7340
9280
5660 | | DAY 1 2 3 4 5 6 7 8 9 | 392
398
409
396
394
389
389
394
402 | JUNE 385 385 387 389 373 376 384 387 391 | 387
390
391
392
384
384
386
391
396 | 351
354
345
346
349
351
354
355
361 | JULY 333 339 340 342 343 347 351 352 353 | 341
346
343
344
347
349
353
354
355 | 393
399
401
407
452
420
430
750
885 | 385
391
398
396
403
410
367
419
449 | 387
394
400
402
418
415
413
530
612 | 1010
1640
3730
7630
7790
8540
9620
9590
666 | 325
331
335
868
5830
6580
8540
666
243 | 522
730
1700
3100
6650
7340
9280
5660
356 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | 392
398
409
396
394
389
389
394
402
403 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 | 387
390
391
392
384
386
391
396
398
411
416 | 351
354
345
346
349
351
354
355
361
361
362
360 | JULY 333 339 340 342 343 347 351 352 353 351 | 341
346
343
344
347
349
353
354
355
357 | 393
399
401
407
452
420
430
750
885
1770
2560
2910 | 385
391
398
396
403
410
367
419
449
492 | 387
394
400
402
418
415
413
530
612
860 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253 | 325
331
335
868
5830
6580
8540
666
243
242 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 | 392
398
409
396
394
389
389
394
402
403
415
419
411 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 403 | 387
390
391
392
384
384
386
391
396
398
411
416
407 | 351
354
345
346
349
351
354
355
361
361
362
360
363 | JULY 333 339 340 342 343 347 351 352 353 351 353 352 346 | 341
346
343
344
347
353
354
355
357
359
355
353 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160 | 385
391
398
396
403
410
367
419
449
492
1050
1680
2910 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 392
398
409
396
394
389
389
394
402
403
415
411
408 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 403 404 | 387
390
391
392
384
386
391
396
398
411
416
407
406 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355 | JULY 333 339 340 342 343 347 351 352 353 351 353 352 346 345 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250 | 385
391
398
396
403
410
367
419
449
492
1050
1680
2910
4160 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
230 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
217 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
392
398
409
396
394
389
389
394
402
403
415
419
411
408
421 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 403 404 407 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412 | 351
354
346
349
351
354
355
361
361
362
360
363
355
358 | JULY 333 339 340 342 343 347 351 352 353 351 353 352 346 345 340 | 341
346
343
344
347
353
354
355
357
359
355
353
348
349 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660 | 385
391
398
396
403
410
367
419
449
492
1050
1680
2910
4160
783 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
230
237 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
211 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 352 346 345 340 326 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
332 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660 | 385
391
398
396
403
410
367
419
492
1050
1680
2910
4160
783 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
230
237 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
217
211 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358 | JULY 333 339 340 342 343 347 351 352 353 351 353 352 346 345 340 326 315 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660 | 385
391
398
396
403
410
419
449
492
1050
1680
2910
4160
783
264
221 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
233
237 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
211 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421
422
424
416
408 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407 | 351
354
345
346
349
351
355
361
361
362
360
363
355
358
341
333
326
339 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 351 353 352 346 345 340 326 315 313 325 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
332
322
319
332 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268 | 385
391
398
403
410
367
419
449
492
1050
1680
2910
4160
783
264
221
247
246 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
230
237
239
251
269
273 | 325
331
335
868
5830
6580
8540
6666
243
242
203
204
217
211
228
237
251 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
223
227
233
242
257 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421
422
424
416 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358 | JULY 333 339 340 342 343 347 351 352 353 351 353 352 346 345 340 326 315 313 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
332
322
319 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282 | 385
391
398
396
403
410
367
419
449
492
1050
1680
2910
4160
783
264
221
247 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
230
237 | 325
331
335
868
5830
6580
8540
6666
243
242
203
204
216
217
2111
228
237
251 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
259 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421
422
424
416
408 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407 | 351
354
345
346
349
351
355
361
361
362
360
363
355
358
341
333
326
339 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 351 353 352 346 345 340 326 315 313 325 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
332
322
319
332 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268 | 385
391
398
403
410
367
419
449
492
1050
1680
2910
4160
783
264
221
247
246 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
230
237
239
251
269
273 | 325
331
335
868
5830
6580
8540
6666
243
242
203
204
217
211
228
237
251 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
223
227
233
242
257 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | 392
398
409
396
394
389
389
394
402
403
415
419
421
422
424
416
408
404
376
367 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358
341
333
326
339
343 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 352 346 345 340 326 315 313 325 338 341 346 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
32
32
319
32
340
345
347 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268 | 385
391
396
403
410
367
419
492
1050
1680
783
264
221
247
245
245 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
233
237
239
251
269
273
292 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
211
228
237
251
262
2181 | 522
730
1700
3100
6650
7340
9280
5660
247
223
212
220
223
227
233
242
259
267
256 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
392
398
409
396
394
389
389
394
402
403
415
419
411
408
421
422
424
416
408
404 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 362 363 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385
372
364
366 | 351
354
345
346
349
351
354
355
361
362
360
363
355
358
341
333
326
339
343 | JULY 333 339 340 342 343 347 351 352 353 351 353 352 346 345 340 326 315 313 325 338 341 346 348 | 341
346
343
344
347
349
353
354
355
357
359
355
353
349
322
319
332
340
345
347
350 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268 | 385
391
398
403
410
367
419
492
1050
1680
2910
4160
783
264
221
247
246
245
245
244
243 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
3430
468
250
267
262
254
256
259
253 | 1010
1640
3730
7630
7790
8540
9620
9590
6666
253
220
234
234
230
237
239
251
269
273
292 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
221
228
237
251
262
181 | 522
7330
17000
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
259
267
256 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | 392
398
409
396
394
389
389
394
402
403
415
419
421
422
424
416
408
404
376
367 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358
341
333
326
339
343 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 352 346 345 340 326 315 313 325 338 341 346 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
32
32
319
32
340
345
347 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268 | 385
391
396
403
410
367
419
492
1050
1680
783
264
221
247
245
245 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
233
237
239
251
269
273
292 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
211
228
237
251
262
2181 | 522
730
1700
3100
6650
7340
9280
5660
247
223
212
220
223
227
233
242
259
267
256 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421
422
424
416
408
404
376
367
368
374
422 | JUNE 385 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 368 371 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385
372
364
366
371
382 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358
341
333
326
339
343
347
350
352
351
354 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 326 345 340 326 315 313 325 338 341 346 348 348 348 | 341
346
343
344
347
349
353
354
355
357
359
355
353
349
332
349
349
351 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268
264
269
281 | 385
391
398
403
410
367
419
492
1050
1680
2910
4160
783
264
221
247
246
245
245
242
243
251
258 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
3430
468
250
267
262
254
256
259
253
258
275 | 1010
1640
3730
7630
7790
8540
9620
9550
666
253
220
234
230
237
237
249
273
292
273
292
2181
193
218 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
211
228
237
251
262
181
164
164
193
207
205 | 522
7330
17000
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
259
267
256
171
174
203
212
212 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 392
398
409
396
394
389
389
402
403
415
419
411
408
421
422
424
416
408
404
376
367
368
374 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 362 363 368 371 | 387
390
391
392
384
384
386
391
396
398
411
416
407
406
412
419
411
407
385
372
364
363
371
382 | 351
354
345
346
349
351
355
361
361
362
360
363
355
358
341
333
326
339
343
347
350
351
354
354 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 352 346 345 340 326 315 313 325 338 341 346 348 348 348 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
332
340
345
347
350
349
351
351
352 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268
269 | 385
391
396
403
410
367
449
492
1050
1680
783
264
221
247
246
245
244
243
258
274 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254
256
259
253
258
275 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
237
239
251
269
273
292 | 325
331
335
868
5830
6580
8540
6666
243
242
203
204
216
217
211
228
237
251
262
181
164
164
193
207
205 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
256
171
174
203
212
225
227
2267
256 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 392
398
409
396
394
389
389
394
402
403
415
419
411
408
421
422
424
416
408
376
367
368
374
422
403 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 368 371 369 368 347 | 387
390
391
392
384
386
398
411
416
407
406
412
416
419
411
407
385
372
364
366
371
382
378
382
378 | 351
354
345
346
349
351
354
355
361
361
362
360
363
355
358
341
333
326
339
343
347
350
352
351
354
354
354
355
356
356
367
367
367
367
367
367
367
367
367
36 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 326 345 340 326 315 313 325 338 341 346 348 348 348 350 350 355 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
332
340
349
351
340
349
351
351
351
351
351
351
351
351
351
351 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268
264
269
281 | 385
391
398
403
410
367
419
492
1050
1680
2910
4160
783
264
221
247
245
245
245
245
251
258
274
298
297 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254
256
259
253
258
275 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
220
234
4
2330
237
292
273
292
218
193
210
218
218
218 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
2211
228
237
251
262
181
164
164
193
207
205 | 522
7330
17000
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
259
267
27
256
171
174
203
212
212 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 392
398
409
396
394
389
389
402
403
415
419
411
408
421
422
424
416
408
404
376
367
368
374
422
422
424
426
427
427
428
429
429
429
429
429
429
429
429
429
429 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 362 363 368 371 369 368 371 |
387
390
391
392
384
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385
372
364
366
371
382
378
382
363
378
382
363
378 | 351
354
345
346
349
351
355
361
361
362
360
363
355
358
341
333
326
339
343
347
350
351
354
354
359
361
361
361
361
361
361
361
361
361
361 | JULY 333 339 340 342 343 347 351 352 353 351 352 346 345 340 326 315 313 325 338 341 346 348 348 348 350 350 355 | 341
346
343
344
347
349
353
355
357
359
355
353
348
349
32
32
319
332
340
345
347
351
352
354
355
357 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268
264
269
281 | 385
391
396
403
410
367
449
492
1050
1680
783
264
221
245
245
245
244
243
251
258
274
298
297
303 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254
256
259
253
258
275 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
237
239
251
269
273
292
181
193
210
218
218 | 325
331
335
868
5830
6580
8540
6666
243
242
203
204
216
217
211
228
237
251
262
181
164
164
193
207
205 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
259
267
256
171
174
203
212
220
221
221
222
222
223
227
225
227
226
227
227
228
229
229
229
229
229
229
229
229
229 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 392
398
409
396
394
402
403
415
419
411
408
421
422
424
416
367
368
374
422
424
416
408
404
376
367
368
374
374
375
374
402
403 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 362 363 368 371 369 368 347 342 | 387
390
391
392
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385
372
364
366
371
382
378
382
361
353
347 | 351
354
345
346
349
351
355
361
361
362
360
363
355
358
341
333
326
343
347
350
352
351
354
354
359
360
371
380 | JULY 333 339 340 342 343 347 351 352 353 351 353 351 353 352 346 345 340 326 315 313 325 338 341 346 348 348 348 348 348 350 355 357 370 | 341
346
343
344
347
349
353
354
355
357
359
355
353
348
349
322
319
322
319
340
345
347
350
349
351
351
352
354
357 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
268
264
269
281
305
309
313
317
325 | 385
391
396
403
410
367
419
492
1050
1680
783
264
221
247
245
245
244
243
225
247
298
297
303
312 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254
256
259
253
258
275 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
220
234
230
237
251
269
273
292
181
193
210
218
218
228
248
253 | 325
331
335
868
5830
6580
8540
666
243
242
203
204
216
217
211
228
237
251
164
193
205
211
225
225
225
225
226
221
227
221
228
237
242
243
243
244
245
247
247
247
247
247
247
247
247
247
247 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
256
171
174
203
212
212
220
223
227 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 392
398
409
396
394
389
389
402
403
415
419
411
408
421
422
424
416
408
404
376
367
368
374
422
422
424
426
427
427
428
429
429
429
429
429
429
429
429
429
429 | JUNE 385 387 389 373 376 384 387 391 389 402 407 403 404 407 412 414 406 403 375 363 362 363 368 371 369 368 371 | 387
390
391
392
384
384
386
391
396
398
411
416
407
406
412
416
419
411
407
385
372
364
366
371
382
378
382
363
378
382
363
378 | 351
354
345
346
349
351
355
361
361
362
360
363
355
358
341
333
326
339
343
347
350
351
354
354
359
361
361
361
361
361
361
361
361
361
361 | JULY 333 339 340 342 343 347 351 352 353 351 352 346 345 340 326 315 313 325 338 341 346 348 348 348 350 350 355 | 341
346
343
344
347
349
353
355
357
359
355
353
348
349
32
32
319
332
340
345
347
351
352
354
355
357 | 393
399
401
407
452
420
430
750
885
1770
2560
2910
5160
5250
5660
787
265
282
268
260
260
268
264
269
281 | 385
391
396
403
410
367
449
492
1050
1680
783
264
221
245
245
245
244
243
251
258
274
298
297
303 | 387
394
400
402
418
415
413
530
612
860
1670
2270
4300
4890
3430
468
250
267
262
254
256
259
253
258
275 | 1010
1640
3730
7630
7790
8540
9620
9590
666
253
250
220
234
237
239
251
269
273
292
181
193
210
218
218 | 325
331
335
868
5830
6580
8540
6666
243
242
203
204
216
217
211
228
237
251
262
181
164
164
193
207
205 | 522
730
1700
3100
6650
7340
9280
5660
356
247
223
212
220
223
227
233
242
259
267
256
171
174
203
212
220
221
221
222
222
223
227
225
227
226
227
227
228
229
229
229
229
229
229
229
229
229 | 359 MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MIN MEAN DAY MAX | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | |----------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--| | 1 | 24.4 | 23.4 | 23.8 | 21.2 | 20.3 | 20.7 | 13.4 | 12.9 | 13.2 | 12.0 | 11.3 | 11.6 | | 2 | 24.8 | 23.6 | 24.1 | 21.2 | 20.8 | 21.0 | 13.3 | 13.0 | 13.1 | 10.9 | 10.3 | 10.6 | | 3 | 24.7 | 23.8 | 24.2 | 21.4 | 20.8 | 21.1 | 14.5 | 13.1 | 13.9 | 10.3 | 9.6 | 9.9 | | 4 | 24.5 | 24.2 | 24.3 | 21.8 | 20.9 | 21.4 | 15.8 | 14.5 | 15.1 | 9.6 | 9.2 | 9.4 | | 5 | 24.4 | 24.1 | 24.2 | 21.7 | 20.9 | 21.3 | 17.2 | 15.8 | 16.4 | 9.4 | 9.1 | 9.2 | | 6
7
8
9
10 | 24.1
23.4
23.3
22.6
23.5 | 23.2
22.7
22.2
22.1
22.5 | 23.8
23.1
22.9
22.3
22.8 | 21.5
21.6
22.0
22.3
22.4 | 21.0
20.9
21.1
21.4
21.5 | 21.3
21.3
21.5
21.9
22.0 | 18.4
19.0
19.0
18.0
16.8 | 17.2
18.4
18.0
16.8
16.0 | 17.8
18.7
18.6
17.4
16.5 | 9.7
9.8
9.8
10.4
11.6 | 9.2
9.4
9.3
9.6
10.4 | 9.4
9.6
9.6
9.9 | | 11 | 23.6 | 23.2 | 23.4 | 22.6 | 21.8 | 22.1 | 16.0 | 15.3 | 15.5 | 12.3 | 11.6 | 12.0 | | 12 | 24.5 | 23.5 | 23.9 | 22.3 | 21.9 | 22.1 | 15.6 | 15.4 | 15.5 | 12.9 | 12.3 | 12.6 | | 13 | 24.5 | 23.1 | 23.7 | 22.1 | 21.8 | 21.9 | 16.6 | 15.4 | 16.0 | 12.9 | 12.5 | 12.7 | | 14 | 23.1 | 21.5 | 22.2 | 21.9 | 21.6 | 21.8 | 16.2 | 15.6 | 15.8 | 13.0 | 12.7 | 12.8 | | 15 | 21.7 | 20.9 | 21.3 | 21.9 | 21.6 | 21.7 | 15.7 | 15.5 | 15.6 | 12.9 | 12.5 | 12.8 | | 16 | 21.5 | 21.0 | 21.3 | 21.8 | 21.4 | 21.6 | 16.3 | 15.5 | 15.9 | 13.1 | 12.4 | 12.8 | | 17 | 21.3 | 20.8 | 21.0 | 21.6 | 21.2 | 21.4 | 16.7 | 16.3 | 16.4 | 13.4 | 12.9 | 13.1 | | 18 | 20.9 | 20.4 | 20.7 | 21.6 | 21.0 | 21.3 | 16.4 | 16.0 | 16.2 | 13.7 | 13.2 | 13.4 | | 19 | 20.9 | 20.3 | 20.6 | 21.5 | 20.6 | 21.2 | 16.0 | 15.3 | 15.7 | 14.0 | 13.5 | 13.8 | | 20 | 21.3 | 20.7 | 21.0 | 21.2 | 20.1 | 20.5 | 15.3 | 14.6 | 14.9 | 14.0 | 13.5 | 13.7 | | 21 | 21.7 | 21.1 | 21.4 | 20.1 | 19.3 | 19.7 | 14.8 | 14.4 | 14.6 | 13.8 | 13.3 | 13.6 | | 22 | 22.1 | 21.5 | 21.9 | 19.5 | 19.0 | 19.2 | 14.9 | 14.5 | 14.7 | 13.3 | 12.8 | 13.0 | | 23 | 23.0 | 22.1 | 22.6 | 19.5 | 18.4 | 19.2 | 14.9 | 14.5 | 14.8 | 13.9 | 13.0 | 13.4 | | 24 | 23.7 | 23.0 | 23.3 | 19.9 | 19.2 | 19.5 | 14.5 | 13.8 | 14.1 | 14.8 | 13.9 | 14.4 | | 25 | 23.7 | 23.2 | 23.5 | 19.7 | 19.0 | 19.3 | 13.8 | 13.3 | 13.6 | 14.5 | 14.2 | 14.3 | | 26
27
28
29
30
31 | 23.3
22.8
21.9
21.2
20.7
20.7 | 22.6
21.9
21.1
20.6
20.3
20.1 |
23.0
22.4
21.5
20.9
20.5
20.4 | 20.0
20.2
18.8
16.9
13.6 | 19.2
18.8
16.9
13.6
12.8 | 19.7
19.7
18.1
15.6
12.9 | 13.3
12.7
13.1
13.4
13.2
12.6 | 12.7
12.4
12.5
13.0
12.6
12.0 | 13.0
12.5
12.8
13.2
12.9
12.3 | 14.5
14.7
14.8
14.8
15.8
16.6 | 14.0
14.2
14.3
14.2
14.8
15.8 | 14.1
14.4
14.5
14.4
15.3
16.2 | | MONTH | 24.8 | 20.1 | 22.5 | 22.6 | 12.8 | 20.4 | 19.0 | 12.0 | 15.1 | 16.6 | 9.1 | 12.5 | 08067252 Trinity River at Wallisville, TX--Continued WATER TEMPERATURE (DOWNSTREAM), in (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | | MIN | MEAN | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 |

12.4 | 14.3

12.4
11.7 |

12.0 | 12.0 | 11.9
11.3
10.6
10.0
9.6 | 12.0
11.8
10.8
10.3
9.9 | 17.8
18.1
18.5
17.8
17.9 | 17.2
16.9
17.8
17.2
17.1 | 17.5
17.5
18.2
17.6
17.5 | 25.5
25.7
26.1
26.0
26.3 | | 25.0
25.3
25.7
25.9
25.8 | | 6
7
8
9
10 | 11.7
11.1
11.4
11.6
11.8 | 11.1
10.4
10.9
10.9 | 11.4
10.7
11.1
11.2
11.6 | 11.4
13.2
14.3
15.0
16.7 | 10.1
11.2
12.8
13.8
15.0 | 10.6
12.1
13.4
14.5
15.7 | 18.0
17.8
17.8
18.2
18.8 | 17.5
17.5
17.5
17.6
18.1 | 17.7
17.7
17.6
17.9
18.4 | 26.7
27.2
27.3
27.6
27.9 | 25.9
26.5
26.8
26.8
27.3 | 26.3
26.8
27.0
27.2
27.6 | | 11
12
13
14
15 | 11.4
11.5
11.7
11.9
12.0 | 11.0
11.0
11.1
11.4
11.5 | 11.2
11.2
11.4
11.6
11.8 | 16.2
16.9
17.9
18.0
18.6 | 15.4
15.4
16.6
17.5
17.7 | 15.7
16.2
17.2
17.7
18.1 | 19.6
20.2
20.5
20.6
20.8 | 18.7
19.4
19.9
20.0
20.4 | 17.9
18.4
19.1
19.7
20.1
20.3
20.6 | 28.1
27.8
27.6
26.4
25.4 | 27.6
27.4
26.4
25.4
24.9 | 27.6
26.9
25.9 | | 16
17
18
19
20 | 12.1
12.2
12.3
13.3
14.2 | 11.7
11.6
11.9
12.3
13.3 | 11.9
11.9
12.1
12.8
13.7 | 18.8
19.9
20.8
22.2
22.2 | 18.2
18.7
19.4
20.6
20.5 | 18.4
19.3
20.0
21.2
21.1 | 20.9
21.4
22.0
21.9
22.2 | 20.7
20.7
21.2
21.3
21.4 | 20.8
21.0
21.6
21.5
21.8 | 26.3

24.4
24.8 | 25.3

23.8
23.9 | 25.8

24.1
24.3 | | 21
22
23
24
25 | 15.0
15.2
15.2
15.1
15.5 | 14.1
14.8
14.5
14.4
14.8 | | 20.9
20.1
19.2
18.8
17.6 | | | 22.6
22.8
22.9
23.5
23.5 | | 22.3
22.5
22.6
23.1
23.3 | 24.8
24.8
24.5
24.5
25.3 | 24.0
24.2
24.1
24.0
24.3 | 24.4
24.5
24.3
24.3
24.7 | | 26
27
28
29
30
31 | 15.4
13.7
12.7
 | 13.7
12.7
12.1
 | 14.7
13.1
12.4
 | 17.4
16.7
16.7
17.5
18.2
18.1 | 16.7
16.1
16.0
16.5
17.5 | 17.0
16.4
16.4
17.0
17.8
18.0 | 23.4
23.6
24.4
24.7
25.0 | 22.8
22.7
23.3
24.1
24.4 | 23.1
23.2
23.8
24.4
24.7 | 26.0
26.4
26.2
25.9
25.8
25.8 | 24.9
25.7
25.8
25.5
25.1
25.2 | 25.4
26.0
26.0
25.7
25.4
25.5 | | MONTH | | | | 22.2 | 9.6 | 16.2 | 25.0 | 16.9 | 20.6 | | | | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | DAY 1 2 3 4 5 | MAX
26.1
26.8
27.8
28.6
29.0 | | 25.7
26.3
27.0
28.0
28.7 | 28.1
28.6
29.2
29.6
30.2 | JULY 27.6 27.7 28.2 28.6 29.3 | | | AUGUST | | | 30.4
30.4
29.6
27.6 | | | 1
2
3
4 | 26.1
26.8
27.8
28.6 | JUNE 25.3 25.8 26.5 27.3 28.3 | 25.7
26.3
27.0
28.0
28.7 | 28.1
28.6
29.2
29.6 | JULY
27.6
27.7
28.2
28.6
29.3 | 27.8
28.0
28.5
29.0
29.7 | | 30.5
31.0
31.4
31.2
30.5 | 31.1
31.5
31.8
31.5
31.1 | 31.0
31.2
31.2
29.8 | 30.4
30.4
29.6
27.6
27.6 | 30.7
30.7
30.3
29.2
27.8 | | 1
2
3
4
5
6
7
8
9
10 | 26.1
26.8
27.8
28.6
29.0
29.1
29.4
30.1
30.5 | JUNE 25.3 25.8 26.5 27.3 28.3 28.6 28.9 28.9 29.2 29.4 29.5 29.6 | 25.7
26.3
27.0
28.0
28.7
28.9
29.1
29.2
29.7
29.8
29.8
29.9 | 28.1
28.6
29.2
29.6
30.2
31.0
31.2
31.0
30.9 | JULY 27.6 27.7 28.2 28.6 29.3 30.0 30.3 30.5 30.5 30.5 30.5 | 27.8
28.0
28.5
29.0
29.7
30.4
30.6
30.8
30.8
30.5 | 32.1
32.6
32.4
32.1
31.9 | 30.5
31.0
31.4
31.2
30.5
30.9
31.2
30.5
30.1
29.9
30.1 | 31.1
31.5
31.8
31.5
31.1
31.4
31.4
31.6
31.2
30.7
30.8 | 31.0
31.2
31.2
29.8
28.0
27.7
26.4
28.3
26.9
27.4
28.0 | 30.4
30.4
29.6
27.6
27.6
25.9
25.9
26.1
26.1
26.6
27.4 | 30.7
30.7
30.3
29.2
27.8
27.3
26.1
26.9
27.2
26.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 26.1
26.8
27.8
28.6
29.0
29.1
29.4
30.1
30.5
30.1
30.5
31.1 | JUNE 25.3 25.8 26.5 27.3 28.3 28.6 28.9 29.2 29.4 29.5 29.6 29.5 29.8 | 25.7
26.3
27.0
28.0
28.7
28.9
29.1
29.2
29.7
29.8
29.8
29.8
29.9
30.0
30.2 | 28.1
28.6
29.2
29.6
30.2
30.8
31.0
31.9
31.7
30.9 | JULY 27.6 27.7 28.2 28.6 29.3 30.0 30.3 30.5 30.5 30.5 30.2 30.4 30.5 30.0 29.6 | 27.8
28.0
28.5
29.0
29.7
30.4
30.6
30.8
30.5
30.7
30.8
30.5 | 32.1
32.6
32.4
32.1
31.9
32.1
31.9
31.9
31.9
31.9
31.9 | 30.5
31.0
31.2
30.5
30.5
30.9
31.2
30.5
30.1
29.9
30.1
29.9
30.1
29.9 | 31.1
31.5
31.8
31.5
31.1
31.4
31.4
31.6
31.2
30.7
30.8
29.9
29.5 | 31.0
31.2
31.2
29.8
28.0
27.7
26.4
28.3
26.9
27.4
28.0
28.9
29.4 | 30.4
30.4
29.6
27.6
27.6
25.9
25.9
26.1
26.1
26.6
27.4
27.9
28.3 | 30.7
30.7
30.3
29.2
27.8
27.3
26.1
26.9
27.2
26.5
26.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 26.1
26.8
27.8
28.6
29.0
29.1
29.4
30.1
30.5
30.1
31.1
31.1
31.1
31.2
30.9
31.3 | JUNE 25.3 25.8 26.5 27.3 28.3 28.6 28.9 29.2 29.4 29.5 29.6 29.5 29.8 30.2 30.1 30.2 30.1 | 25.7
26.3
27.0
28.0
28.7
28.9
29.1
29.7
29.8
29.8
29.9
30.0
30.2
30.5
30.6
30.4
30.4 | 28.1
28.6
29.2
29.6
30.2
30.8
31.0
30.9
31.2
31.7
30.8
30.1
29.9
28.1
27.9
28.7
29.9 | JULY 27.6 27.7 28.2 28.6 29.3 30.0 30.3 30.5 30.5 30.5 30.2 29.6 28.1 27.4 27.1 27.7 28.6 | 27.8
28.0
28.5
29.0
29.7
30.4
30.6
30.8
30.5
30.7
30.8
30.5
29.8
29.1
27.7
27.5
28.2
29.2 | 32.1
32.6
32.4
32.1
31.9
32.1
31.9
31.9
31.9
31.9
31.9
32.9
31.9
31.0
31.6
30.4
29.7
29.4 | 30.5
31.0
31.4
31.2
30.5
30.9
31.2
30.5
30.5
31.1
30.1
29.9
30.1
29.9
29.4
28.6
27.8
27.6
28.3
29.1 | 31.1
31.5
31.8
31.5
31.1
31.4
31.4
31.6
31.2
30.7
30.8
29.9
29.5
29.0
28.9
27.8
28.8
29.3 | 31.0
31.2
31.2
29.8
28.0
27.7
26.4
28.3
26.9
27.4
28.0
29.4
29.1
28.7
28.5
28.9
29.4 |
30.4
30.4
29.6
27.6
27.6
26.4
25.9
26.1
26.1
26.6
27.4
27.9
28.3
28.7
28.0
27.6
27.6 | 30.7
30.7
30.7
30.3
29.2
27.8
27.3
26.1
26.9
27.2
26.5
26.9
27.6
28.4
28.8
28.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 26.1
26.8
27.8
28.6
29.0
29.1
29.4
30.1
30.5
30.1
31.1
31.1
31.1
31.2
30.9
31.3
30.7 | JUNE 25.3 25.8 26.5 27.3 28.3 28.6 28.9 29.2 29.4 29.5 29.6 29.5 29.8 30.2 30.1 30.2 30.1 30.2 29.9 29.4 29.5 | 25.7
26.3
27.0
28.0
28.7
29.1
29.7
29.8
29.8
29.9
30.0
30.2
30.5
30.6
30.4
30.4
30.4
30.4
30.4
30.4
30.4 | 28.1
28.6
29.2
29.6
30.2
30.8
31.0
30.9
31.2
31.7
30.8
30.1
29.9
28.1
27.9
28.7
29.9
30.7 | JULY 27.6 27.7 28.2 28.6 29.3 30.0 30.3 30.5 30.5 30.5 30.2 30.4 30.5 30.0 29.6 28.1 27.4 27.1 27.7 28.6 29.9 30.6 31.2 31.4 31.6 | 27.8
28.0
28.5
29.0
29.7
30.4
30.8
30.8
30.5
30.7
30.8
30.5
29.8
29.1
27.7
27.5
28.2
29.2
30.3
31.6
31.6
31.8
31.9 | 32.1
32.6
32.4
32.1
31.9
32.1
31.9
31.9
31.9
31.9
31.6
30.4
29.7
29.4
28.3
29.5
30.0
30.1 | 30.5
31.0
31.4
31.2
30.5
30.9
31.2
30.5
30.5
30.5
30.9
31.1
30.1
29.9
30.1
29.9
30.5
29.4
28.6
27.8
27.8
27.8
29.1
29.1 | 31.1
31.5
31.8
31.5
31.1
31.4
31.4
31.6
31.2
30.7
30.8
29.9
29.5
29.0
28.9
27.8
28.8
29.3
29.4
29.7
29.9 | 31.0
31.2
29.8
28.0
27.7
26.4
28.3
28.3
26.9
27.4
28.0
29.4
29.1
28.7
28.5
28.6
29.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20 | SEPTEMBE 30.4 30.4 29.6 27.6 27.6 26.4 25.9 26.1 26.1 26.6 27.4 27.9 28.3 28.7 28.0 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 | 30.7
30.7
30.7
30.3
29.2
27.8
27.3
26.1
26.9
27.2
26.5
28.4
28.8
28.9
27.9
28.3
27.3
25.5
25.5
25.5
25.5 | 08067252 Trinity River at Wallisville, TX--Continued THIS PAGE IS INTENTIONALLY LEFT BLANK. The U.S. Geological Survey collects limited streamflow data at sites other than continuous stream-gaging stations because the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage of those events. The data collected for special reasons are called measurements at miscellaneous sites. Streamflow data collected at partial-record stations where water-quality data other than observations of water temperature are not obtained are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and (or) discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low and high flows are given in a third table. Discharge measurements and water-quality data collected at partial-record stations are presented in downstream order in the section of this report entitled "Gaging-station records." #### Crest-stage partial-record stations The following table contains annual maximum stage and (or) discharge at partial-record stations operated primarily for the purpose of defining the flooding characteristics of the streams. At stations where discharge is given, or is footnoted "to be determined", a stage-discharge relation has been, or will be, defined by discharge measurements obtained by current meter or by indirect procedures. Water-stage recorders are located at these flood-hydrograph stations to facilitate complete hydrograph definition. At stations where only the maximum stage is given (discharge column is dashed), the data are generally collected for use in stage-frequency studies of flood-profile definition. Gages at these stations usually consist of a device that will register the peak stage occurring between inspection of the gage. The years used in the column "Period of record" identify the years in which the annual maximum has been determined. Annual maximum stage and (or) discharge during water year 2002 | | | | Water Ye | ear 2001 ma | ximum | Period of | f record ma | ximum | |---|--|--|----------|------------------------|--|-----------|------------------------|--------------------------------| | Station name
and
number | Location | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Discharge (ft ³ /s) | | | Trinity Riv | er Basin | | | | | | | | Big Fossil Creek
Haltom City, TX
08048800 | Lat 32°48'26", long 97°14'54", Tarrant County, at center of channel at downstream side of downstream bridge on State Highway 183, 2.0 mi upstream from Little Fossil Creek, 3.5 mi upstream from mouth, and 6.0 mi northeast of Tarrant County Courthouse in Fort Worth. Drainage area is 52.8 mi ² . | 1960-73 th
1974-84 ф
1985-
2002 | 04-15-02 | 12.13 | <u>a</u> / | 09-07-62 | 26.90 <u>b</u> / | 27,000 | - The Operated as a continuous-record station. - φ Operated as an unpublished stage-only station. - a/ Gage Height only, discharge measurement not available. - \underline{b} / Peak of record prior to channel rectification and widening in 1964-66. Maximum stage since rectification: 13.76 ft on 05-03-90. THIS PAGE IS INTENTIONALLY LEFT BLANK. # INDEX | | Page | | Page | |---|------|---|-------| | Bardwell Lake near Ennis | 260 | Mary's Creek at Benbrook | 66 | | Bedias Creek near Madisonville | 316 | Menard Creek near Rye | 334 | | Benbrook Lake near Benbrook | 60 | Mountain Creek, at Grand Prairie | 114 | | Big Fossil Creek at Haltom City | 361 | near Venus | 100 | | Big Sandy Creek near Chico | 44 | Mountain Creek Lake near Grand Prairie | 113 | | Bridgeport Reservoir above Bridgeport | 38 | | | | | | Navarro Mills Lake near Dawson | 242 | | Cedar Creek Reservoir near Trinidad | 238 | New Terrell City Lake near Terrell | 230 | | Chambers Creek near Rice | 272 | | | | Clear Creek near Sanger | 124 | Partial-record stations, crest-stage | 35 | | Clear Fork Trinity River, at Fort Worth | 68 | Prairie Creek at U.S. Highway 175, Dallas | 19 | | near Benbrook | 64 | | | | near Weatherford | 58 | Range Creek near Collinsville | 120 | | CWA Canal near Dayton | 340 | Ray Roberts Lake near Pilot Point | 12: | | | | Richland-Chambers Reservoir near Kerens | 288 | | Definition of terms | 16 | Richland Creek, near Irene | 240 | | Denton Creek, near Grapevine | 154 | near Dawson | 25 | | near Justin | 136 | Rowlett Creek near Sachse | 21 | | Fools Mayatsia December shows Fort Worth | 50 | | | | Eagle Mountain Reservoir above Fort Worth | 50 | Sister Grove Creek near Blue Ridge | 200 | | East Fork Trinity River, at McKinney | 204 | · | | | near Crandall | 216 | Tehuacana Creek near Streetman | 29 | | near Forney | 214 | Timber Creek near Collinsville | 113 | | Elizabeth Creek at State Highway 114 near Roanoke | 140 | Trinity River, at Cedar Crest Boulevard, Dallas | 16 | | Elm Fork Trinity River, at Frasier Dam, Dallas | 160 | at Dallas | 16 | | at Gainesville | 116 | at Liberty | 33 | | near Carrollton | 156 | at Romayor | 330 | | near Lewisville | 134 | at Trinidad | 23 | | Farmers Branch near Weatherford | 54 | at Wallisville | 34 | | rainers Branch near weatherfold | 34 | below Dallas | 18 | | Grapevine Lake near Grapevine | 142 | near Crockett | 30- | | Grapevine Easte near Grapevine | 1.2 | near Goodrich | 33: | | Halbert Lake near Corsicana | 286 | near Oakwood | 29 | | Houston County Lake near Crockett | 302 | near Rosser | 22 | | , | | near Wilmer | 19 | | Joe Pool Lake near Duncanville | 110 | Trinity River Basin, crest-stage partial-record stations in | 35 | | | | gaging-station records in | 32-34 | | Kickapoo Creek near Onalaska | 318 | 6·6 6 ····· | | | | | Upper Keechi Creek near Oakwood | 300 | | Lake Amon G. Carter near Bowie | 42 | 11 | | | Lake Arlington at Arlington | 86 | Village Creek at Everman | 8: | | Lake Charlotte near Anahuac | 342 | | | | Lake Ray Hubbard near Forney | 212 | Walnut Creek, at Reno | 4 | | Lake Waxahachie near Waxahachie | 256 | near Mansfield | 10 | | Lake Weatherford near Weatherford | 56 | Waxahachie Creek, near Bardwell | 26 | | Lake Worth above Fort Worth | 52 | near Waxahachie | 25 | | Lavon Lake near Lavon | 208 | West Fork Trinity River, at Beach Street, Fort Worth | 7: | | Lewisville Lake near Lewisville | 132 | at Fort Worth | 7 | | Little Elm Creek near Aubrey | 130 | at Grand Prairie | 9: | | Livingston Reservoir near Goodrich | 320 | near Boyd | 4 | | Long King Creek at Livingston | 330 | near Jacksboro | 3 | | Lost Creek Reservoir near Jacksboro | 36 | White Rock Creek at Greenville Avenue, Dallas | 170 | | Lyndon B. Johnson National Grasslands near Alvord | |
Time Rock Creek at Greenvine Avenue, Danas | 1/1 | # **CALENDAR FOR WATER YEAR 2002** # 2001 | | OCTOBER NOVEMBER | | | | | | | DECEMBER | | | | | | | | | | | | | | |------|------------------|----|------|----|----|----|----------|----------|----|----|----|----|----|-------|-----------|----|----|----|----|----|--| | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | | | | | | | 1 | | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | 28 | 29 | 30 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | | | | | | | | | | | | | | | 30 | 31 | | | | | | | | 2002 | JANUARY | | | | | | FEBRUARY | | | | | | | MARCH | | | | | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | 1 | 2 | 3 | 4 | 5 | | | | | | 1 | 2 | | | | | | 1 | 2 | | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | | 27 | 28 | 29 | 30 | 31 | | | 24 | 25 | 26 | 27 | 28 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | | | | | | | | | | | | | | 31 | | | | | | | | | | | A | PRI | L | | | MAY | | | | | | | JUNE | | | | | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | 1 | 2 | 3 | 4 | | | | | | | 1 | | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | | 21 | 22 | | 24 | 25 | 26 | 27 | 19 | 20 | 21 | | | 24 | 25 | 16 | | | 19 | | | 22 | | | 28 | 29 | 30 | | | | | 26 | 27 | 28 | 29 | 30 | 31 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | | | | | | | | | | | | | | | 30 | | | | | | | | | | | J | IULY | 7 | | | AUGUST | | | | | | | | SEPTEMBER | | | | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 29 | 30 | | | | | | | # **CONVERSION FACTORS** | Multiply | Ву | To obtain | | | | | | | | |--|------------------------|----------------------------|--|--|--|--|--|--|--| | | Length | | | | | | | | | | inch (in.) | 2.54×10^{1} | millimeter | | | | | | | | | | 2.54×10^{-2} | meter | | | | | | | | | foot (ft) | 3.048×10^{-1} | meter | | | | | | | | | mile (mi) | 1.609×10^0 | kilometer | | | | | | | | | | Area | | | | | | | | | | acre | 4.047×10^3 | square meter | | | | | | | | | | 4.047×10^{-1} | square hectometer | | | | | | | | | | 4.047×10^{-3} | square kilometer | | | | | | | | | square mile (mi ²) | 2.590×10^{0} | square kilometer | | | | | | | | | | Volume | | | | | | | | | | gallon (gal) | 3.785×10^{0} | liter | | | | | | | | | guiron (gur) | 3.785×10^{0} | cubic decimeter | | | | | | | | | | 3.785×10^{-3} | cubic meter | | | | | | | | | million gallons (Mgal) | 3.785×10^3 | cubic meter | | | | | | | | | | 3.785×10^{-3} | cubic hectometer | | | | | | | | | cubic foot (ft ³) | 2.832×10^{1} | cubic decimeter | | | | | | | | | | 2.832×10^{-2} | cubic meter | | | | | | | | | cubic-foot-per-second day [(ft ³ /s) d] | 2.447×10^3 | cubic meter | | | | | | | | | | 2.447×10^{-3} | cubic hectometer | | | | | | | | | acre-foot (acre-ft) | 1.233×10^3 | cubic meter | | | | | | | | | , | 1.233×10^{-3} | cubic hectometer | | | | | | | | | | 1.233×10^{-6} | cubic kilometer | | | | | | | | | | Flow | | | | | | | | | | cubic foot per second (ft ³ /s) | 2.832×10^{1} | liter per second | | | | | | | | | cuesto recorpor second (re 75) | 2.832×10^{1} | cubic decimeter per second | | | | | | | | | | 2.832×10^{-2} | cubic meter per second | | | | | | | | | gallon per minute (gal/min) | 6.309×10^{-2} | liter per second | | | | | | | | | | 6.309×10^{-2} | cubic decimeter per second | | | | | | | | | | 6.309x10 ⁻⁵ | cubic meter per second | | | | | | | | | million gallons per day (Mgal/d) | 4.381×10^{1} | cubic decimeter per second | | | | | | | | | | 4.381×10^{-2} | cubic meter per second | | | | | | | | | Mass | | | | | | | | | | | ton (short) | 9.072x10 ⁻¹ | megagram or metric ton | | | | | | | | Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F = $(1.8 \times ^{\circ}C) + 32$